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Abstract. To specify a Bayes net (BN), a conditional probability table
(CPT), often of an effect conditioned on its n causes, needs assessed for
each node. It generally has the complexity exponential on n. Noisy-OR
reduces the complexity to linear, but can only represent reinforcing causal
interactions. The non-impeding noisy-AND (NIN-AND) tree is the first
causal model that explicitly expresses reinforcement, undermining, and
their mixture. It has linear complexity, but requires elicitation of a tree
topology for types of causal interactions. We study their topology space
and develop two novel techniques for more effective elicitation.

1 Introduction

To specify a BN, a CPT needs to be assessed for each non-root node. It is often
advantageous to construct BNs along the causal direction, in which case a CPT
is the distribution of an effect conditioned on its n causes. In general, assessment
of a CPT has the complexity exponential on n.

Noisy-OR [7] is the most well known technique that reduces this complexity to
linear. A number of extensions have also been proposed such as [4, 3, 5]. However,
noisy-OR, noisy-AND [3], as well as related techniques, can only represent causal
interactions that are reinforcing [9]. The NIN-AND tree [9] extends noisy-OR
and provides the first causal model that explicitly expresses reinforcing and
undermining causal interactions, as well as their mixture. It requires elicitation
of a linear number of probability parameters and, in addition, a tree topology
which specifies the types of causal interactions among causes.

The elicitation relies on expert to describe the tree topology. When the num-
ber of causes is more than four or five, accurate description may be challenging.
We study the topology space of NIN-AND tree models and develop novel tech-
niques for more effective elicitation. One allows expert to select a topology from
an enumeration. Another allows expert to specify only types of pairwise inter-
actions among causes, from which a unique tree topology is identified.

2 Background

This section is mostly based on [9]. An uncertain cause is a cause that can pro-
duce an effect but does not always do so. Denote a set of binary cause variables
as X = {c1, ..., cn} and their effect variable (binary) as e. For each ci, denote



ci = true by c+
i and ci = false by c−i . Similarly, denote e = true by e+ and

e = false by e−.
A causal event refers to an event that a cause ci caused an effect e to occur

successfully when all other causes of e are absent. Denote this causal event
by e+ ← c+

i and its probability by P (e+ ← c+
i ). The causal failure event,

where e is false when ci is true and all other causes of e are false, is denoted as
e+ 6← c+

i . Denote the causal event that a set X = {c1, ..., cn} of causes caused e
by e+ ← c+

1 , ..., c+
n or e+ ← x+. Denote the set of all causes of e by C. The CPT

P (e|C) relates to probabilities of causal events as follows: If C = {c1, c2, c3},
then P (e+|c+

1 , c−2 , c+
3 ) = P (e+ ← c+

1 , c+
3 ). Note that C is assumed to include

a leaky variable (if any) to capture causes that we do not wish to represent
explicitly, and hence P (e+|c−1 , c−2 , c−3 ) = 0.

Causes reinforce each other if collectively they are at least as effective in
causing the effect as some acting by themselves. If collectively they are less
effective, then they undermine each other. Note that if C = {c1, c2} and c1 and
c2 undermine each other, then all the following hold:

P (e+|c−1 , c−2 ) = 0, P (e+|c+
1 , c−2 ) > 0, P (e+|c−1 , c+

2 ) > 0,

P (e+|c+
1 , c+

2 ) < min(P (e+|c+
1 , c−2 ), P (e+|c−1 , c+

2 )).

The following Def.1 defines the two types of causal interactions generally.
Note that reinforcement and undermining occur between individual variables as
well as sets of variables. For instance, variables within each of two sets can be
reinforcing, while the two sets can undermine each other. Hence, each Wi in
Def.1 is not necessarily a singleton.

Def. 1 Let R = {W1, W2, ...} be a partition of a set X of causes, R′ ⊂ R be
any proper subset of R, and Y = ∪Wi∈R′Wi. Sets of causes in R reinforce each
other, iff

∀R′ P (e+ ← y+) ≤ P (e+ ← x+).

Sets of causes in R undermine each other, iff

∀R′ P (e+ ← y+) > P (e+ ← x+).

Disjoint sets of causes W1, ..., Wm satisfy failure conjunction iff

(e+ 6← w+
1 , ..., w+

m) = (e+ 6← w+
1 ) ∧ ...∧ (e+ 6← w+

m).

That is, collective failure is attributed to individual failures. They also satisfy
failure independence iff

P ((e+ 6← w+
1 ) ∧ ...∧ (e+ 6← w+

m)) = P (e+ 6← w+
1 ) ... P (e+ 6← w+

m).

Disjoint sets of causes W1, ..., Wm satisfy success conjunction iff

e+ ← w+
1 , ..., w+

m = (e+ ← w+
1 ) ∧ ...∧ (e+ ← w+

m).
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That is, collective success requires individual effectiveness. They also satisfy
success independence iff

P ((e+ ← w+
1 ) ∧ ...∧ (e+ ← w+

m)) = P (e+ ← w+
1 ) ... P (e+ ← w+

m).

It has been shown that causes are reinforcing when they satisfy failure con-
junction and independence, and they are undermining when they satisfy success
conjunction and independence. Hence, undermining can be modeled by a direct
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Fig. 1. Direct (left) and dual (right) NIN-AND gates

NIN-AND gate (Fig. 1, left), and reinforcement by a dual NIN-AND gate (right).
As per Def. 1, a set of causes can be reinforcing (undermining), but the

set is undermining (reinforcing) with another set. Such causal interaction can
be modeled by a NIN-AND tree. As shown in Fig. 2 (a), causes c1 through c3

are undermining, and they are collectively reinforcing c4. The following defines
NIN-AND tree models in general:

Def. 2 An NIN-AND tree is a directed tree for effect e and a set X = {c1, ..., cn}
of occurring causes.

1. There are two types of nodes. An event node (a black oval) has an in-degree
≤ 1 and an out-degree ≤ 1. A gate node (a NIN-AND gate) has an in-degree
≥ 2 and an out-degree 1.

2. There are two types of links, each connecting an event and a gate along input-
to-output direction of gates. A forward link (a line) is implicitly directed. A
negation link (with a white oval at one end) is explicitly directed.

3. Each terminal node is an event labeled by a causal event e+ ← y+ or e+ 6←
y+. There is a single leaf (no child) with y+ = x+, and the gate it connects
to is the leaf gate. For each root (no parent; indexed by i), y+

i
⊂ x+,

y+
j
∩ y+

k
= ∅ for j 6= k, and

⋃
i y+

i
= x+.

4. Inputs to a gate g are in one of two cases:
(a) Each is either connected by a forward link to a node labeled e+ ← y+,

or by a negation link to a node labeled e+ 6← y+. The output of g is
connected by a forward link to a node labeled e+ ← ∪iy

+
i
.

(b) Each is either connected by a forward link to a node labeled e+ 6← y+,
or by a negation link to a node labeled e+ ← y+. The output of g is
connected by a forward link to a node labeled e+ 6← ∪iy

+
i
.
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An NIN-AND tree model for effect e and its causes C can be obtained
by eliciting a tree topology with |C| roots plus |C| single-cause probabilities
P (e+ ← c+

i ). The CPT P (e|C) can then be derived using the model. For each
P (e+|ci, ..., cj), first modify the model to remove roots corresponding to inac-
tive causes, i.e., ci = c−i , and related gates if necessary. Then apply algorithm
GetCausalEventProb below to the modified tree. It recursively processes from
the leaf to roots. As soon as probabilities of input events to a gate is obtained,
probability of its output event is computed.

Algorithm 1 GetCausalEventProb(T)
Input: A NIN-AND tree T of leaf v and leaf gate g, with root probabilities spec-
ified.

for each node w directly inputting to g, do
if P (w) is not specified,

denote the sub-NIN-AND-tree with w as the leaf by Tw;
P (w) = GetCausalEventProb(Tw);

if (w, g) is a forward link, P ′(w) = P (w);
else P ′(w) = 1− P (w);

return P (v) =
∏

w P ′(w);

By default, each root event in a NIN-AND tree is a single-cause event, and all
causal interactions satisfy failure (or success) conjunction and independence. If a
subset of causes do not satisfy these assumptions, suitable multi-cause probabil-
ities P (e+ ← x+), where X ⊂ C, can be directly elicited and incorporated into
the NIN-AND tree model. Hence, by trading efficiency, any non-deterministic
CPT can be encoded through NIN-AND trees. The default is assumed in this
paper.

3 Minimal NIN-AND Tree Topology Space

NIN-AND tree models allow a CPT of generally exponential complexity to be
obtained by eliciting a tree topology and a linear number of probabilities of
single-cause events. Reference [9] relies on human expert to describe the tree
topology. One alternative is to show expert all possible tree topologies so that
one can be selected. We study the space of NIN-AND trees below so that tree
topologies can be enumerated.

First of all, what qualifies as an individual in the space? For instance, it
would be undesirable that two distinct topologies in the space correspond to the
same CPT. Consider the two NIN-AND trees in Fig. 2. Although the topologies
appear different, given an identical set of single-cause probabilities, they yield
the same probability P (e+ 6← c+

1 , c+
2 , c+

3 , c+
4 ). Hence, it is desirable that only one

of them is deemed legal in the topology space.
We establish below associativity of NIN-AND gates, which allows identifi-

cation of equivalent topologies such as the above. Proposition 1 shows that an
NIN-AND tree of multiple dual NIN-AND gates is equivalent to a single gate.
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Fig. 2. NIN-AND trees depicting the same causal model.

Proposition 1 Let T be an NIN-AND tree for n ≥ 3 causes with m ≥ 1 dual
NIN-AND gates, and P (e+ ← c+

1 , ..., c+
n) be the probability of the causal event

obtained from T . Let T ′ be a single dual NIN-AND gate for the same causes
and P ′(e+ ← c+

1 , ..., c+
n) the probability from T ′. Then P (e+ ← c+

1 , ..., c+
n) =

P ′(e+ ← c+
1 , ..., c+

n).

Proof: We prove by induction on the number of gates in T . For m = 1, T and
T ′ are identical. Applying GetCausalEventProb to T , we obtain

P (e+ 6← c+
1 , ..., c+

n) = P ′(e+ 6← c+
1 , ..., c+

n) =
n∏

i=1

P (e+ 6← c+
i ).

Assume that the proposition holds for m = 1, 2, ..., k where k ≥ 1. Below we
consider m = k + 1.

Let g denote the leaf gate of T . Since k ≥ 1 and m ≥ 2, there exists a gate
t that outputs to g. Let v be the output event of t. Let S denote the subtree
seated at v and for a subset X of causes. In other words, v is the leaf in S. S
is a valid NIN-AND tree with no more than k gates. By inductive assumption,
applying GetCausalEventProb to S, we obtain

P (e+ 6← x+) =
∏

ci∈X

P (e+ 6← c+
i ).

The above argument holds for each gate t. When GetCausalEventProb is
applied to the leaf node in T , the probability of the corresponding event is the
product of the probability of each input event to g. Hence,

P (e+ 6← c+
1 , ..., c+

n) =
n∏

i=1

P (e+ 6← c+
i )

when m = k + 1. �

Proposition 2 shows that an NIN-AND tree of multiple direct NIN-AND
gates is equivalent to a single direct NIN-AND gate. It can be proven similarly
as for Proposition 1.
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Proposition 2 Let T be an NIN-AND tree for n ≥ 3 causes with m ≥ 1 direct
NIN-AND gates, and P (e+ ← c+

1 , ..., c+
n) be the probability of the causal event

obtained from T . Let T ′ be an NIN-AND tree for the same causes with a single
direct NIN-AND gate, and P ′(e+ ← c+

1 , ..., c+
n) be the probability from T ′. Then

P (e+ ← c+
1 , ..., c+

n) = P ′(e+ ← c+
1 , ..., c+

n).

Base on the associativity of NIN-AND gates, we select the single NIN-AND
gate to represent all equivalent NIN-AND trees of the same input events, and to
be the only legal individual in the topology space. Applying this to NIN-AND
gates embedded in an NIN-AND tree, we have the following classification of tree
topologies.

Def. 3 Let T be an NIN-AND tree. If T contains a gate t that outputs to another
gate g of the same type (direct or dual), delete t and connect its inputs to g. If
such deletion is possible, then T is superfluous. Apply such deletions until no
longer possible. The resultant NIN-AND tree is minimal.

As per Def. 3, we require individuals in the topology space to be minimal.
That is, we require a minimal topology space. Hence, the NIN-AND tree in Fig. 2
(a) is legal in the space, and that in (b) is not. This leads to Corollary 1.

Corollary 1 Let T be a minimal NIN-AND tree. Then whenever a NIN-AND
gate g outputs to another NIN-AND gate t, g and t are of different type (direct
or dual).

From Corollary 1, a minimal NIN-AND tree has the following structure: If
the leaf gate g is a direct gate, then all gates outputting to g are dual, and their
inputs are all from direct gates. That is, from the leaf towards root nodes, gates
alternate in types. This alternation implies that, in the minimal space, for every
legal NIN-AND tree T with a direct leaf gate, there exists a legal NIN-AND
tree T ′ obtained by replacing each gate in T with its opposite type. This is
summarized in the following:

Proposition 3 Let Ψ be the collection of minimal NIN-AND trees for n causes
with direct leaf gates. Let Ψ ′ be the collection of minimal NIN-AND trees for n
causes with dual leaf gates. Then an one-to-one mapping exists between Ψ and
Ψ ′, defined by replacing each gate with the opposite type.

We refer to Ψ as the minimal topology space for n causes with direct leaf
gates, and Ψ ′ as the minimal topology space with dual leaf gates. As per Propo-
sition 3, properties from one of them are applicable to the other. Below, we focus
on tree enumeration in the minimal space with direct leaf gates.

From Corollary 1, given the type of leaf gate, types of all gates in a minimal
NIN-AND tree are unique, as well as the nature of all event nodes (causal failure
or success). We thus omit labels for event nodes. Note that we choose minimal
trees to be unlabeled as the space is more compact. How to enumerate root-
labeled minimal trees given the unlabeled enumeration is studied in [10].
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4 Enumerating NIN-AND Trees by Local Insertion

There is only one minimal NIN-AND tree for 2 causes. For 3 causes, there are
two minimal NIN-AND trees with direct leaf gate (see Fig. 3 (a) and (b)). For

(a) (b) ...

...

...

...

...

...

...

...

...

...

...

... (d)(c)

Fig. 3. (a) and (b): Minimal NIN-AND trees for 3 causes. (c) Op1. (d) Op2.

a larger number of causes, Theorem 1 suggests operations for automatic tree
topology generation, which are illustrated in Fig. 3 (c) and (d).

Theorem 1 Every minimal NIN-AND tree for n ≥ 3 causes can be constructed
by starting from an NIN-AND gate for 2 causes and applying a sequence of
operations made of the following two:

Op1 Add a root event as an input to a gate.
Op2 Insert a new gate between a root event and an existing gate and add a new

root event as the second input of the new gate.

Proof by induction (sketch): For n = 3, there are exactly two minimal NIN-AND
trees. The trees in Fig. 3 (a) and (b) can be constructed by applying Op1 and
Op2 to the NIN-AND gate for 2 causes.

Assume that the theorem holds for n = k ≥ 3 and consider n = k + 1. Let
T ′ be a minimal tree for n causes, x be a root event in T ′ and is connected to a
gate g. Let T be a tree obtained by removing x from T ′. Analyzing the following
cases and applying the inductive assumption to T , it can be shown that, in each
case, T ′ can be constructed by a sequence made of Op1 and Op2.

– Gate g has three or more input events.
– Gate g has two input events x and y.
• Gate g is the leaf gate.
• Gate g is a non-leaf gate.
∗ Event y is a root event.
∗ Event y is a non-root event. �

Theorem 1 suggests the following procedure to generate all minimal NIN-
AND trees for n causes: Start with the NIN-AND gate for 2 causes. Apply Op1
and Op2 to the gate to generate the two NIN-AND trees for 3 causes. Repeat
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the process to generate all minimal trees for 4 causes based on minimal trees
for 3 causes, then those for 5 causes based on minimal trees for 4 causes, and so
on, until those for n causes based on minimal trees for n − 1 causes. At round
k + 1, all minimal trees for k causes have been constructed from the round k.
With each tree T for k causes, for each gate g in T , apply Op1 once to generate
a tree for k +1 causes, and apply Op2 once to generate another tree if g has any
root input event.

5 Removing Duplication Trees

The above procedure can generate all minimal NIN-AND trees for n causes.
However, when executed, no matter what data structure is used, nodes in each
tree is implicitly labeled. This causes generation of labeled trees corresponding
to the same unlabeled NIN-AND tree. For instance, from the minimal tree in

uuu v xw

(e)(d)

ff

ih iih h

ggg

yy

t

f

s

w xvw xv

ts

f f

s t

(a) (b) (c)

ww xx yy v u vu

t tss

Fig. 4. Trees in (b) and (c) are generated from (a). (d) Reduced tree from (b). (e)
Reduced tree from (c).

Fig. 4 (a), when Op1 is applied to gate h, the labeled tree in (b) is generated.
When the operation is applied to gate i, the tree in (c) is generated. In both
(b) and (c), the new node is labeled y. However, in (b) it is connected to a
gate adjacent to u, v and s. But in (c), it is connected to a gate adjacent to
w, x and t. It is not obvious that trees in (b) and (c) correspond to the some
unlabeled tree. To turn a list of generated trees into an enumeration, all labeled
trees corresponding to the same unlabeled tree must be removed, except one.

Algorithm 2 below decides if a newly generated labeled NIN-AND tree T ′

corresponds to the unlabeled tree represented by an existing labeled tree T . It
uses a more compact representation where each gate node is merged with the
unique non-root event node connected to it. This converts a minimal NIN-AND
tree to a reduced tree, defined below and illustrated in Fig. 4 (d) and (e).

Def. 4 Let T be a minimal NIN-AND tree. A reduced tree relative to T is a
directed graph obtained by (1) merging each gate node with the unique non-root
event node that it is connected to, and (2) making all links explicitly directed in
the same directions as in T .
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Now the task is to recognize two reduced trees such as those in Fig. 4 (d)
and (e) to be isomorphic. Two reduced trees are isomorphic if there is an one-
to-one mapping of their nodes which (1) maps the leaf in one to the leaf in
the other, and (2) preserves in-degree and out-degree. Algorithm 2 performs the
task, where |T | denotes the number of nodes in T .

Algorithm 2 IsIsomorphicTree(T, T’)
Input: Two reduced trees T and T ′, with leaf nodes v and v′, and their parent
sets π and π′, respectively.

1 if |T ′| 6= |T |, return false;
2 if |T ′| = 1, return true;
3 if |π′| 6= |π|, return false;
4 Sub′ = the set of subtrees each with the leaf in π′;
5 Sub = the set of subtrees each with the leaf in π;
6 for each subtree S′ ∈ Sub′,
7 for each unmarked subtree S ∈ Sub,
8 if IsIsomorphicTree(S, S’) returns true,
9 mark S′ and S;
10 break inner for loop;
11 if S′ is unmarked, return false;
12 return true;

Theorem 2 establishes that IsIsomorphicTree recognizes isomorphic reduced
trees correctly.

Theorem 2 IsIsomorphicTree(T, T ′) returns true iff reduced trees T and T ′

are isomorphic.

Proof: We prove by strong induction on n = |T |. Denote n′ = |T ′|. For n = 1, the
only case where T ′ and T are isomorphic is n′ = 1. IsIsomorphicTree returns true
in line 2. If T ′ and T are not isomorphic, we must have n′ 6= 1. IsIsomorphicTree
returns false in line 1.

Since T and T ′ are reduced NIN-AND trees, n > 1 implies n ≥ 3 (similarly
n′ > 1 implies n′ ≥ 3). We therefore also consider the base case n = 3, where T
has the leaf and two roots. If T and T ′ are not isomorphic, we must have n′ 6=
3. IsIsomorphicTree returns false in line 1. T and T ′ are isomorphic whenever
n′ = 3. IsIsomorphicTree returns true in line 2.

Assume that the theorem holds for n = 1, 3, 4, ..., k where k ≥ 3. We consider
the case n = k+1. If T and T ′ are not isomorphic, either n′ 6= n, or the degree of
v′ differs from that of v, or subtrees seated at parents of v′ cannot be one-to-one
mapped to subtrees seated at parents of v such that each pair is isomorphic. In
the first two cases, IsIsomorphicTree returns false in lines1 and 3. In the third
case, for at least one subtree S′, no subtree S exists such that IsIsomorphicTree
returns true by inductive assumption (the number of nodes in S is at most k−1).
Hence, IsIsomorphicTree returns false in line 11.

On the other hand, if T and T ′ are identical, IsIsomorphicTree will enter
the outer for loop. For each subtree S′, there exists a subtree S such that
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IsIsomorphicTree returns true by inductive assumption (the number of nodes in
S is at most k−1). Hence, the outer for loop will complete and IsIsomorphicTree
will return true in line 12. �

The following algorithm enumerates minimal NIN-AND trees of n ≥ 3 causes
in terms of reduced trees.

Algorithm 3 EnumerateReducedTree(n)
1 initialize set ST2 with a single reduced tree for 2 causes;
2 for i = 3 to n,
3 initialize STi to empty set;
4 for each reduced tree T in STi−1,
5 for each non-root node x of T ,
6 duplicate T as T ′;
7 add a root parent to x in T ′;
8 if for each S ∈ STi , IsIsomorphicTree(S, T ′) returns false, add T ′ to STi;

9 if x has a root parent p;
10 duplicate T as T ′′;
11 insert a new node z between x and p in T ′′;
12 add a root parent to z in T ′′;
13 if for each S ∈ STi, IsIsomorphicTree(S, T ′′) returns false,

add T ′′ to STi;
14 return STn;

The algorithm enumerates reduced trees of i causes based on the enumeration
of i − 1 causes, collected in set STi−1. For each reduced tree T in STi−1, each
non-root node x is processed, which corresponds to a gate of the original NIN-
AND tree. For each x, Op1 and Op2 (if applicable) are applied. If the new tree
is not isomorphic to one in set STi, it is added. Each reduced tree in STn can
be easily converted to a minimal NIN-AND tree for n causes.

Due to Theorem 1 and one-to-one mapping between a reduced tree and the
corresponding minimal NIN-AND tree, minimal NIN-AND trees corresponding
to each STi are exhaustive. Due to Theorem 2, they are also mutually exclusive.
Hence, we have the following theorem.

Theorem 3 STn produced by EnumerateReducedTree enumerates minimal NIN-
AND trees for n causes.

Using EnumerateReducedTree, we enumerated minimal NIN-AND trees for
n causes with n between 2 and 10. The table below shows the execution result.

n 2 3 4 5 6 7 8 9 10
|Stn| 1 2 5 12 33 90 261 766 2312

Our enumeration enables an NIN-AND tree for n causes to be elicited by
displaying all alternative trees to human expert so that one can be selected. As
it is often easier to select a target object from a list than to describe the object
from vacuum, this technique is expected to improve the accuracy and efficiency
in elicitation.
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6 Pairwise Causal Interactions

Although selection from a list is usually less demanding mentally than descrip-
tion from vacuum, when the number of causes is more than six or seven, iden-
tifying the target NIN-AND tree accurately from the enumeration may still be
challenging. For instance, there are 261 minimal NIN-AND trees for 8 causes, On
the other hand, eliciting whether a pair of causes is reinforcing or undermining
is much less demanding (binary selection). We therefore explore the possibil-
ity to uniquely identify a minimal NIN-AND tree based on elicitation of O(n2)
pairwise causal interactions.

To do so, we need to understand how a minimal NIN-AND tree determines a
set of pairwise causal interactions. However, this is impossible because a minimal
NIN-AND tree is unlabeled while a set of pairwise causal interactions must be
specified over specific pairs of causes. On the other hand, any minimal NIN-
AND tree with its root nodes labeled determines uniquely a set of pairwise
causal interactions, as shown by the following proposition. We refer to such a
tree as a minimal, root-labeled NIN-AND tree. Note that in a root-labeled tree,
root nodes are labeled but non-root nodes are unlabeled. Note also the default
assumption that every root node is a single-cause event.

Proposition 4 Let T be a minimal NIN-AND tree for a set X of causes and
rl be a labeling of root nodes. Then T and rl define a function pci from pairs
of distinct causes {ci, cj} ⊂ X, where i 6= j, to the set {rif, udm}, where rif
stands for reinforcing and udm stands for undermining.

For instance, pci(ci, cj) = udm means that causal interaction between ci and
cj is undermining. Proof of Proposition 4 depends on Proposition 5 below, which
in turn relies on the concept of the closest common gate (ccg):

Def. 5 Let x and y be two root nodes in a minimal NIN-AND tree T . Let pathx

be the directed path from x to the leaf of T and pathy be that from y. Then, the
first node in pathx common to a node in pathy is the ccg of x and y.

In Fig. 4 (c), the ccg of x and y is i. Note that the first node common in pathx

and pathy is always a gate. The following proposition shows how the interaction
between a pair of causes is encoded in an NIN-AND tree.

Proposition 5 Let T be a minimal, root-labeled NIN-AND tree. Let x and y be
a pair of root nodes, ci and cj be their corresponding causes, and g be their ccg.
Then the causal interaction between ci and cj is of the type of g.

Proof: Given root-labeled T , assume that all causes become inactive except ci

and cj . Now except g, all other gates have no more than one active causal input
event, and hence can be removed. The resultant minimal NIN-AND tree has a
single gate g with root input events x and y. �

From Proposition 5, it is clear that the topology of T and a root labeling
uniquely determine the type of causal interaction between each pair of causes
(corresponding to a pair of roots in T ). Hence, Proposition 4 holds.
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7 Are NIN-AND Trees PCI Differentiable?

Given that each minimal NIN-AND tree, plus a root labeling, uniquely deter-
mines a set of pairwise causal interactions, can a minimal NIN-AND tree be
identified from a set of pairwise causal interactions? In other words, are pairwise
causal interactions sufficient to differentiate minimal NIN-AND trees?

More specifically, let X = {c1, ..., cn} be a set of n causes for an effect,
and STn be the set of all minimal NIN-AND trees for n causes. Let pci be a
function from pairs of distinct causes {ci, cj} ⊂ X (i 6= j) to the set {rif, udm},
determined by T ∈ STn and a root labeling. The question then is whether it
is possible to uniquely identify T given pci only. For instance, the NIN-AND
tree in Fig. 2 (a) has pci(c1, c2) = pci(c1, c3) = pci(c2, c3) = udm, pci(c1, c4) =
pci(c2, c4) = pci(c3, c4) = rif. Can the tree model be uniquely identified from
the function? We refer to this as the identification question.

Note that since T and a root labeling together define a causal interaction
function pci, to answer the above question in general, the search space is not
STn but the space of all root-labeled minimal NIN-AND trees, whose complexity
is O(n! |STn|).

We answer the identification question by exhaustively testing whether there
exists a pair of NIN-AND trees T and T ′ and there exists a root labeling for
each of them, such that the two root-labeled trees satisfy the same set of pairwise
causal interactions corresponding to some pci function. Although this method
does not scale for very large n, we point out that a NIN-AND tree model is
used to acquire a single CPT in a BN and hence very large n is not expected
given the conditional independence expressed by the BN. To make the testing
computation effective, we developed the following test conditions:

Given n causes, there are n(n − 1)/2 pairs. A pci function maps each pair
to one of rif and udm, thus defining two sets of pairs which we refer to as Rif
and Udm. That is, a pair {ci, cj} ∈ Udm, iff pci(ci, cj) = udm. Once one of Rif
and Udm is defined, the other is uniquely determined.

Proposition 6 below shows that if two minimal NIN-AND trees, under arbi-
trary root-labeling, produce two Rif sets of different cardinalities, then the two
trees are differentiable from pairwise casual interactions.

Proposition 6 Let T and T ′ be two minimal NIN-AND trees of n causes, rl
and rl′ be some root labeling of T and T ′, and pci and pci′ be the corresponding
pairwise causal interaction functions, respectively. Let Rif and Rif ′ be the sets
of reinforcing pairs, defined by pci and pci′, respectively.

If |Rif | 6= |Rif ′|, there exist no root labeling for T and T ′, such that the two
root-labeled trees satisfy the same pairwise causal interaction function.

Proof: When |Rif | 6= |Rif ′|, the number of reinforcing cause pairs defined by T
and rl differs from that defined by T ′ and rl′. Since the number of reinforcing
cause pairs is independent of root labeling, no matter what alternative root
labeling are used, the inequality remains. This implies that Rif 6= Rif ′ no
matter what root labeling is used. Hence, the proposition holds. �
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Proposition 6 suggests an inexpensive test (to be referred as Test 1) that
rules out the tree pair from possibly contributing to the negative answer of
identification question.

If two minimal NIN-AND trees, under some root-labeling, produce Rif sets
of identical cardinalities, it is uncertain how the tree pair contributes to the
answer of identification question. The following proposition suggests a further
test.

Proposition 7 Let T , T ′, rl, rl′, pci and pci′ be defined as in Proposition 6.
For each cause c, let k(c) be the number of other causes that are pairwise rein-
forcing with c according to pci, and κ be the sorted list of k(c)’s. Let κ′ be the
corresponding sorted list defined by pci′.

If κ 6= κ′, there exist no root labeling for T and T ′, such that the two root-
labeled trees satisfy the same pairwise causal interaction function.

For the NIN-AND tree in Fig. 2 (a), κ = (1, 1, 1, 3) because k(c1) = k(c2) =
k(c3) = 1 and k(c4) = 3.

Proof: If κ 6= κ′, then there exists k (0 ≤ k < n(n−1)/2) such that m elements of
κ have value k, m′ elements of κ′ have value k, and m 6= m′. That is, according
to T under root-labeling rl, each of m causes reinforces with another k causes.
But according to T ′ under root-labeling rl′, each of m′ causes reinforces with
another k causes.

The number of other causes which a given cause reinforces with is indepen-
dent of root labeling. Hence, no matter what alternative root labeling are used,
according to T the number of causes reinforcing with k other causes remains m,
and according to T ′ the number remains m′. This implies that κ 6= κ′ no matter
what root labeling is used. Hence, the proposition holds. �

Proposition 7 suggests another inexpensive test (to be referred as Test 2)
that rules out a tree pair from possibly contributing to the negative answer
of identification question. Algorithm 4 utilizes Test 1 and Test 2 in answering
identification question.

Lines 1 through 4 enumerate minimal NIN-AND trees and compute the pci
function for each tree under some root labeling. Lines 6 and 7 perform Test 1,
and lines 8 and 9 perform Test 2. Lines 10 through 12 (Test 3) tries each of the
n!− 1 alternative root labeling on T ′. If one produces Rif ′ identical to Rif for
T , then T and T ′ cannot be differentiated by pairwise causal interactions. The
algorithm will return false.

Algorithm 4 IsPciIdentificable(n)

1 run EnumerateReducedTree(n) to produce STn;
2 convert reduced trees in STn to minimal NIN-AND trees;
3 for each minimal NIN-AND tree T ,
4 compute its pci function under some root labeling;
5 for each pair of trees T and T ′ with pci and pci′,
6 compute Rif and Rif ′ from pci and pci′;
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7 if |Rif | 6= |Rif ′|, go to line 5 for next pair;
8 compute κ and κ′ from pci and pci′;
9 if κ 6= κ′, go to line 5 for next pair;
10 for each alternative root labeling rl′ of T ′,
11 recompute Rif ′;
12 if Rif = Rif ′, return false;
13 return true;

If for every pair of T and T ′, either Test 1 fails (|Rif | 6= |Rif ′|), or Test 2
fails (κ 6= κ′|), or Test 3 fails (Rif 6= Rif ′ for all root labeling), the algorithm
returns true. This means that every minimal NIN-AND tree for n causes can be
identified based solely on a set of pairwise causal interactions. This leads to the
following theorem, whose proof is straightforward given the above analysis.

Theorem 4 Let T be a minimal NIN-AND tree for n causes and Rif is the
set of pairwise causal interactions determined by T under some root labeling.
Then given Rif only, T can be identified from all minimal NIN-AND trees for
n causes iff algorithm IsPciIdentificable(n) returns true.

For example, given Rif = {{c1, c4}, {c2, c4}, {c3, c4}}, the minimal NIN-AND
tree in Fig. 2 (a) is uniquely identified. Justified by Theorem 4, we implemented
IsPciIdentificable(n). Executions for n = 3, ..., 10 all returned true. Tests 1 and
2 suggested by Propositions 6 and 7 trim computation significantly. For n = 10,
there are 2312 minimal NIN-AND trees, and hence 2671516 pairs. Only 122588
pairs (< 5%) passed the least expensive Test 1, where Test 2 is needed. Out of
these pairs, only 467 pairs (< 0.4%) passed Test 2, where the most expensive
Test 3 has to be run. This amounts to the processing of 1694649600 root-labeled
trees in Test 3, which is about 20% of the total 8389785600 root-labeled trees.

8 Remarks

Assessment of CPTs is often a bottleneck in practical applications of BNs when
frequency data are not available and elicitation from expert is necessary. This
work follows the effort by many, e.g., [7, 4, 3, 5, 9], to make this step in proba-
bilistic reasoning more efficient. The main contributions are the following:

From associativity of NIN-AND gates, we characterized minimal NIN-AND
tree topology space and partitioned it into the subspace with direct leaf NIN-
AND gates and the subspace with dual leaf gates. This partition allows subse-
quent investigation to be focused on one subspace while the results are applicable
to the other. We developed a method to enumerate NIN-AND trees based on
local insertion. This result provides an alternative method for NIN-AND tree
elicitation and allows expert to select from enumeration. We demonstrated that
NIN-AND trees for up to 10 causes (about the necessary upper bound for CPTs
in BNs) can be differentiated based on pairwise causal interactions. This re-
sult provides an even more powerful technique for eliciting NIN-AND trees by
eliciting from expert only pairwise causal interactions.
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In developing the two elicitation techniques, enumeration of NIN-AND trees
by number of causes (Section 4) is needed. As information flows from single-cause
events to the multi-cause event in an NIN-AND tree, following the convention in
causal graphical models, we directed reduced NIN-AND trees with single-cause
events as roots and with a single leaf. We therefore needed to enumerate unla-
beled trees of a single leaf by number of roots. Many methods of tree enumeration
in the mathematics literature, e.g., [1, 8, 6], do not address this problem. In [2],
under the context of phylogenetic trees, counting of rooted multifurcating tree
shapes by tips is presented. Reversing directions of links, these tree shapes are
equivalent to what we enumerate. However, Felsenstein’s counting is based on
an ordered partition of tips, and our method is based on local insertion. It fo-
cuses on counting without generation and ours emphasizes generation. In [10],
we extend [2] into a method as an alternative to the method presented here.
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