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Abstract. To specify a Bayes net, a conditional probability table, often of an
effect conditioned on its n causes, needs to be assessed for each node. Its com-
plexity is generally exponential in n and hence how to scale up is important to
knowledge engineering. The non-impeding noisy-AND (NIN-AND) tree causal
model reduces the complexity to linear while explicitly expressing both reinforc-
ing and undermining interactions among causes. The key challenge to acquisition
of such a model from an expert is the elicitation of the NIN-AND tree topology.
In this work, we propose and empirically evaluate two methods that indirectly
acquire the tree topology through a small subset of elicited multi-causal proba-
bilities. We demonstrate the effectiveness of the methods in both human-based
experiments and simulation-based studies.

1 Introduction

To specify a Bayes net (BN), a conditional probability table (CPT), needs to be assessed
for each non-root node. A BN is often constructed in the causal direction, where a CPT
is about an effect conditioned on its n causes. In general, specifying a CPT has the
complexity exponential in n. Noisy-OR [Pearl(1988)] and a number of extensions, e.g.,
[Heckerman and Breese(1996), Galan and Diez(2000), Lemmer and Gossink(2004)] re-
duce the complexity to linear, but are limited to the reinforcing causal interaction.

The NIN-AND tree [Xiang and Jia(2007)] causal model, as well as its special case
[Maaskant and Druzdzel(2008)], extends noisy-OR and explicitly encodes reinforcing
and undermining causal interactions, as well as their mixture. Its specification consists
of a linear (in n) number of probability parameters and a linear sized tree topology.
Its default independence assumptions may be flexibly relaxed to trade efficiency for
expressiveness. That is, by relaxing the assumptions incrementally and specifying more
parameters, any CPT can be encoded.

The key challenge to specifying a NIN-AND tree causal model is the acquisition of
the tree topology, which encodes types of causal interactions among causes. Elicitation
of the tree topology requires nontrivial training of a domain expert on the syntax and
semantics of NIN-AND tree causal models, and demands nontrivial mental exercise by
the expert to articulate the partial order of causal interactions among causes. Usability
of NIN-AND tree causal modeling will be enhanced if such training and mental exercise
can be avoided during model acquisition.

We accomplish this by proposing two model acquisition methods that bypass direct
elicitation of the NIN-AND tree topology. Instead, a small subset of causal probabilities
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in the order of O(n2) or O(n3) are elicited, from which a NIN-AND tree topology
is generated. From these probabilities and the tree topology, a NIN-AND tree causal
model is defined and the corresponding CPT can be constructed. We show that the
acquired CPT is a good approximation of the underlying true CPT.

The remainder of the paper is organized as follows: Background on NIN-AND tree
causal models is covered in Sect. 2. The task of NIN-AND tree acquisition and the
assumption underlying this work are presented in Sect. 3. In Sect. 4 and 5, we propose
two novel techniques for the task. Setup of human-based experiments for evaluation is
described in Sect. 6 and results are presented in Sect. 7. They are followed in Sect. 8 by
simulation-based studies. Sect. 9 draws the conclusion.

2 NIN-AND Tree Causal Models

An uncertain cause is a cause that can produce an effect but does not always do so. We
denote a binary effect variable by e ∈ {e+,e−}, where e+ denotes e = true, and a set of
binary cause variables of e by X = {c1, ...,cn}, where ci ∈ {c+

i ,c−i } (i = 1, ...,n).
A single-causal success is an event where ci caused e to occur successfully when

all other causes are absent. We denote the event by e+ ← c+
i and its probability by

P(e+← c+
i ). For instance, smoking causing lung cancer is denoted by lc+← smk+. A

single-causal failure, where e is false when ci is true and all other causes of e are false,
is denoted by e+ �← c+

i . A multi-causal success is an event where a set X = {c1, ...,cn}
(n > 1) of causes caused e, and is denoted by e+← c+

1 , ...,c+
n or e+← x+. Denote the

set of all causes of e by C.
CPT P(e|C) relates to probabilities of causal events as follows: If C = {c1,c2,c3},

then P(e+|c+
1 ,c−2 ,c+

3 ) = P(e+← c+
1 ,c+

3 ). C is assumed to include a leaky variable (if
any) to capture causes not represented explicitly, and hence P(e+|c−1 ,c−2 ,c−3 ) = 0.

Causes reinforce each other if collectively they are at least as effective as when some
are active. For example, radiotherapy and chemotherapy are reinforcing causes for cur-
ing cancer. If collectively causes are less effective, they undermine each other. Living
with mother and living with wife are undermining causes for the happiness of a man,
as often observed. If C = {c1,c2}, and c1 and c2 undermine each other, the following
hold: P(e+|c−1 ,c−2 ) = 0, P(e+|c+

1 ,c−2 ) > 0, P(e+|c−1 ,c+
2 ) > 0,

P(e+|c+
1 ,c+

2 ) < min(P(e+|c+
1 ,c−2 ),P(e+|c−1 ,c+

2 )).

The following Def.1 defines the two types of causal interactions generally.

Definition 1. Let R = {W1,W2, ...} be a partition of a set X of causes, R′ ⊂ R be any
proper subset of R, and Y = ∪Wi∈R′Wi. Sets of causes in R reinforce each other, iff

∀R′ P(e+← y+)≤ P(e+← x+).

Sets of causes in R undermine each other, iff ∀R′ P(e+← y+) > P(e+← x+).

Reinforcement and undermining occur between individual causes as well as sets of
them. When the interaction is between individual causes, each Wi is a singleton. Oth-
erwise, each Wi can be a generic set. For instance, consider X = {c1,c2,c3,c4}, W1 =
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{c1,c2}, W2 = {c3,c4}, R = {W1,W2}, where c1 and c2 reinforce each other, and so do
c3 and c4. But sets W1 and W2 can undermine each other.

Disjoint sets of causes W1, ...,Wm satisfy failure conjunction iff

(e+ �← w+
1 , ...,w+

m) = (e+ �← w+
1 )∧ ...∧ (e+ �← w+

m).

That is, when causes collectively fail to produce the effect, each must have failed to do
so. They also satisfy failure independence iff

P((e+ �← w+
1 )∧ ...∧ (e+ �← w+

m)) = P(e+ �← w+
1 ) ... P(e+ �← w+

m). (1)

Disjoint sets of causes W1, ...,Wm satisfy success conjunction iff

(e+← w+
1 , ...,w+

m) = (e+← w+
1 )∧ ...∧ (e+← w+

m).

That is, collective success requires individual effectiveness. They also satisfy success
independence iff

P((e+← w+
1 )∧ ...∧ (e+← w+

m)) = P(e+← w+
1 ) ... P(e+← w+

m). (2)

It has been shown [Xiang and Jia(2007)] that causes are undermining when they satisfy
success conjunction and independence. Hence, undermining can be modeled by a direct
NIN-AND gate (Fig. 1, left). Its root nodes (top) are single-causal successes, and its leaf
node (bottom) is the multi-causal success in question. Success conjunction is expressed
by AND gate, and success independence by disconnection of root nodes other than
through the gate. The probability of the leaf event can be computed by Eqn. (2). Sim-
ilarly, causes are reinforcing when they satisfy failure conjunction and independence.
Hence, reinforcement can be modeled by a dual NIN-AND gate (Fig. 1, middle). The
leaf event probability is obtained by Eqn. (1).

By organizing multiple direct and dual NIN-AND gates in a tree, both reinforce-
ment and undermining, as well as their mixture at multiple levels can be expressed
in a NIN-AND tree model. A simple example is given below and more can be found
in [Xiang and Jia(2007)]. Consider C = {c1,c2,c3}, where c1 and c3 undermine each
other, but collectively they reinforce c2. Assuming event conjunction and indepen-
dence, their causal interaction (a two-level mixture of reinforcement and undermin-
ing) relative to the event e+ ← c+

1 ,c+
2 ,c+

3 can be expressed by the NIN-AND tree in
Fig. 1 (right). The top gate is direct and the bottom gate (the leaf gate) is dual. The
link downward from node e+ ← c+

1 ,c+
3 has a white oval end (a negation link) and

+        ++        +

+        +           +e     c  ,...,c1           n

1 n...
e     ce     c +        ++        +

+        +           +e     c  ,...,c1           n

1 n...
e     ce     c

e     c+        +
2+        +     +

1     3    e     c , c 

e     c1
+        + e     c+        +

3

e     c , c , c1     2     3
+        +     +     +

Fig. 1. Direct (left), dual (middle) NIN-AND gates, and a NIN-AND tree (right)
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negates the event. All other links are forward links. Probability of the leaf event can
be computed by Eqn. (1) and (2). For instance, from single-causal probabilities for
root events, P(e+ ← c+

1 ) = 0.85, P(e+ ← c+
2 ) = 0.8, P(e+ ← c+

3 ) = 0.7, probability
P(e+ �← c+

1 ,c+
2 ,c+

3 ) is derived:

P(e+← c+
1 ,c+

3 ) = P(e+← c+
1 )P(e+← c+

3 ) = 0.595
P(e+ �← c+

1 ,c+
2 ,c+

3 ) = P(e+ �← c+
1 ,c+

3 )P(e+ �← c+
2 )

= (1−P(e+← c+
1 ,c+

3 ))(1−P(e+← c+
2 )) = 0.081

Furthermore, using a more sophisticated algorithm [Xiang(2010a)], the CPT in Table 1
can be obtained from the NIN-AND tree and these parameters.

Table 1. CPT of the example NIN-AND tree model

P(e+|c−1 ,c−2 ,c−3 ) 0 P(e+|c−1 ,c+
2 ,c−3 ) 0.8 P(e+|c+

1 ,c−2 ,c+
3 ) 0.595 P(e+|c+

1 ,c+
2 ,c−3 ) 0.97

P(e+|c+
1 ,c−2 ,c−3 ) 0.85 P(e+|c−1 ,c−2 ,c+

3 ) 0.7 P(e+|c−1 ,c+
2 ,c+

3 ) 0.94 P(e+|c+
1 ,c+

2 ,c+
3 ) 0.919

Variables in a NIN-AND tree model can generally be multi-valued [Xiang(2010b)].
Assumptions on event conjunction and independence can also be relaxed, in which
case some root events will be multi-causal. In this work, we focus on binary effect and
causes, and on models whose root events are single-causal.

3 Acquisition of NIN-AND Tree Models

As illustrated above, a NIN-AND tree model over e and C consists of its tree topology
as well as a single-causal probability for each ci ∈C. In general, a NIN-AND tree causal
model M is a tuple M = (e,C,T,PS), where e is the effect, C is the set of all causes of e,
T is a NIN-AND tree, and PS is the set of single causal probabilities one for each cause
in C. From M, a CPT P(e|C) can be uniquely constructed. M and P(e|C) are said to be
consistent.

Furthermore, NIN-AND tree causal models M = (e,C,T,PS) and M′= (e,C,T ′,PS′)
are said to be structurally consistent if T and T ′ are isomorphic. M and M′ are said to
be consistent if they are consistent with the same CPT.

To acquire M, its tree topology T may be elicited directly from the expert. To com-
plete such a task, the expert must have a thorough understanding of the syntax and se-
mantics of NIN-AND tree models, in order to assess and articulate the partial order of
causal interactions among causes and cause groups. This demands an nontrivial amount
of training of the domain expert before elicitation and nontrivial mental exercise of the
expert during elicitation.

To ease these burdens for model acquisition, we investigate the idea to bypass direct
tree elicitation. Instead, we elicit a small number of multi-causal probabilities (in ad-
dition to the single-causal probabilities PS), and generate T from elicited probabilities.
Our work is based on the following assumption:

Assumption 1. Let Pt(e|C) be the (true) CPT that characterizes the probabilistic rela-
tion over an effect e and its causes C, such that the following hold:
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1. There exists a NIN-AND tree causal model Mt = (e,C,T,PS) that is consistent with
Pt(e|C).

2. A domain expert is able to approximately assess all single-causal probabilities and
some multi-causal probabilities relative to Pt(e|C).

The first condition is justified by the observation that reinforcement and undermining
capture intuitive patterns of causal interaction, and reinforcement based causal mod-
els, such as Noisy-OR, have been widely applied. The second condition is justified by
knowledge engineering practice in building BNs. Note that the condition does not re-
quire the expert to assess all multi-causal probabilities, nor to assess them accurately.

In the following, we investigate two alternative techniques to generate tree topology
based on structure elimination (SE) and pairwise causal interaction (PCI).

4 Generate NIN-AND Tree by Structure Elimination

The SE technique builds on minimal NIN-AND tree models [Xiang et al(2009a)] and
their enumeration [Xiang et al(2009b)]. Models M = (e,C,T,PS) and M′= (e,C,T ′,PS)
may be consistent even though they are not structurally consistent. By limiting T and
T ′ within the space of minimal NIN-AND trees, model consistency implies structure
consistency in general. This means that a unique minimal tree exists for each pattern of
causal interactions among a set of causes.

Definition 2. Let T be a NIN-AND tree. If T contains a gate t that outputs to a gate g of
the same type (direct or dual), delete t and connect its inputs to g. Apply such deletion
until no longer possible. The resultant NIN-AND tree is minimal.

The uniqueness of minimal NIN-AND trees allows them to be enumerated explicitly,
e.g., using the two-step enumeration algorithm in [Xiang et al(2009b)]. For binary ef-
fect and causes, if |C|= 4, there are 52 minimal NIN-AND trees. For |C| = 5,6,7, the
number is 472, 5504, 78416, respectively.

We propose the SE technique as follows. Denote n = |C|. First, a set PSe of n single-
causal probabilities, e.g., Pe(e+|c+

i ), are elicited from the expert, where subscript e
denotes ‘elicited’. Then the set T M of minimal NIN-AND trees over C are enumerated.
Combining each T ∈ T M with PSe, a set NMe of NIN-AND tree models is obtained.
In general, a unique CPT over e and C can be constructed from each model in NMe. A
set CPTe of CPTs is thus defined. Note that there is a one-to-one mapping between TM
and NMe, and generally also between NMe and CPTe.

Subsequently, the expert is asked to assess some multi-causal probabilities. Let
Pe(e+|c+

i ,c+
j ,c+

k ) be elicited from an expert, and P′(e+|c+
i ,c+

j ,c+
k ) be from a CPT

P′(e|C)∈CPTe. If P′(e+|c+
i ,c+

j ,c+
k ) differs significantly from Pe(e+|c+

i ,c+
j ,c+

k ), P′(e|C)
is deemed to be inconsistent with the true CPT, and the NIN-AND tree model corre-
sponding to P′(e|C) is eliminated from the candidate set NMe. Based on such compar-
ison of CPTs in CPTe and elicited multi-causal probabilities, all models in NMe except
one, Me = (e,C,Te,PSe), will be eliminated. Me is returned as the indirectly elicited
model and Te is the indirectly elicited NIN-AND tree. Below, we investigate several
variations for elicitation and elimination procedures:
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[Threshold based sequential elimination] Since elicitation from an expert is sequen-
tial, it is natural to interleave model elimination with elicitation. Elicitation and elimina-
tion proceed in rounds. Each round starts with elicitation of a multi-causal probability,
followed by elimination of one or more inconsistent NIN-AND tree models. The pro-
cess continues until a single model in NMe remains in the last round.

The elimination operation requires a threshold s. Only when difference δ =
|Pe(e+|c+

i ,c+
j ,c+

k )− P′(e+|c+
i ,c+

j ,c+
k )| > s, P′(e|C) is deemed inconsistent with the

true CPT. However, choosing the adequate threshold value is difficult in practice for
the reason below.

By Assumption 1, the expert assessment of single-causal probabilities PSe is ap-
proximate. Hence, none of the models in NMe is consistent with the true model Mt .
Furthermore, by assumption, an elicited multi-causal probability may also differ from
the corresponding true probability. Hence, δ above contain elicitation errors. If s is set
too low, even if a model M ∈ NMe is structurally consistent with the true model Mt ,
it may still be eliminated because δ exceeds s. On the other hand, if s is set too high,
multiple models structurally inconsistent with the true model Mt may pass each round,
and no single model can be selected in the last round.

[Bounded sequential elimination] Elicitation and elimination proceed in K rounds,
where K is the number of multi-causal probabilities to be elicited, is predetermined,
and can be varied based on expert availability. In each round, after elicitation of a multi-
causal probability, its difference δ from each CPT in CPTe is calculated, a given number
of models in NMe with the minimum δ values are retained, and the other models are
eliminated. The number of models retained in each round decreases over consecutive
rounds, and it is one for the Kth round.

The threshold is no longer needed, and its drawback is avoided. Instead, a set of K
bounds is used, one for the number of retained models in each round. For example, if
K = 4, numbers of models retained in succeeding rounds can be 16, 8, 4, and 1.

One limitation is that the model returned may depend on the order in which the
K multi-causal probabilities are elicited. The NIN-AND tree model M ∈ NMe that is
structurally consistent with Mt (such M is unique whenever single-causal probabilities
by Pt(e|C) are distinct) may be eliminated in an earlier round. This occurs when the
probability elicited in the current round is not distinguishing, and too many models in
NMe have similar, small δ values: If the bound for the current round is m, the model M
may be eliminated because its δ value is slightly larger than that of the model ranked m.
Whereas if multi-causal probabilities were elicited in another order, M may be retained
in each round and returned in the end.

[Simultaneous elimination] Only one round of elicitation and elimination is con-
ducted. A set PMe of K multi-causal probabilities are first elicited. Its root-mean-square
(rms) distance from the corresponding set PM′ of multi-causal probabilities determined
by each CPT in CPTe is calculated:

d(PMe,PM′) =

√
1
K

K

∑
i=1

(Pe(e+|x+
i )−P′(e+|x+

i ))2 (3)

The model in NMe with the minimum distance will be returned.
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The method overcomes the limitation on threshold or elicitation order by the two
alternative procedures. It is thus used in the further investigation of the SE technique.
Although any multi-causal probabilities may be used with the SE technique, in the
remainder of the paper, we assume that they are triple-causal.

5 Generate NIN-AND Tree by Pairwise Causal Interaction

The PCI technique builds on the pairwise causal interaction function defined by a NIN-
AND tree [Xiang et al(2009a)].

Proposition 1. Let T be a minimal NIN-AND tree for effect e and its causes C. Then T
defines a function pci from pairs of distinct causes {ci,c j} ⊂C, where i �= j, to the set
{ri f ,udm}, where ri f stands for reinforcing and udm for undermining.

The pci function signifies explicitly the causal interaction between each pair of causes.
For instance, the NIN-AND tree in Fig. 1 (right) defines the function: pci(c1,c2) =
ri f , pci(c1,c3) = udm, pci(c2,c3) = ri f .

Let TM be the set of all minimal NIN-AND trees over n causes. Then each NIN-
AND tree T ∈ T M has a distinct pci function (exhaustively confirmed for n = 3, ...,10).
Hence, a NIN-AND tree can be identified from a given pci function.

Based on this idea, we propose the PCI technique for generating a NIN-AND tree
as follows: First, elicit a set PSe of single-causal probabilities from the expert, and enu-
merate the set T M, as done in the SE technique. From T M, a set PCIF of pci functions,
one for each NIN-AND tree T ∈ TM is defined. Then, a set PDe of all double-causal
probabilities (a total of n (n−1)/2 values) are elicited from the expert.

From PSe and PDe, a pci function pcie() can be determined according to Def. 1.
For example, suppose the CPT in Table 1 is the true CPT, elicited single-causal prob-
abilities include Pe(e+← c+

2 ) = 0.82, Pe(e+← c+
3 ) = 0.67, and elicited double-causal

probabilities include Pe(e+ ← c+
2 ,c+

3 ) = 0.91. From Pe(e+ ← c+
2 ,c+

3 ) > Pe(e+ ← c+
2 )

and Pe(e+← c+
2 ,c+

3 ) > Pe(e+← c+
3 ), the function value pci(c2,c3) = ri f can be deter-

mined.
Subsequently, the derived pcie() is compared against functions in PCIF . If pcie()

matches pci′() ∈ PCIF , then the NIN-AND tree T ′ ∈ T M that produces pci′() will be
returned.

The key operation of the PCI technique is the derivation of pcie() function from PSe

and PDe. Below, we consider how to carry out the operation in practice. For any pair of
causes ci and c j, pci(ci,c j) ∈ {ri f ,udm}. By Def. 1, pci(ci,c j) = ri f iff

P(e+← c+
i ,c+

j )≥max(P(e+← c+
i ),P(e+← c+

j )), (4)

and pci(ci,c j) = udm iff

P(e+← c+
i ,c+

j ) < min(P(e+← c+
i ),P(e+← c+

j )). (5)

Therefore, in theory, it suffices to compare P(e+← c+
i ,c+

j ) and P(e+← c+
i ), and use

the outcome to determine the value for pci(ci,c j).



268 Y. Xiang et al.

In practice, however, due to elicitation errors, it is possible that

Pe(e+← c+
i ) < Pe(e+← c+

i ,c+
j ) < Pe(e+← c+

j ).

For example, if Pt(e+← c+
i ) = 0.6, Pt(e+← c+

j ) = 0.9, and ci undermines c j, we have
Pt(e+← c+

i ,c+
j ) = 0.54. Elicited values, however, may be

Pe(e+← c+
i ) = 0.56 < Pe(e+← c+

i ,c+
j ) = 0.59 < Pe(e+← c+

j ) = 0.93

due to elicitation errors. Similarly, when ci reinforces c j, we have Pt(e+ ← c+
i ,c+

j ) =
1− (0.4 ∗ 0.1)= 0.96, while elicited values may be

Pe(e+← c+
i ) = 0.56 < Pe(e+← c+

i ,c+
j ) = 0.91 < Pe(e+← c+

j ) = 0.93.

When these happen, comparing Pe(e+← c+
i ,c+

j ) against one of Pe(e+← c+
i ) and Pe(e+←

c+
j ) has a 0.5 chance to assign pci function value incorrectly. Comparing against both

is not even feasible, because Eqn. (4) and (5) will both fail. To address this issue, we
develop the following algorithm:

1. If Eqn. (4) holds for elicited probabilities, assign pci(ci,c j) = ri f .
2. Else if Eqn. (5) holds for elicited probabilities, assign pci(ci,c j) = udm.
3. Else if

|P(e+← c+
i ,c+

j )−min(P(e+← c+
i ),P(e+← c+

j ))|
< |P(e+← c+

i ,c+
j )−max(P(e+← c+

i ),P(e+← c+
j ))|,

assign pci(ci,c j) = udm.
4. Else assign pci(ci,c j) = ri f .

The algorithm handles normal cases (1 and 2) according to Eqn. (4) and (5). When elici-
tation errors fail these equations (cases 3 and 4), the pci function value is determined by
assuming small errors. For the first example above, pci(ci,c j) = udm will be assigned
correctly due to case 3. For the second example, pci(ci,c j) = ri f will be assigned due
to case 4.

It is possible that a derived function pcie() �∈ PCIF . That is, there exists no NIN-
AND tree model that would produce the function pcie(). The pcie() is said to be invalid.
When this occurs, we apply a method in [Xiang(2010a)]: A valid pci function pci∗e() in
PCIF which differs from pcie() the least will be selected, and its corresponding NIN-
AND tree model will be returned as the indirectly elicited model.

6 Experimental Setup

To evaluate the effectiveness of SE and PCI techniques, human-based experiments are
conducted, using an approach that extends that in [Zagorecki and Druzdzel(2004)]. A
true causal model is simulated, from which a human is trained into an expert. A sub-
set of causal probabilities are then elicited from the expert, from which a NIN-AND
tree model is generated using the SE or PCI technique. The rms distance between the
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discovered model and the true model (similar to Eqn. (3)) is then measured to evalu-
ate the effectiveness of these techniques. The experiment is organized into three stages
elaborated below.

The first is expert training, during which each human participant is trained into an
expert. A simulated NIN-AND tree model Mt = (e,C,T,PS) is used as the true model,
from which the true CPT Pt(e|C) is constructed. Given the presence of a subset X ⊆C
of active causes, an example (e,x+), where e ∈ {e+,e−}, is generated by stochastic
simulation from causal probability Pt(e+ ← x+). After seeing a sufficient number of
examples for a sufficient number of distinctive x+ (detailed below), the participant is
deemed to be an expert on model Mt .

To ensure that a participant’s knowledge on Mt is obtained entirely from the training,
and is not biased by outside experience, we presented Mt to be about phenomena from
an imaginary planet. A software Environment Simulator (ES) is implemented accord-
ingly to allow a participant to specify active causes x+ and observe simulated effects e.
Note that this setup ensures condition 1 of Assumption 1.

The second stage is elicitation, during which a subset of causal probabilities Pe(e+←
x+) are elicited from the expert. As stated in Assumption 1, generally, Pe(e+← x+) �=
Pt(e+← x+). Their difference has so far been referred to as elicitation error, but in fact
is the combination of two sources of errors.

1. Sampling error: Assuming Pe(e+ ← x+) is based on observed relative frequency
F(e+← x+) = N(e+← x+)/N(x+), where N(e+← x+) is the number of observa-
tions of example (e+,x+) and N(x+) is the number of observations of x+, we have
F(e+← x+) �= Pt(e+← x+) because N(x+) is finite.

2. Retention-Articulation (RA) error: The participant may not be able to retain and
articulate either N(e+← x+) and N(x+), or F(e+← x+) accurately
[Kahneman et al(1982)].

To ensure condition 2 of Assumption 1, both the sampling error and RA error need
to be controlled. To control sampling error, we setup ES to enforce the requirement
N(x+) ≥ 100 for each Pe(e+← x+) to be elicited. That is, the participant must have a
sufficient number of observations of x+ during training.

To control RA error, for each distinct x+, the frequency pair F(e+← x+) and F(e−←
x+) observed during the training stage is shown in a stacked bar graph (Fig. 2). The
bar graph helps to reduce the RA error by providing a visual hint for the observed
F(e+← x+). Yet, it does not eliminate RA error as it is visual, while Pe(e+ ← x+) is
elicited numerically.

The final stage is discovery, during which the set of Pe(e+|x+) elicited is used to
generate a NIN-AND tree model Me.

Participants are recruited from university students (second year or above). Each par-
ticipant is trained with a distinct true model Mt = (e,C,T,PS). All models used have
|C|= 4, but they differ in both T and PS.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. 2. A stacked bar graph where F(e+← x+) = 0.72
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Our objective is to evaluate the effectiveness of SE and PCI techniques. To facilitate
the evaluation, we compare them against direct elicitation of each causal probability
(all 15 parameters in Pt(e|C)). We refer to it as the direct numerical (DN) technique.
For SE, we elicit 8 parameters (4 single-causal and 4 triple-causal). For PCI, we elicit
10 parameters (4 single-causal and 6 double-causal).

7 Experimental Results

Each data set consists of a number of causal probabilities elicited from one participant.
A data set for evaluation of DN, SE, or PCI technique contains 15, 8 or 10 elicited prob-
abilities, respectively, and the number of data sets collected are 23, 29, 29, respectively.

From the true CPT used to simulate training examples for a participant and prob-
abilities elicited from the participant, the elicitation error (Section 6) of the partici-
pant is measured by the rms distance between the true CPT and elicited probabilities.
The mean and standard deviation of elicitation errors over all participants are shown in
Table 2 (column 4). Th elicitation error consists of sampling and RA errors (Section 6).
From ES log of examples generated for training a participant and the true CPT used
in example generation, the sampling error of training examples is measured by the rms
distance between example frequencies and the true CPT. From the log of examples gen-
erated for training a participant and elicited probabilities, RA error of the participant is
measured by rms distance between example frequencies and elicited probabilities. The
means and standard deviations of sampling and RA errors over all participants are also
shown in the table (columns 2 and 3). It can been seen that our elicitation aid by stacked
bar graphs has effective control of the RA error. Hence, the elicitation error is composed
mainly of the sampling error.

The DN technique directly elicits a CPT from the expert, which we refer to as the
CPT elicited with the DN technique. On the other hand, for each data set collected for
SE evaluation, the SE technique is applied to generate a NIN-AND tree model, from
which a CPT is constructed. We refer to it as the CPT elicited with the SE technique.
The CPT elicited with the PCI technique is similarly defined.

For each data set, the CPT elicited by the corresponding technique is compared
against the true CPT used to drive expert training, and the rms distance between the
two CPTs is calculated. For each of DN, SE, and PCI technique, the mean and standard
deviation over the corresponding data sets are summarized in Table 3.

Results from all three techniques are comparable. Note that PCI technique depends
on single and double-causal probabilities (10), SE technique depends on single and
triple-causal probabilities (8), while DN technique depends on all causal probabilities
(15). Hence, the results demonstrate that both SE and PCI techniques improve efficiency
in CPT acquisition while maintaining comparable accuracy.

Table 2. Mean (μ) and standard deviation (σ ) of errors over all participants

Sampling Errors RA Errors Elicitation Errors
μ 0.0293 0.0076 0.0301
σ 0.0096 0.0038 0.0099
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Table 3. Mean (μ) and standard deviation (σ ) of model distance by DN, SE and PCI techniques

DN SE PCI
μ 0.0301 0.0356 0.0281
σ 0.0099 0.0343 0.0146

8 Simulation Study

Due to resource involved in human-based experiments, large numbers of participants
and multiple setups are not feasible. To compensate this limitation, we enhanced human
experiments with simulation-based studies.

For the DN technique, we simulated a true model Mt = (e,C,Tt ,PSt) and constructed
the true CPT Pt(e|C) from Mt . For each subset X ⊆ C of active causes, K examples
(e,x+) are stochastically generated from Pt(e+|x+). The elicited probability Pe(e+|x+)
is simulated as the ratio between the number of examples (e+,x+) and K. This is jus-
tified by two observations. First, the elicitation errors in human experiments are made
up mainly by sampling errors (Table 2). Second, as we decrease K, the elicitation error
|Pe(e+|x+)−Pt(e+|x+)| will increase. Hence, simulated elicitation errors can be well
controlled through K.

After the elicited CPT Pe(e|C) is thus simulated, we calculate the rms distance be-
tween Pe(e|C) and Pt(e|C). We repeat the above for W true models, and the effectiveness
of the DN technique is evaluated by the mean distance from the W trials.

For the PCI technique, the true model Mt = (e,C,Tt ,PSt) and true CPT Pt(e|C) are
simulated as above. A set PSe = {Pe(e|c+

i )} of single-causal elicited probabilities and
a set PDe = {Pe(e|c+

i ,c+
j )} of double-causal elicited probabilities are simulated from

Pt(e|C). Applying the PCI technique to PSe and PDe, an indirectly elicited model Me =
(e,C,Te,PSe) is generated.

From Me, the elicited CPT Pe(e|C) is constructed and the rms distance between
Pe(e|C) and Pt(e|C) calculated. The effectiveness of the PCI technique is evaluated by
repeating the above for W true models, and obtaining the mean distance.

For the SE technique, a set PSe of single-causal elicited probabilities and a set PTe =
{Pe(e|c+

i ,c+
j ,c+

k )} of triple-causal elicited probabilities are simulated from Pt(e|C). The
set of all NIN-AND tree models NMe = {(e,C,T,PSe)} are obtained by enumeration.
Note that each model M ∈ NMe has a distinct NIN-AND tree topology T , but has the
same PSe. An indirectly elicited NIN-AND tree model Me is then selected from NMe if
its corresponding CPT has the minimum distance from PTe.

From Me, CPT Pe(e|C) is constructed and the rms distance between Pe(e|C) and
Pt(e|C) is calculated. The SE technique is evaluated by the mean distance from simula-
tion over W true models.

In simulation studies for the three techniques, we used K = 100 and W = 1000.
K = 100 is chosen so that magnitudes of simulated elicitation errors are similar to those
observed in the human-based study. W = 1000 is used as higher W values do not show
significant difference in outcomes. For each technique, simulations are run for each of
n = |C|= 4,5,6,7. Table 4 shows the number of causal probabilities simulated for each
technique and each n value.
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Table 4. Number of simulated causal probabilities used by DN, SE and PCI studies

n # CPT probs # probs for DN # probs for SE # probs for PCI
4 16 15 8 10
5 32 31 15 15
6 64 63 26 21
7 128 127 42 28

The second column shows the number of independent probability parameters in
P(e|C), which is 2n. The third column shows the number of elicited probabilities simu-
lated by DN evaluation, which is 2n−1, because NIN-AND tree models satisfy P(e+|c−)
= 0. The fourth column shows the count for SE evaluation, which is n +C(n,3). The
last column shows the count for PCI evaluation, which is n +C(n,2).

Results from simulation-based studies are summarized in Table 8. Means and stan-
dard deviations of model distances for the three techniques are shown in columns 2, 3,
4, 5, 7, 8. Columns 6 and 9 show percentages of models indirectly elicited by SE and
PCI that recover true tree topology Tt . The last column shows percentages of indirectly
elicited pci functions that are invalid.

Table 5. Model distance by DN, SE and PCI techniques from simulation study

n DN (μ) DN (σ ) SE (μ) SE (σ ) Rcv (%) PCI (μ) PCI (σ ) Rcv (%) Ivad (%)
4 0.0363 0.0099 0.0470 0.0485 79.6 0.0352 0.0340 98.5 0.9
5 0.0368 0.0086 0.0352 0.0268 86.5 0.0369 0.0397 98.1 0.5
6 0.0364 0.0076 0.0317 0.0215 88.2 0.0338 0.0237 95.7 2.2
7 0.0356 0.0076 0.0311 0.0183 85.8 0.0344 0.0284 94.2 3.6

The mean distances for DN indicate the magnitudes of simulated elicitation errors
in the studies of all three techniques, since the same K = 100 value is used. Note that
the magnitudes are slightly higher than that observed in human-based experiments (Ta-
ble 2).

Comparing columns 6 and 9, PCI technique performs better than SE in recovering
true NIN-AND tree topology. On the other hand, although SE technique is less accu-
rate in tree recovery, the mean model distance and standard deviation for n = 5,6,7 are
slightly smaller than PCI. This observation shows that given the existence of elicitation
errors, multiple NIN-AND tree models may generate similar CPTs, and the SE tech-
nique is robust under such condition. We attribute the reverse performance difference
when n = 4, i.e., SE(μ) > PCI(μ), to the number of elicited probabilities used (8 for
SE and 10 for PCI).

Overall, SE and PCI techniques achieved the comparable model distance in compar-
ison with DN technique, while requiring a much less number of elicited probabilities.
In general, the number of probabilities to be elicited by the DN technique is O(2n).
The number is O(n3) for SE and O(n2) for PCI. The performance of PCI technique
makes it particularly attractive: It achieves about the same elicitation accuracy while
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requiring the smallest number of elicitations. For instance, when n = 7, DN requires
127, SE requires 42, while PCI requires only 28.

Finally, column 10 shows that although elicitation errors sometimes cause failure in
constructing the pci function, our fault-tolerance method recovers from the failure well.
Not only a valid NIN-AND tree model is returned under the failure condition, but the
model is sufficiently close to the true model (shown by columns 7 and 8).

9 Conclusion

NIN-AND tree causal models provide an efficient tool for CPT acquisition in construc-
tion of Bayes nets. Direct elicitation of such a model involves elicitation of a number
(linear in n) of single-causal probabilities, and a NIN-AND tree (of a size linear in n).
The tree elicitation step requires nontrivial training of an expert on the syntax and se-
mantics of these models, as well nontrivial mental exercise by the expert to identify
correctly the partial order of interactions among causes.

In this work, we investigate the novel idea to substitute direct elicitation of a NIN-
AND tree with elicitation of some multi-causal probabilities. The NIN-AND tree is
then automatically generated based on elicited probabilities. We propose two alter-
native techniques that implement this idea with low-order multi-causal probabilities.
Our human-based and simulation-based studies demonstrated the feasibility of the idea.
These techniques eliminate above-mentioned expert training and demanding mental ex-
ercise, while remaining efficient. Numbers of probabilities to be elicited are O(n3) and
O(n2) for (triple-causal based) SE and PCI, respectively.

The main assumption these techniques depend on is the expert’s ability to approx-
imately assess required causal probabilities. Elicitation error can be decomposed into
sampling error and RA error. The RA error may be reduced through training and/or
technical aids, although detailed investigation is beyond the scope of this work. Sam-
pling error may be controlled by the number of examples observed for each causal
combination (i.e., x+). Our experiments have shown that 100 examples per causal com-
bination is sufficient for our techniques to work well.

Acknowledgements. Financial support from NSERC, Canada to the first author is
acknowledged.
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