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Abstract. Non-impeding noisy-And Trees (NATs) provide a general,
expressive, and efficient causal model for conditional probability tables
(CPTs) in discrete Bayesian networks (BNs). A CPT may be directly ex-
pressed as a NAT model or compressed into a NAT model. Once CPTs
are NAT-modeled, efficiency of BN inference (both space and time) can
be significantly improved. The most important operation in NAT mod-
eling CPTs is extracting NAT structures from interaction patterns be-
tween causes. Early method does so through a search tree coupled with
a NAT database. A recent advance allows extraction of NAT structures
from full, valid causal interaction patterns based on bipartition of causes,
without requiring the search tree and the NAT database. In this work,
we extend the method to direct NAT structure extraction from partial
and invalid causal interaction patterns. This contribution enables direct
NAT extraction from all conceivable application scenarios.

Keywords: Graphical models, probabilistic inference, machine learn-
ing, Bayesian networks, causal models, non-impeding noisy-AND trees

1 Introduction

Conditional independence encoded in BNs avoids combinatorial explosion in the
number of variables. However, BNs are still subject to exponential growth of
space and inference time in the number of causes per effect variable in each CPT.
A number of space-efficient local models exist, that allow efficient encoding of
dependency between an effect and its causes. They include noisy-OR [Pea88],
noisy-MAX [Hen89,Die93], context-specific independence (CSI) [BFGK96], re-
cursive noisy-OR [LG04], Non-Impeding Noisy-AND Tree (NIN-AND Tree or
NAT) [XJ06], DeMorgan [MD08], tensor-decomposition [VT12], and cancella-
tion model [WvdGR15]. These local models not only reduce the space and time
needed to acquire numerical parameters in CPTs, they can also be exploited to
significantly reduce inference time, e.g., by exploiting CSI in arithmetic circuits
(ACs) and sum-product networks (SPNs) [Dar03,PD11,ZMP15], or by exploiting
causal independence in NAT models [XJ16b].

We consider expressing BN CPTs as or compressing them into multi-valued
NAT models [Xia12]. Merits of NAT models include being based on simple causal
interactions (reinforcement and undermining), expressiveness (recursive mixture,
multi-valued), and generality (generalizing noisy-OR, noisy-MAX [XJ16b] and



DeMorgan [Xia12]). In addition, they support much more efficient inference.
As shown in [XJ16b], two orders of magnitude speedup in lazy propagation is
achieved in NAT-modeled BNs. Since causal independence encoded in a NAT
model is orthogonal to CSI, NAT models provide an alternative to CSI for effi-
cient probabilistic inference in BNs.

A NAT model over an effect and n causes consists of a NAT topology and
a set of numerical parameters (whose cardinality is linear in n). It compactly
represents a BN CPT. In a NAT model, each pair of causes either undermines
each other in causing the effect, or reinforcing each other. Hence, the interac-
tion can be specified by one bit with values u (undermining) or r (reinforcing).
The collection of such bits defines a pairwise causal interaction (PCI) pattern
[XLZ09]. A PCI pattern may be full (with one bit for each cause pair) or partial
(with some missing bits). It has been shown that a full PCI pattern uniquely
identifies a NAT [XLZ09,XT14]. This property enables PCI patterns to play an
important role for acquisition of NAT topology both in compressing a BN CPT
into a NAT model and in learning a BN CPT as a NAT model from data. The
corresponding computation takes as input a PCI pattern and returns a compat-
ible (defined below) NAT topology. We term this operation as NAT structure
extraction from PCI.

For instance, in compressing a target BN CPT into a NAT model, the fol-
lowing method has been applied [XL14,XJ16a]. A partial PCI pattern is first
obtained from the target CPT. From the pattern, compatible candidate NATs
are extracted through a search tree coupled with a NAT database. Which candi-
date NAT becomes the final choice is determined by parameterization. For each
n value, a NAT database is needed that stores all alternative NATs for n causes.
Its size grows super-exponentially in n (see below), and hence it is the source of
a computational burden, both offline and online. For instance, it takes 40 hours
to generate (offline) the NAT database for n = 9 and its search tree [XL14].

An arbitrary bit pattern (either partial or full) may not have a corresponding
NAT. Such a pattern is invalid (defined below). A recent advance [Xia17] pro-
posed a method for NAT structure extraction from full and valid PCI patterns
without needing a search tree and the NAT database. In this paper, we extend
the method along two directions. First, we relax the requirement of full PCI
patterns so that NAT structures can be extracted from partial PCI patterns.
Second, we relax the requirement of valid PCI patterns so that the input can
be an invalid pattern and a NAT is extracted whose PCI pattern is closest to
the input pattern. These advancements enable NAT structure extraction in all
conceivable application scenarios: valid full PCI patterns, valid partial patterns,
invalid full patterns, and invalid partial patterns. All of them are through direct
extraction, i.e., without need of the search tree and the NAT database.

Section 2 reviews background on NAT models. The task of fault tolerant,
direct NAT structure extraction is specified in Section 3. Sections 4 and 5 present
theoretical results that the rest of the paper depends on. Direct extraction from
full, possibly invalid PCI patterns is covered in Section 6 and extraction from



partial, possibly invalid patterns is presented in Section 7. The experimental
results are reported in Section 8.

2 Background

This section briefly reviews background on NAT models. More details can be
found in [Xia12]. A NAT model is defined over an effect e and a set of n causes
C = {c1, ..., cn} that are multi-valued and graded, where e ∈ {e0, ..., eη} (η ≥ 1)
and ci ∈ {c0i , ..., c

mi
i } (mi ≥ 1). C and e form a single family in a BN. Values e0

and c0i are inactive. Other values (may be written as e+ or c+i ) are active and a
higher index means higher intensity (graded).

A causal event is a success or failure depending on if e is active at a given
intensity, is single- or multi-causal depending on the number of active causes,
and is simple or congregate depending on the value range of e. More specifically,

P (ek ← cji ) = P (ek|cji , c
0
z : ∀z 6= i) (j > 0)

is the probability of a simple single-causal success.

P (e ≥ ek ← cj11 , ..., c
jq
q ) = P (e ≥ ek|cj11 , ..., cjqq , c0z : cz ∈ C \X),

is the probability of a congregate multi-causal success, where j1, ..., jq > 0, X =
{c1, ..., cq} (q > 1), and it may be denoted as P (e ≥ ek ← x+). Interactions
among causes may be reinforcing or undermining as defined below.

Definition 1 Let ek be an active effect value, R = {W1, ...,Wm} (m ≥ 2) be a
partition of a set X ⊆ C of causes, S ⊂ R, and Y = ∪Wi∈SWi. Sets of causes in
R reinforce each other relative to ek, iff ∀S P (e ≥ ek ← y+) ≤ P (e ≥ ek ← x+).

They undermine each other iff ∀S P (e ≥ ek ← y+) > P (e ≥ ek ← x+).

Fig. 1. A direct NIN-AND gate (a), a dual NIN-AND gate (b), and a NAT (c)

A NAT has multiple NIN-AND gates. A direct gate involves disjoint sets of
causes W1, ...,Wm. Each input event is a success e ≥ ek ← w+

i (i = 1, ...,m), e.g.,
Fig. 1 (a) where each Wi is a singleton. The output event is e ≥ ek ← w+

1 , ..., w
+
m.

Its probability is

P (e ≥ ek ← w+
1 , ..., w

+
m) =

m∏
i=1

P (e ≥ ek ← w+
i ),

which encodes undermining causal interaction. Each input event of a dual gate is
a failure e < ek ← w+

i , e.g., Fig. 1 (b). The output event is e < ek ← w+
1 , ..., w

+
m.



Its probability is

P (e < ek ← w+
1 , ..., w

+
m) =

m∏
i=1

P (e < ek ← w+
i ),

which encodes reinforcement. Fig. 1 (c) shows a NAT, where causes h1 and h2
reinforce each other, so do b1 and b2, but the two groups undermine each other.

A NAT can be depicted simply by a Root-Labeled-Tree (RLT).

Definition 2 Let T be a NAT. The RLT of T is a directed graph obtained from
T as follows. (1) Delete each gate and direct its inputs to output. (2) Delete each
non-root label. (3) Replace each root label by the corresponding cause.

Fig. 2. A NAT (a) and its RLT (b)

Fig. 2 shows a NAT and its RLT. The leaf of RLT corresponds to leaf gate
of the NAT. When the leaf gate is dual (or direct), the leaf of RLT is said to
be dual (or direct). The leaf gate of a NAT is at level-one. A gate that feeds
into the leaf gate is at level-two, and so on. We refer to levels of nodes of a RLT
similarly. All gates in the same level have the same type (dual or direct) and
gates in adjacent levels differ. An RLT and a leaf type uniquely specifies a NAT.

A NAT T has a single leaf z. For n ≥ 2, leaf z has at least two parents. Each
parent v of z is the leaf of a subtree induced by z. If v is a root, then v is a
root parent of z, and the induced subtree is trivial. In Fig. 2 (b), there are two
subtrees induced by the leaf. One subtree is trivial, where c2 is a root parent of
the leaf, and the root set of the subtree is {c2}. The root set of the other subtree
is {c1, c3}.

Each NAT uniquely defines pairwise causal interaction between each pair of
causes ci and cj (i 6= j), denoted by a PCI bit π(ci, cj) ∈ {u, r}. The value
π(ci, cj) is defined by the common gate of ci and cj at the highest level [XLZ09].
The NAT in Fig. 1 (c) has π(h1, h2) = r since g2 is dual and π(h1, b2) = u since
g1 is direct. A collection of PCI bits is a PCI pattern π. If π includes one bit for
each cause pair, it is a full pattern. Otherwise, it is partial.

3 Fault Tolerant Direct NAT Structure Extraction

It has been shown that a full PCI pattern uniquely identifies a NAT [XLZ09,XT14].
This enables PCI patterns to play an important role for acquisition of NAT topol-
ogy in compressing a BN CPT into a NAT model and in learning a BN CPT



from data as a NAT model. In either case, the input is a PCI pattern and the
output is a NAT. We refer to the task as NAT structure extraction. Input pat-
terns to the task can be classified as follows. First, we relate two PCI patterns
over the same set of causes.

Definition 3 Let π and ψ be PCI patterns over a set C of causes. If for each
pair of causes ci and cj (i 6= j) such that both π(ci, cj) and ψ(ci, cj) are defined,
π(ci, cj) = ψ(ci, cj) holds, then π and ψ are compatible. Otherwise, they are
incompatible.

Either π or ψ may be partial or full. Compatibility is determined by PCI bits
that are defined under both π and ψ. Next, we relate a PCI pattern and a NAT
over the same set of causes.

Definition 4 Let π be a PCI pattern over a set C of causes. Then π is valid if
there exists a NAT over C whose PCI pattern ψ is compatible with π. Otherwise,
π is invalid.

In the definition, π may be either partial or full. A full PCI pattern over
a set of n causes has C(n, 2) bits. A binary pattern of C(n, 2) bits has 2C(n,2)

variations, not all of which are necessarily valid.
For n = 2, there are 2 NATs. A PCI pattern has C(2, 2) = 1 bit. Hence, every

PCI pattern is valid. For n = 3, there are 8 NATs. A PCI pattern has C(3, 2) = 3
bits. Hence, every PCI pattern is valid. For n = 4, there are 52 NATs. There are
2C(4,2) = 26 = 64 binary patterns, of which 64 - 52 = 12 patterns are invalid.
For n = 7, there are 221 = 2, 097, 152 binary patterns and 78,416 NATs [XZL09].
The number of invalid full PCI patterns is 2,018,736.

The extraction task has been performed in the context of compressing BN
CPTs into NAT models, where PCI patterns are obtained from CPTs and then
NATs are extracted [XL14,XJ16a]. The extraction [XL14,XJ16a] relies on a
search tree coupled with a NAT database. For each n value, a NAT database
stores all alternative NATs over n causes, and the search tree retrieves one or
more NATs given a valid PCI pattern [XL14]. We refer to the method as search
tree based extraction.

The size of the database and the search tree grow super-exponentially in n.
Although constructed offline, they are the source of a computational burden. For
n = 9, there are 25,637,824 NATs and it takes 40 hours to generate the database
and the search tree [XL14]. Although NAT models are local models (one BN
family per model), and hence n does not grow unbounded due to conditional
independence encoded in BNs, it is costly and difficult to generate databases
and search trees when n grows beyond 9.

To alleviate these costs, a method is proposed recently [Xia17] for NAT ex-
traction without need of the NAT databases and the search tree. We refer to
the method as direct extraction. The method requires a full, valid PCI pattern
as the input. When a PCI pattern is obtained from a CPT, the pattern is full if
the CPT is a NAT model, and is partial otherwise. In this work, we extend the
direct method to allow partial input patterns.



When a PCI pattern is obtained from a CPT, there is no guarantee that it
is valid. Therefore, the full spectrum of input for NAT extraction includes full
and partial, as well as valid and invalid PCI patterns. We refer to NAT struc-
ture extraction from invalid PCI patterns as being fault tolerant. Existing NAT
extraction [XL14,XJ16a] does not explicitly consider the case when input PCI
patterns are invalid. Fault tolerant NAT elicitation was considered in [Xia10].
However, it does not provide algorithms for detecting invalid PCI patterns and
generating NATs accordingly. In this work, we develop such an algorithm for
fault tolerant and direct NAT extraction.

4 Bipartitions of Causes in NAT Models

The direct method for NAT structure extraction initiated in [Xia17] is based on
bipartitions of causes. Below, we reformulate some relevant concepts and results
from [Xia17] for better clarity and extend them for the purpose of this work.

Definition 5 Let C (|C| ≥ 2) be a set of causes, X and Y be non-empty subsets
of C where X∩Y = ∅ and X∪Y = C, and π be a full PCI pattern over C. Then
{X,Y } is a uniform causal bipartition of C under π if one of the following
holds.

1. ∀x ∈ X,∀y ∈ Y, π(x, y) = r
2. ∀x ∈ X,∀y ∈ Y, π(x, y) = u

For C = {x, y}, π has a single bit. Hence, it is trivially true that {{x}, {y}}
forms a uniform causal bipartition. For C = {x, y, z}, every PCI pattern is valid
(see Section 3), and has a NAT T . At least one cause, say x, is the parent of the
leaf in T , and {{x}, {y, z}} is a uniform causal bipartition.

Bipartitions in Def. 5 are based on causal interactions. Bipartitions in Def. 6
below are based on NAT topology.

Definition 6 Let T be a NAT over C. Let {X,Y } be a bipartition of C, where
X 6= ∅, Y 6= ∅, X ∩ Y = ∅, and X ∪ Y = C. If for each leaf-induced subtree of
T and its root set R, either R ⊆ X or R ⊆ Y holds, then {X,Y } is a subtree-
consistent bipartition of C with respect to T .

In Fig. 2, {{c2}, {c1, c3}} is a subtree-consistent bipartition of C = {c1, c2, c3},
but {{c1}, {c2, c3}} is not.

Theorem 1 below relates the two types of bipartitions defined. It is equivalent
to Theorem 1 in [Xia17] but with better clarity.

Theorem 1 Let T be a NAT over C and π be the PCI pattern of T . Every
subtree-consistent bipartition of C is a uniform causal bipartition.

Theorem 2 below strengthens Theorem 1 with the existence of subtree-
consistent bipartitions. It will be used later to justify a main result of this work.



Theorem 2 Every NAT over a set C (|C| ≥ 2) of causes has at least one
subtree-consistent bipartition of C.

Proof: Since |C| ≥ 2, the leaf of T has at least two parents. Let x be such a
leaf parent. If x is a root, then {{x}, C \{x}} is a subtree-consistent bipartition.
Otherwise, x is the leaf of a subtree. Let X be the root set of the subtree. Then
{X,C \X} is a subtree-consistent bipartition. �

5 PCI Core and Invalid PCI Patterns
NAT extraction from invalid PCI patterns necessitates operations different from
extraction from valid patterns. Activation of such operations in turn necessitates
detection of invalid patterns. Below we analyze conditions for such detection.
First, we formalize necessary concepts.

Definition 7 Let π be a full PCI pattern over a set C (|C| ≥ 2) of causes. If
there exists no uniform causal bipartition under π, then π is a PCI core and C
is the domain of the PCI core.

From Section 3, there exists no PCI core when n = 2 and 3. Following [Xia17],
we analyze a PCI pattern equivalently through its PCI matrix, and denote both
by π interchangeably. Consider the PCI matrix π in Fig. 3 (left).

Fig. 3. PCI matrix over C = {a, b, c, d} (left) and one over C = {e, a, b, c, d} (right)

Since the row indexed by a is not uniform, {{a}, {b, c, d}} is not a uniform
causal partition. In fact, none of the bipartitions {X,Y } is when |X| = 1. For
X = {a, d} and Y = {b, c}, consider cells at the intersection of rows indexed
by X and columns indexed by Y . The first row (r, u) in the intersection is non-
uniform. Hence, {{a, d}, {b, c}} is not a uniform causal partition. In fact, none
of the bipartitions {X,Y } is when |X| = 2. Hence, π is a PCI core. This shows
that the smallest PCI core (over the least number of causes) occurs when n = 4.

Definition 8 Let π be a PCI pattern over C. A PCI pattern ψ over X ⊆ C
(|X| ≥ 2) is a sub-pattern of π if, for every x, y ∈ X, ψ(x, y) = π(x, y).

Note that π is a trivial sub-pattern of itself. Consider the PCI matrix π in
Fig. 3 (right). The partition {{e}, {a, b, c, d}} is causally uniform. Hence, π is
not a PCI core. If we delete the row and the column indexed by e, the remainder
is identical to the matrix in the left. Since the sub-pattern over {a, b, c, d} is a
PCI core, no other uniform causal partition of C exists under π.

Theorem 3 below reveals a fundamental condition of invalid PCI patterns.



Theorem 3 A PCI pattern π over C (|C| ≥ 2) is invalid iff π contains a sub-
pattern ψ that is a PCI core.

Proof: [Sufficiency] Assume that π contains a sub-pattern ψ over S ⊆ C that
is a PCI core. Since the smallest PCI core has 4 causes, |S| ≥ 4. We show that
there exists no NAT whose PCI pattern equals to π.

We prove by contradiction. Suppose that a NAT T over C exists with PCI
pattern π. By Theorem 2, T has a subtree-consistent bipartition {X,Y } of C.
Either X and Y split S (possible since |S| ≥ 4) or they don’t. We consider each
case below.

(Case 1) If X and Y split S, denote SX = X ∩ S 6= ∅ and SY = Y ∩ S 6= ∅,
where SX∪SY = S. Let ψ be the sub-pattern of π over S. By Theorem 1, {X,Y }
is a uniform casual bipartition of C under π. Hence, {SX , SY } is also a uniform
casual bipartition of S under ψ: a contradiction to the assumption that ψ is a
PCI core.

(Case 2) If X and Y do not split S, then S is contained in one of them,
say X. From |S| ≥ 4, we have |X| ≥ 4. Since {X,Y } is a subtree-consistent
bipartition of C, either Y is the root set of a subtree T ′ induced by the leaf of
T , or Y is made of root sets of multiple such subtrees. In either case, we remove
each subtree induced by the leaf of T whose root set is contained in Y , and refer
to the reduced tree by T ′. If the leaf z of T is left with a single parent z′ due to
the removal, we remove z from T so that z′ becomes the leaf of T ′. The resultant
T ′ is a well-defined NAT over X ⊂ C and |X| ≥ 4.

Since C is finite and the reduction produces a NAT over a proper subset of
causes, by processing a subtree-consistent bipartition in T ′ recursively, Case 1
must be true eventually.

[Necessity] Suppose a PCI pattern π over C does not correspond to any
NAT. We show that π contains a sub-pattern ψ that is a PCI core. We prove
by contraposition. Assume that π does not contain any PCI core. We show by
induction on |C| that a NAT can be constructed with PCI pattern π.

For |C| = 2, say, C = {x, y}, since π is not a PCI core, the only bipartition
{{x}, {y}} is a uniform causal bipartition of C. Hence, a tree T with the leaf z
and root parents x and y is a NAT over C.

Assume that for |C| = k ≥ 2, if PCI pattern π over C does not contain a
PCI core, then a NAT can be constructed with pattern π.

Consider |C| = k + 1 where PCI pattern π over C does not contain a PCI
core. Since π is not a PCI core, there exists a uniform causal bipartition {X,Y }
of C, where |X| ≤ k and |Y | ≤ k. Since k + 1 ≥ 3, X and Y cannot both be
singletons. Either exactly one of them is a singleton (Case a) or none of them is
a singleton (Case b). We construct a NAT with pattern π in each case below.

(Case a) Suppose that X is a singleton {x}. Since π does not contain a PCI
core, neither the sub-pattern ψ of π over Y does. Since |Y | = k, by inductive
assumption, a NAT TY can be constructed with PCI pattern ψ. Denote the leaf
of TY by z.

If z is direct and the uniform causal interaction relative to bipartition {{x}, Y }
is u, add the root parent x to z in TY . The resultant tree T is a NAT with PCI



pattern π. The processing is similar if z is dual and the interaction relative to
{{x}, Y } is r.

If z is direct and the causal interaction relative to bipartition {{x}, Y } is r,
create a tree T with leaf v whose two parents are x and z. The resultant tree
T is a NAT with PCI pattern π. The processing is similar if z is dual and the
interaction relative to {{x}, Y } is u.

(Case b) Suppose that none of X and Y is singleton. Let πX (πY ) be the
sub-pattern of π over X (Y ). Since π does not contain a PCI core, neither πX
nor πY does. Since |X| ≤ k (|Y | ≤ k), by inductive assumption, a NAT TX (TY )
can be constructed with PCI pattern πX (πY ). Denote the leaf of TX (TY ) by
zX (zY ).

If zX and zY are both direct and the uniform causal interaction relative to
bipartition {X,Y } is u, merge TX and TY by adding all parents of zY as parents
of zX and deleting zY . The resultant tree T is a NAT with PCI pattern π.
The processing is similar if zX and zY are both dual and the uniform causal
interaction relative to bipartition {X,Y } is r.

If zX is direct, zY is dual, and the uniform causal interaction relative to
bipartition {X,Y } is u, merge TX and TY by making zY a parent of zX . The
resultant tree T is a NAT with PCI pattern π. The processing is similar for other
cases where the types of zX and zY differ. �

Theorem 3 establishes that the necessary and sufficient condition of an invalid
PCI pattern π is that either π is a PCI core or a sub-pattern of π is.

6 NAT Extraction with Invalid PCI Pattern Detection

We apply formal results from previous sections to algorithms in [Xia17] to extend
their functionality as well as to improve their semantic clarity.

Algorithm 1 below extends InteractBtwSets [Xia17] by improving its semantic
clarity. As input, it takes a set C of causes, a PCI matrix π over C, and a proper
subset X ⊂ C from which a bipartition {X,Y } (line 1) is defined. It determines
if {X,Y } is a uniform causal bipartition. If so, it returns the NIN-AND gate
type that implements the causal interaction. Otherwise, it returns null.

Algorithm 1 IsUniformCausalBipartition(C, π,X)

1 Y = C \X;
2 if ∀x ∈ X,∀y ∈ Y , π(x, y) = r holds, gatetype = dual;
3 else if ∀x ∈ X,∀y ∈ Y , π(x, y) = u holds, gatetype = direct;
4 else gatetype = null;
5 return gatetype;

TestPciSetNat below extends SetNatByPci [Xia17] on both functionality and
semantic clarity. As input, it takes a set C of causes and a full PCI matrix
π over C. Unlike [Xia17] where π is assumed valid, π can be either valid or
invalid. TestPciSetNat calls IsUniformCausalBipartition to evaluate alternative



bipartitions. If π is valid, it returns the respective NAT. Otherwise, invalidity of
π is detected and the domain of a PCI core is returned instead (lines 21, 25, and
27). InNat1 and InNat2 are sets of causes added to the current NAT T . The
Subsets collects subsets X and Y for each uniform causal bipartition {X,Y }.
An example of matrix reduction (lines 8 and 20) is in Fig. 3, where the matrix
in the right over {e, a, b, c, d} is reduced to the matrix in the left over {a, b, c, d}.
Although NAT is used to refer to T , the actual data structure of T is an RLT
(hence, the reference to leaf z).

Algorithm 2 TestPciSetNat(C, π)

1 init NAT T with leaf z only; type(z) = null; init set InNat1 = ∅;
2 for each x ∈ C, do
3 if ∀y ∈ C \ {x}, π(x, y) = r holds,
4 type(z) = dual; add x to T as a parent of z; InNat1 = InNat1 ∪ {x};
5 else if ∀y ∈ C \ {x}, π(x, y) = u holds,
6 type(z) = direct; add x to T as a parent of z; InNat1 = InNat1 ∪ {x};
7 if InNat1 = C, return T ;

8 reduce (C, π) to (C ′, ψ) relative to InNat1;
9 InNat2 = ∅; Subsets = ∅;
10 for i = 2 to |C ′|/2, do
11 for each X ⊂ C ′ where |X| = i, do
12 gatetype = IsUniformCausalBipartition(C ′, ψ,X);
13 if gatetype 6= null,
14 if type(z) = null, assign type(z) = gatetype;
15 if gatetype = type(z), Subsets = Subsets ∪ {X,C ′ \X};

16 if Subsets 6= ∅,
17 for each X ∈ Subsets,
18 if ∃ V ∈ Subsets such that X ⊇ V , remove X from Subsets;
19 for each X ∈ Subsets, do
20 reduce π to ψ over X; R = TestPciSetNat(X,ψ);
21 if R = X, return X;
22 add R to T as a subtree induced by z;
23 InNat2 = union of subsets in Subsets;
24 if InNat2 = C ′, return T ;
25 if InNat1 ∪ InNat2 = ∅, return C;

26 R = TestPciSetNat(C ′, ψ);
27 if R = C ′, return C ′;
28 add R to T as a subtree induced by z;
29 return T ;

TestPciSetNat is sound because whenever π is invalid, TestPciSetNat returns
the domain of a PCI core. By Theorem 3, either π is a PCI core, which is
detected in line 25 with domain C returned, or π contains a PCI core, which is



detected in lines 21 and 27 with the corresponding domains X and C ′ returned.
TestPciSetNat is complete because whenever π is valid, TestPciSetNat returns a
respective NAT. This can be established similarly as Theorem 3 in [Xia17]. We
omit detailed analysis on soundness and completeness due to space.

When π is valid, the time complexity of TestPciSetNat is a function of the
respective NAT T . Let z be the leaf of T . If every cause in C is a parent of z,
only lines 1 to 7 is run, and the complexity is O(n2). If no cause is a parent of z,
lines 1 to 7 are followed by lines 8 to 15. The number of alternative X (line 11)
is 2n−1−n− 1 and evaluation of each X takes O(n2/4) time. The complexity is
O(n2 2n). This is also the complexity when π is a PCI core.

If π is valid, some causes are the parents of z, the computation time is between
O(n2) and O(n2 2n). The same holds if π is invalid and contains a PCI core over
a proper subset of C. In summary, the time complexity of TestPciSetNat is a
function of π and is between O(n2) and O(n2 2n). Note that since a NAT model
is over a single BN family, n is not unbounded.

7 NAT Extraction from Partial PCI Patterns

The input to TestPciSetNat is a full PCI pattern. The following algorithm allows
the input pattern to be full or partial, and valid or invalid. In particular, input of
SetNat includes a set C of causes, a PCI pattern π over C, and a set B (possibly
empty) of missing PCI bits. Set B is such that if π(x, y) is a missing bit, then
(x, y) ∈ B.

Set Π collects full PCI patterns that are compatible with π. In line 5, the full
PCI pattern ψ is obtained from the partial pattern π by adding the missing bits
according to θ. Variable bsc is a PCI bit switching counter. When π is invalid,
it controls the number of bits in π that will be switched.

Algorithm 3 SetNat(C, π,B)

1 def = set of defined bits in π;
2 Π = ∅;
3 if B = ∅, Π = {π};
4 else for each instantiation θ of missing bits in B,
5 complete π by θ into ψ; Π = Π ∪ {ψ};
6 for each ψ ∈ Π, do
7 R = TestPciSetNat(C,ψ);
8 if R is a NAT, return R;
9 bsc = 1;
10 do
11 for each ψ ∈ Π, do
12 for each combination of bsc bits in def, do
13 get τ from ψ by switching these bits;
14 R = TestPciSetNat(C, τ);
15 if R is a NAT, return R;
16 bsc++;
17 end do



When π is full, B = ∅ and line 3 is run. Otherwise, lines 4 and 5 are run.
Each full pattern in Π is processed in lines 6 to 8. If π is valid, one ψ will succeed
and the respective NAT will be returned.

Otherwise, π is invalid. Lines 9 to 17 switch some bits in π for each ψ. The
number of bits to be switched starts from 1 and increases as needed. Hence, a
NAT with the minimum number of PCI bits that differ from π (least incompat-
ible) will be returned.

8 Experiment

We evaluated the algorithms by 16 batches of experiments (see Table 1), running
in a ThinkPad X230. Each batch extracts NATs from 100 PCI patterns. In

Table 1. Summary of experimental batches

#Bits #Missing Runtime Runtime
Index n Valid Full switched bits µ̂ msec σ̂ msec

1 8 yes yes 0 0 0.16 1.59
2 12 yes yes 0 0 0.82 3.42
3 16 yes yes 0 0 21.83 21.93
4 20 yes yes 0 0 520.59 437.37

5 8 may not yes 1 0 0.36 2.27
6 12 may not yes 1 0 22.19 30.24
7 16 may not yes 1 0 1117.95 1498.54
8 20 may not yes 1 0 63439.55 70736.72

9 8 yes no 0 1 0.19 1.60
10 12 yes no 0 1 1.32 4.27
11 16 yes no 0 1 31.60 30.46
12 20 yes no 0 1 855.87 821.17

13 8 may not no 1 1 0.64 3.09
14 12 may not no 1 1 34.39 47.41
15 16 may not no 1 1 2187.95 2999.55
16 20 may not no 1 1 96184.07 122835.54

batches 1 to 4, each input PCI pattern is derived from a randomly generated
NAT with n = 8, 12, 16, 20, respectively. Hence, each pattern is full and valid.

In the remaining batches, each input pattern is derived from a random NAT
and is modified in addition. In batches 5 to 8, the pattern is modified by randomly
selecting a bit and switching its value. Hence, the pattern is full, but may be
invalid. In batches 9 to 12, a randomly selected bit is dropped from each pattern.
Hence, the pattern is partial but valid. In batches 13 to 16, for each pattern,
one bit is dropped and the value of another bit is switched. Hence, the pattern
is partial and may be invalid. The experiment setup includes all combinations
of fullness and validity of input patterns, and spans a wide range of n values.



Being able to conduct the experiment at n = 12, 16, 20 is itself a demon-
stration of the advantage of the proposed algorithms. The number of NATs for
n = 9 is 25,637,824 [XZL09]. Generation of the NAT database and search tree
take about 40 hours [XL14]. The number of NATs for n = 10 is 564,275,648. It
would take at least 880 hours to generate the NAT database and search tree.

After each NAT is extracted, its PCI pattern is compared with the input
pattern. For batches 1 to 4 and 9 to 12, each NAT pattern is compatible with
the input pattern. For batches 5 to 8 and 13 to 16, the extracted NAT pattern
differs from the input by no more than 1 bit. Hence, our algorithms successfully
extract NATs in all possible types of scenarios. Due to space, we skip a more
elaborative report and analysis of the experimental results.

9 Conclusion

The main contribution of this paper is a collection of algorithms for direct NAT
extraction from partial or invalid PCI patterns, founded on formal analysis.
They allow NAT structure extraction in all conceivable scenarios, and enable
NAT modeling to be applied more effectively in compressing BN CPTs and in
learning compact BN CPTs from data. Integrating these algorithms with the
existing CPT compression algorithms is an immediate future work.

Our experiments showed that an incorrect PCI bit in the input pattern is
much more costly than a missing PCI bit in NAT extraction. Further research
will be devoted to improve efficiency of extraction from invalid PCI patterns.
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