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Modeling Causal Reinforcement and Undermining
for Efficient CPT Elicitation

Yang Xiang and Ning Jia

Abstract— Representation of uncertain knowledge using a
Bayesiannetwork requires acquisition of a conditional probabil-
ity table (CPT) for each variable. The CPT can be acquired by
data mining or elicitation. When data are insufficient to support
mining, causal modeling, such as the noisy-OR, aids elicitation by
reducing the number of probability parameters to be acquired
from human experts. Multiple causes can reinforce each other in
producing the effect or can undermine the impact of each other.
Most existing causal models do not consider causal interactions
from the perspective of reinforcement or undermining. Our
analysis shows that none can represent both interactions. Except
the RNOR, other models also limit parameters to probabilities
of single-cause events. We present the first general causal model,
the non-impeding noisy-AND tree, that allows encoding of both
reinforcement and undermining. It supports efficient CPT ac-
quisition by elicitating a partial ordering of causes in terms of a
tree topology, plus necessary numerical parameters. It also allows
incorporation of probabilities for multi-cause events.

Keywords: knowledge engineering, probabilistic reasoning, un-
certainty, knowledge acquisition, knowledge modeling, elicitation
methods.

I. I NTRODUCTION

A Bayesian network (BN) [10] encodes probabilistic knowl-
edge about a problem domain through a dependence structure in
the form of a directed acyclic graph and CPTs associated with
nodes of the graph. To construct a BN for a given domain, these
CPTs must be acquired. The complexity is linear on the number of
variables but exponential on the maximum number of parents of a
variable. When a variable has many parents, direct acquisition of
its CPT is costly. The CPT may be acquired through data mining.
However, a given problem domain may have insufficient amount
of data to support mining, but has human experts for elicitation.
In such a case, how to elicitate the CPT efficiently becomes a
practical need in knowledge engineering.

The most widely used model to support such elicitation is the
noisy-OR model pioneered by Good [3] and further studied by
Pearl [10]. The model assumes that a number of binary causes
can produce an effect. Their interaction is expressed by a logic
OR gate. Each cause may fail to produce the effect and this
uncertainty is represented by a probabilistic inhibitor conjuncted
with the cause. The noisy-OR gate encodes the assumption that
causes fail independently, from which the number of probability
parameters to be assessed per CPT is reduced to linear on the
number of parent variables.

Henrion [7] added to the noisy-OR model a leaky probability,
extended the model from binary to multi-valued variables, and
introduced the noisy-MAX model. A leaky probability captures
the probability of occurrence of the effect when all explicitly
represented causes are absent. Diez [1] and Srinivas [15] also
studied generalization of the noisy-OR model. Diez [1] introduced
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the noisy-MIN models. Heckerman discussed the noisy-ADD
model [5]1. Heckerman and Breese [6] analyzed a collection of
causal independence relations that allows efficient acquisition of
CPTs. In particular, they considered amechanistic, decomposable,
multiply decomposable, and temporal relations, which are gener-
alizations of models such as the noisy-OR. Galan and Diez [2]
introduced the noisy-AND model. Recently, Lemmer and Gossink
[9] proposed the recursive noisy-OR (RNOR) model. Instead of
allowing only probability parameters of the effect given each
single-cause as the input, the RNOR model allows probability
parameters of the effect given subsets of causes. A method based
on the RNOR, tailored to an application, was used by Kuter et
al. [8] to handle inhibition.

When multiple causes are present, they may reinforce each
other. That is, the effect is more likely to occur when more causes
are active. Alternatively, multiple causes may undermine the
impact of each other. That is, the effect becomes less likely when
more causes are present. Unlike the RNOR [9], previous works
do not consider causal interactions among variables from the
perspective of reinforcement or undermining. Our analysis shows
that previously proposed causal models, including the noisy-OR,
the noisy-MAX, the noisy-AND, the noisy-MIN, the noisy-ADD
and the RNOR, are limited to represent only one type of causal
interaction, and cannot express both. Furthermore, except the
RNOR, other models limit input parameters to probabilities of
single-cause events.

In this work, we present a new causal model, termed the
non-impeding noisy-AND tree, or simply NIN-AND tree, that
can represent both types of causal interactions among a set of
causes, some of which are reinforcing and others are undermining.
Like the RNOR, probabilities for multi-cause events can be
incorporated as model parameters if so desired. The NIN-AND
tree degenerates to the noisy-OR and the noisy-MAX in the binary
case, when its topology and input events are restricted, but is more
expressive than each in general.

In Section II, we introduce the terminology and define formally
reinforcement and undermining. Section III presents building
blocks for modeling reinforcement and undermining. Section IV
analyzes limitations of alternative causal models in representing
these causal interactions. Section V proposes the NIN-AND tree
model. How to use it to obtain causal probabilities is described
in Section VI. We present, in Section VII, how to use the NIN-
AND tree when default assumptions do not hold. We analyze
the complexity of elicitation in Section VIII and demonstrate
elicitation of CPTs with the NIN-AND tree in Section IX.

1It was referred to as the noisy-addition there. We will use the name noisy-
ADD to be consistent with the naming of other alternatives.
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II. BACKGROUND

A. Uncertain Causes and Causal Events

We aim to acquire efficiently the CPT of a variablex condi-
tioned on a set of variablesY based on their causal relation. The
causes that we consider are uncertain causes. Following Lemmer
and Gossink [9], anuncertain causeis a cause that can produce an
effect but does not always do so. We denote a set of binary cause
variables asX = {c1, ..., cn} and their effect variable (binary) as
e. For eachci, we denoteci = true by c+i and ci = false by
c−i . Similarly, we denotee = true by e+.

In this work, we assume that the causal relation between a cause
and an effect has been ascertained. We investigate how to model
such relations to support elicitation of probability parameters. For
how to ascertain the causal relation, see, for example, Spirtes,
Glymour and Scheines [13], [14], Shafer [12], and Pearl [11].

We refer to the event that a causeci caused an effecte to
occur successfully as acausal event. We denote this causal event
by e+ ← {c+i } or simplye+ ← c+i . The event is uncertain sincee
may be false whenci is true. Its probability is denotedP (e+ ←
c+i ) where 0 < P (e+ ← c+i ) < 1. The negation of the causal
event, thatci failed to causee, is denoted ase+ 6← c+i . The
probability of the causal failure eventis P (e+ 6← c+i ) = 1 −
P (e+ ← c+i ).

We denote the causal event that a setX = {c1, ..., cn} of causes
causede by e+ ← {c+1 , ..., c+n }, or simply e+ ← c+1 , ..., c+n , or
the vector notatione+ ← x+. When the cause set is indexed,
such asWi = {c1, ..., cn}, the causal event can be denoted as
e+ ← w+

i . We allow broad interpretations of a causal event by a
set of causes, as will be seen in later sections. For instance, we
are not limited to the interpretation in [9]:the effect is caused by
at least one of the causes. The probability of the evente+ ← w+

i
is P (e+ ← w+

i ) = P (e+ ← c+1 , ..., c+n ).
Pearl [10] regards a cause as an event whose occurrence always

results in an effect, unless it is blocked by an inhibitor. He
encodes the causal uncertainty through the uncertain inhibitor.
The conjunction of a certain cause and an inhibitor in his
formulation is equivalent to an uncertain cause.

When modeling a domain with a BN, the set of all causes
of an effect variablee is its parent variables. Denote the set of
all causesof e by C. To capture causes that we do not wish to
represent explicitly, we include a leaky variable inC.

Probabilities of causal events can be used to acquire the
CPT P (e|C). For example, ifC = {c1, c2, c3, c4}, then we
have P (e+|c+1 , c+2 , c+3 , c+4 ) = P (e+ ← c+1 , c+2 , c+3 , c+4 ) and
P (e+|c+1 , c−2 , c+3 , c+4 ) = P (e+ ← c+1 , c+3 , c+4 ). Note that
only cause variables of valuetrue are included in the causal
probability. Under the leaky variable assumption, we have
P (e+|c−1 , c−2 , c−3 , c−4 ) = P (e+ ← ∅) = 0. Note P (e+ ← ∅) 6=
P (e+) in general.

B. Reinforcement and Undermining

When multiple causes are present, they may reinforce each
other in producing the effect. That is, their combined influence is
greater than that from only some of them. Alternatively, multiple
causes may undermine each other in producing the effect. Below,
we define reinforcement and undermining formally.

Definition 1: Let R = {W1,W2, ...} be a partition of a setX
of causes,R′ be a proper subset ofR, and Y be the union of

elements inR′. Sets of causes inR are said toreinforce
each other, if for every subsetR′ ⊂ R, it holds that

P (e+ ← y+) ≤ P (e+ ← x+).

Sets of causes inR are said toundermine each other, if for
every subsetR′ ⊂ R, it holds that

P (e+ ← y+) > P (e+ ← x+).

Intuitively, sets of causesW1,W2, ... reinforce each other if
collectively they are at least as effective in causing the effect as
some acting by themselves. If collectively they are less effective,
then they must be undermining each other.

Lemmer and Gossink [9] classify causal interactions into
positive causalityversus inhibition. The dividing line between
positive causality and inhibition is drawn when causes collectively
are more likely to produce the effect than any proper subset.
They further classify positive causality into three subclasses:
synergy, noisy-OR, andinterference. Synergy and interference are
defined according to whether causes collectively are more likely
or less likely to produce the effect than in a noisy-OR model. We
interpretate the relation between the two classifications in Fig. 1,
where the shaded area represents positive causality and the white
area corresponds to inhibition.

inhibition

synergy interferencenoisy−OR

positive causality

Fig. 1. Relation between two classifications of causal interactions. Each
point corresponds to a pattern of causal interaction between an effect and a
set of causes.

We believe that collection being stronger than parts in causal
strength is a more fundamental dividing line (used by the positive
causality versus inhibition classification). In comparison, the
difference between synergy and interference is less fundamental.
After all, they all satisfy the property of collection being stronger
than parts and only differ in the degree of strength.

The classification of reinforcement versus undermining defined
above is consistent with the positive causality versus inhibition
classification, but is more general. In Definition 1, when each
Wi is a singleton, reinforcement becomes positive causality and
undermining becomes inhibition. In other words, the positive
causality versus inhibition classification is a special case of the
reinforcement versus undermining classification. The generality of
reinforcement and undermining allows modeling of reinforcement
of sets of causes when the causes in some set are undermining. It
also allows modeling of undermining of sets of causes when the
causes in some set are reinforcing. Such modeling expressiveness
is not possible under the positive causality versus inhibition
definition. This will become clear in Section V.

III. B UILDING BLOCKS FORREINFORCEMENT AND

UNDERMINING

In this section, we present the building blocks for modeling
reinforcement and those for modeling undermining. For each type
of causal interaction, we propose default assumptions and encode
these assumptions graphically by a noisy logic gate. We then show
that these assumptions lead to the intended causal interaction (i.e.,
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reinforcing or undermining), thus establishing the noisy gate as
the building block of the causal interaction.

First, we consider reinforcing interactions. We assume that
these causes satisfy failure conjunction and failure independence.

Definition 2: Sets of causesW1, ...,Wm, whereWi andWj are
disjoint for distinct i and j, satisfy failure conjunction
if the following equation holds,

(e+ 6← w+
1 , ...,w+

m) = (e+ 6← w+
1 ) ∧ ...∧ (e+ 6← w+

m). (1)
Intuitively, these sets of causes collectively fail to produce the

effect when each set of causes has failed to produce the effect.
Definition 3: Sets of causesW1, ...,Wm, whereWi andWj are

disjoint for distincti andj, satisfyfailure independence
if failure eventse+ 6← w+

1 , ...,e+ 6← w+
m are independent of each

other. That is, the following equation holds,

P ((e+ 6← w+
1 ) ∧ ... ∧ (e+ 6← w+

m))

= P (e+ 6← w+
1 ) ... P (e+ 6← w+

m). (2)
To graphically model causal interactions that satisfy the above

conditions, we introduce a non-impeding noisy-AND gate, or
NIN-AND gate. Its inputs are either all causal events, e.g.,
e+ ← c+i , c+j , or all causal failure events, e.g.,e+ 6← c+j , c+k .
These events are uncertain and hence the name noisy. Its output
event is the conjunction (AND) of the input events. The output
event is independent of whether the input events involve all causes
of the effecte (non-impeding). This non-impeding property is in
contrast with the noisy-AND model [2], which we will elaborate
in Section IV-C. We refer to NIN-AND gates whose inputs are
causal events asdirect NIN-AND gates and those whose inputs
are causal failure events asdualNIN-AND gates. As a convention,
we require each NIN-AND gate to have at least two input events.

+        ++        +

+        +           +e     c  ,...,c1           n

1 n...
e     ce     c

Fig. 2. A dual NIN-AND gate for reinforcement.

We model causal interactions that satisfy failure conjunction
and failure independence graphically with a dual NIN-AND gate.
Fig. 2 illustrates such a gate, where eachWi = {ci} is a singleton
and m = n. Note that failure conjunction is expressed by the
AND gate and failure independence is expressed by the lack
of direct connection between individual failure events. Note that
probabilities in Eqn (2) are associated with the input or output
events but these probabilities are not themselves the input or
output of the gate. The following proposition establishes that a
dual NIN-AND gate models reinforcement.

Proposition 1: Let R = {W1,W2, ...} be a partition of a setX
of uncertain causes of an effecte and sets inR satisfy Eqns (1)
and (2). Then, interaction among sets of causes inR is reinforcing.
Proof:

Partition R into {U,V }, whereU ⊂ R andV = R \ U . From
Eqns (1) and (2), we haveP (e+ 6← x+) = P (e+ 6← u+)P (e+ 6←
v+). Because each causeci in X is an uncertain cause and0 <

P (e+ 6← c+i ) < 1, we have0 < P (e+ 6← u+) < 1 and 0 <

P (e+ 6← v+) < 1. Hence,P (e+ 6← x+) < P (e+ 6← u+), which
implies P (e+ ← x+) > P (e+ ← u+). �

Unlike the graphical model in [10] which represents success
events directly, the dual NIN-AND gate represents failure events,
which corresponds to failure independence more directly. Further-
more, the following shows that noisy-OR gates are special cases
of dual NIN-AND gates, in the same sense that positive causality
is a special case of reinforcement.

Proposition 2: A noisy-OR gate is equivalent to a dual NIN-
AND gate with only single-cause input events.
Proof:

The proposition follows from the equivalent expression of
Eqn (1) as follows:

(e+ ← w+
1 , ...,w+

m) = (e+ ← w+
1 ) ∨ ...∨ (e+ ← w+

m).

Alternatively, when each setWi of causes is a singleton,
Eqn (2) can be written as

P (e+ ← c+1 , ..., c+n ) = 1−
n∏

i=1

(1− P (e+ ← c+i )), (3)

which characterizes the noisy-OR gate (see [10]).�

We refer to the dual NIN-AND gate in Fig. 2 as the default
model for reinforcement. The default model represents only one
pattern of reinforcement among sets of causes. We consider other
patterns of reinforcement in Section VII.

Next, we consider undermining interactions. As this is the
causal interaction less studied, we motivate with an example in
family relation:A man who lives with his wife only is likely happy,
and so is with his mother only. When he lives with both, he is
likely miserable.A recent web article by Elizabeth Graham [4]
reported that out of 17 women in a study group, only two had
a good in-law relationship. The focus of the article was not on
the man in the middle, but it is not difficult to realize the stress
that the man is under, trying to mediate the relationship. Here,
happiness of the man is the effect and living alone (such as being
an orphan) is assumed unhappy. Activating a single-cause, living
with one of the women, increases the chance of being happy. The
probability is reduced when both causes are active, compared to
the case of only one. Formally, we assume that these causes satisfy
success conjunction and success independence.

Definition 4: Sets of causesW1, ...,Wm, whereWi andWj are
disjoint for distinct i and j, satisfysuccess conjunction
if the following relation holds,

e+ ← w+
1 , ...,w+

m = (e+ ← w+
1 ) ∧ ...∧ (e+ ← w+

m). (4)
This assumption states that a successful multi-cause event

requires each cause to be effective. Because it is not immediately
intuitive, we come back to elaborate after Proposition 3 below.

Definition 5: Sets of causesW1, ...,Wm, whereWi and Wj

are disjoint for distincti andj, succeed independently if
success eventse+ ← w+

1 , ..., e+ ← w+
m are independent of each

other. That is, the following relation holds,

P ((e+ ← w+
1 ) ∧ ...∧ (e+ ← w+

m))

= P (e+ ← w+
1 ) ... P (e+ ← w+

m). (5)
We model causes that satisfy success conjunction and success

independence graphically with a direct NIN-AND gate. Fig. 3
illustrates such a gate, where eachWi = {ci} is a singleton and
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m = n. Note that success conjunction is expressed by the AND
gate and success independence is expressed by the lack of direct
connection between individual success events.

+        ++        +

+        +           +e     c  ,...,c1           n

1 n...
e     ce     c

Fig. 3. A direct NIN-AND gate for undermining.

The following proposition establishes that a direct NIN-AND
gate models the undermining interaction, whose proof is straight-
forward.

Proposition 3: Let R = {W1,W2, ...} be a partition of a setX
of uncertain causes of effecte and sets inR satisfy Eqns (4) and
(5). Then, interaction among sets of causes inR is undermining.

Again, the direct NIN-AND gate in Fig. 3 is the default model
for undermining and represents only one pattern of undermining
among sets of causes. We consider representation of other patterns
of undermining in Section VII.

Having established that causes that satisfy success conjunction
and success independence are undermining each other, we elabo-
rate the intuition behind. Success conjunction says that when sets
of causes succeed in causing the effect in an undermining way,
each set of causes must have been effective. If any set of causes
has occurred but has failed to be effective, it would not undermine
the other sets of causes. In the in-law example, wife has her way to
make husband happy (her way to manage the family matter) and
mother often has a different way. When both are trying to impact
how the family matter is handled (for instance, how rooms should
be decorated, how kids should be educated, etc.), idea of neither
can be implemented smoothly and completely, and the man has to
resolve the conflict, which reduces the chance of his being happy.
As for success independence, given that living with mother only
has made the man happy, it does not change the tendency that the
man can be happy after marrying his wife and living separately
from his mother. An additional example on undermining is given
in Section V.

IV. L IMITATIONS OF ALTERNATIVE CAUSAL MODELS

Before presenting the new causal model for reinforcement and
undermining, we analyze alternative causal models and reveal
their limitations in modeling the two types of causal interactions.
As we have defined reinforcement and undermining under the
binary context, the following analysis is restricted to such a
context as appropriate.

A. The Noisy-OR Model

First, we analyze the noisy-OR model [3], [10]. Proposition 1
shows that when uncertain causes satisfies Eqns (1) and (2),
their interaction is reinforcing. Proposition 2 shows that a noisy-
OR gate is equivalent to a dual NIN-AND gate of single-
cause input events, since they both satisfy Eqns (1) and (2).
Therefore, Definition 1, Propositions 1 and 2 collectively imply
that the noisy-OR model can represent only reinforcement but not
undermining.

B. The Noisy-MAX Model

In the binary case, with two inputs and with uncertainty
ignored, the output of a noisy-MAX model [7] is true if at least
one of the two inputs is true, and is false if both inputs are false.
Hence, the noisy-MAX model behaves the same as the noisy-OR
model when variables are binary. From the conclusion drawn in
Section IV-A on the noisy-OR, when the domain is binary, the
noisy-MAX model represents only reinforcing interactions.

C. The Noisy-AND Model

The behavior of a noisy-AND model [2] is characterized into
two cases. In the first case, the setC of all causesare true. In
the second case, some causes are false.

P (e+ ← c+1 , ..., c+n ) =
{

P (e+ ← c+1 ) · · ·P (e+ ← c+n ) : {c1, ...cn} = C

0 : {c1, ...cn} ⊂ C

From Definition 1, the noisy-AND model represents only rein-
forcing interactions.

It can be seen that the behavior of the noisy-AND in the first
case is consistent with Eqns (4) and (5). However, absence of any
cause inC obstructs the causal influence of the remaining causes,
forces the causal probability to zero, and prevents Eqns (4) and
(5) from being applicable to the second case. We refer to this
as theimpedingbehavior of the noisy-AND. On the other hand,
the direct NIN-AND gate in Fig. 3 allows Eqns (4) and (5) to be
extended to the second case, hence, the namenon-impedingnoisy-
AND. This difference between impeding and non-impeding is
significant. As the result, the noisy-AND represents reinforcement
while the direct NIN-AND represents undermining.

D. The Noisy-MIN Model

In the binary case, with two inputs and with uncertainty
ignored, the output of a noisy-MIN model [1] is false if at least
one of the two inputs is false, and is true if both inputs are
true. Hence, the binary noisy-MIN model behaves the same as
the noisy-AND model. According to the above analysis, when
the domain is binary, the noisy-MIN model represents only
reinforcing interactions.

E. The Recursive Noisy-OR Model

Lemmer and Gossink [9] proposed the RNOR model. To
acquire the effect probability due to a set of causes, the RNOR
model can combine causal probabilities due to subsets of causes,
where each subset can contain multiple causes. According to the
RNOR, for a set of causesX = {c0, ..., cn−1}, if P (e+ ←
c+0 , ..., c+n−1) is not directly assessed by the expert, it is evaluated
as

P (e+ ← c+0 , ..., c+n−1) =

1−
n−1∏

i=0

1− P (e+ ← x+ \ c+i )

1− P (e+ ← x+ \ {c+i , c+
(i+1)%n

})
. (6)

Because Eqn (6) is derived from a rewriting of Eqn (3) observed
by the noisy-OR model, the RNOR inherits the assumptions of
the noisy-OR. Therefore, according to the analysis of the noisy-
OR model in Section IV-A, the RNOR model can only represent
reinforcement, as acknowledged in [9]. As shown by Lemmer
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and Gossink, Eqn (6) produces a numerical value in the range
[0, 1] as long as causes inX are reinforcing. However, if they
are undermining, the result from the equation may not be a valid
probability (the numerical value may be outside the range[0, 1]).

F. The Noisy-ADD Model

The noisy-ADD [5] can only represent reinforcement. Consider
a noisy-adder with two binary causesc1 and c2 whose domains
are{0, 1}. It has the following DAG model

c1 −→ i1 −→ e←− i2 ←− c2

where i1 and i2 are intermediate variables and the effecte =

i1 + i2 ∈ {0, 1, 2}. The model assumesP (ij = 0|cj = 0) = 1

and 0 < P (ij = 1|cj = 1) < 1 for j = 1, 2. For simplicity, we
assumeP (i1 = 1|c1 = 1) = P (i2 = 1|c2 = 1) and denote their
value byq. Note that

P (e = 1|c1 = 1, c2 = 0) = q and P (e = 2|c1 = 1, c2 = 0) = 0.

To assess expressiveness of the model, we first consider the
effect e = 1 and then consider the disjunctione = 1 or e = 2.
DenoteP (e = 1|c1 = 1, c2 = 1) by r and first we comparer
with q. A simple derivation showsr = 2q(1 − q). If q < 0.5,
then r > q. If q > 0.5, then r < q. By Definition 1, if a causal
model is reinforcing, then no matter what valueP (e+ ← y+)

is, the relationP (e+ ← y+) ≤ P (e+ ← x+) must hold
and its negation must hold for undermining. Being unable to
maintain the inequality across the entire range of values for
P (e+ ← y+) implies that the noisy-ADD is unable to represent
either reinforcement or undermining if we focus on effecte = 1.

Next, we focus on the disjunctive effecte ∈ {1, 2}, i.e., e 6= 0.
DenoteP (e 6= 0|c1 = 1, c2 = 1) by t and it can be shown that
t = q(2 − q). SinceP (e 6= 0|c1 = 1, c2 = 0) = P (e = 1|c1 =

1, c2 = 0) = q, we comparet with q. From t = q(2 − q) > q

for 0 < q < 1, we conclude that noisy-ADD can only represent
reinforcement if we focus on disjunctive effecte ∈ {1, 2}.

G. Other Models

For models considered in [6], the amechanistic model has
essentially a star topology and other three models (decomposable,
multiply decomposable and temporal) are essentially binary trees.
When the binary tree is instantiated according to the noisy-OR,
the noisy-AND, the noisy-MAX, the noisy-MIN, or the noisy-
ADD, it inherits limitations of these models as discussed above. In
these models, each root node must also be a single-cause variable
and multi-cause event probability parameters are not considered.

H. Summary

TABLE I

SUMMARY OF PROPERTIES OF ALTERNATIVE CAUSAL MODELS.

Model Reinforcement Undermining Multi-cause input
noisy-OR yes no no
noisy-AND yes no no
noisy-MAX yes no no
noisy-MIN yes no no
noisy-ADD yes no no
RNOR yes no yes
NIN-AND tree yes yes yes

To summarize, Table I compares the properties of alternative
causal models with the NIN-AND tree model to be presented
and analyzed below. Note that none of the alternative models can
incorporateprobability parameters for multi-cause events, except
the RNOR and the NIN-AND tree.

Note also that although the noisy-MAX and the noisy-MIN
are applicable to multi-valued variables, their inability to model
both reinforcement and undermining in the binary case implies
that their inability in general. Therefore, our analysis of these two
models based on binary variables is conclusive in general.

V. THE NIN-AND T REE

A. A Motivating Example

Consider two setsX and Y of causes that reinforce each
other. It is possible that causes withinX undermine each other,
and so do causes withinY . In general, such interplay of causal
interactions of different natures can form a hierarchy. In this
section, we present a graphical representation to model such a
hierarchy. It is based on the direct and dual NIN-AND gates
and has a tree topology. We term it thenon-impeding noisy-AND
tree or NIN-AND tree. We assume that a human expert assesses
reinforcing and undermining interactions among causes according
to some partial order and is able to articulate the hierarchy.

For example, consider a patient who is in the process to recover
from a diseaseD. Taking medicineM helps recovery and so
does regular exercise. The patient’s normal diet contains minerals
that facilitate recovery but taking with medicineM reduces the
effectiveness of both. The causes and effect involved are as
follows:

• e+ : Recovery from diseaseD within a particular time
period.

• c+1 : Taking medicineM .
• c+2 : Regular exercise.
• c+3 : Patient’s taking his/her normal diet.
For the purpose of prognosis, one needs to acquire

P (e+|c+1 , c+2 , c+3 ) = P (e+ ← c+1 , c+2 , c+3 ). To ease the task, a
physician may consider first the undermining interaction between
c1 andc3. (S)he then considers the reinforcing interaction between
sets{c1, c3} and{c2}. Thus, the physician has articulated an order
for stepwise evaluation. The physician also assesses

P (e+ ← c+1 ) = 0.85, P (e+ ← c+2 ) = 0.8, P (e+ ← c+3 ) = 0.7.

If this is all the information that the physician can provide, the
causal interaction can be modeled as the NIN-AND tree in Fig. 4.

e     c+        +
2+        +     +

1     3    e     c , c 

e     c1
+        + e     c+        +

3

e     c , c , c1     2     3
+        +     +     +

Fig. 4. The NIN-AND tree model for the recovery example.

From the upper direct NIN-AND gate and Eqn (5),P (e+ ←
c+1 , c+3 ) = 0.595 is derived: a result of undermining. Its output
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is negated (shown by the white oval) before entering the lower
dual NIN-AND gate and the corresponding event has probability
P (e+ 6← c+1 , c+3 ) = 0.405. From the lower dual NIN-AND gate
andEqn (2), the following are derived:

P (e+ 6← c+1 , c+2 , c+3 ) = P (e+ 6← c+1 , c+3 )P (e+ 6← c+2 ) = 0.081,

andP (e+ ← c+1 , c+2 , c+3 ) = 0.919. It is a result of reinforcement.
The CPT obtained is shown below, whereP (e+|c−1 , c−2 , c−3 ) is
obtained based on the leaky cause assumption,P (e+|c−1 , c−2 , c+3 )

by direct elicitation,P (e+|c−1 , c+2 , c+3 ) through a dual NIN-AND
gate, andP (e+|c+1 , c−2 , c+3 ) through a direct NIN-AND gate.

P (e+|c−1 , c−2 , c−3 ) = 0

P (e+|c−1 , c−2 , c+3 ) = 0.7

P (e+|c−1 , c+2 , c−3 ) = 0.8

P (e+|c−1 , c+2 , c+3 ) = 0.94

P (e+|c+1 , c−2 , c−3 ) = 0.85

P (e+|c+1 , c−2 , c+3 ) = 0.595

P (e+|c+1 , c+2 , c−3 ) = 0.97

P (e+|c+1 , c+2 , c+3 ) = 0.919

B. The Definition

The following defines the NIN-AND tree formally. In the
definition, we have extended the set operators∪ and∩ to vectors
according to the obvious interpretation.

Definition 6: Let e be an effect andX = {c1, ..., cn} be a set
of uncertain causes that is known to have occurred. ANIN-AND
tree for modeling the causal interaction among elements ofX

is a directed tree where the following holds:

1) There are two types of nodes on the tree. Anevent node
is shown as a black oval and agate node is shown as a
NIN-AND gate. Each event node has at most one incoming
link and at most one outgoing link. Each gate has at least
two incoming links and exactly one outgoing link.

2) Every link connects an event node with a gate node. There
are two types of links:forward links and negation
links. Each link is directed from itstail node to itshead
node consistently along the input-to-output stream of gates.
A forward link is shown as a line and is implicitly directed.
A negation link is shown as a line with a white oval at the
head and is explicitly directed.

3) All terminal nodes are event nodes and each is labeled by a
causal event in the forme+ ← y+ or e+ 6← y+. Exactly one
terminal node, called theleaf, is connected to the output
of a gate and hasy+ = x+. Each other terminal node is
connected to the input of a gate and is aroot. For each
root, y+ is a proper subset ofx+. With i indexing roots, it
holds that

⋃
i y+

i
= x+. For every two roots labeled byy+

j

andy+
k

, it holds thaty+
j
∩ y+

k
= ∅.

4) Multiple inputs of a gateg must be in one of the following
cases:

a) Each is either connected by a forward link to a node
labeled withe+ ← y+, or by a negation link to a node
labeled withe+ 6← y+. The output ofg is connected
by a forward link to a node labeled withe+ ← ∪iy

+
i

.
b) Each is either connected by a forward link to a node

labeled withe+ 6← y+, or by a negation link to a node
labeled withe+ ← y+. The output ofg is connected
by a forward link to a node labeled withe+ 6← ∪iy

+
i

.

Degree restriction in Condition 1 ensures that an event repre-
sents the output of no more than one gate and is connected to the
input of no more than one gate. Condition 4 (a) corresponds to a
directNIN-AND gate (e.g., the upper gate in Fig. 4). Condition 4
(b) corresponds to a dual NIN-AND gate (e.g., the lower gate in
Fig. 4). Semantically, 4 (a) corresponds to sets of undermining
causesand 4 (b) corresponds to sets of reinforcing causes.

The NIN-AND tree model is more general than the noisy-OR
(aswell as the binary noisy-MAX) and has the latter as its special
case. For instance, Fig. 2 corresponds to the noisy-OR and is a
special case of the NIN-AND tree, where each root node is labeled
by e+ 6← c+i (single-cause) and there are no negation links. We
summarize this in the following proposition.

Proposition 4: The NIN-AND tree degenerates to the noisy-
OR, if it has a single NIN-AND-gate, has no negation links, and
labels every event node by a causal failuree+ 6← c+i .

VI. NIN-AND T REE EVALUATION

A NIN-AND tree can be used to evaluateP (e+ ← x+)

given P (e+ ← y+) or P (e+ 6← y+) for each root node. The
computation can be performed recursively by decomposing the
noisy-AND tree into subtrees. The following lemma shows that
such decomposition is valid.

Lemma 1:Let T be a NIN-AND tree, the leaf ofT be v, and
the gate connected tov be g. Let v and g be deleted fromT ,
as well as the links incoming tog. In the remaining graph, each
component is either an isolated event node or a NIN-AND tree.
Proof:

It suffices to show that if a component resultant from the
deletion is not an isolated event node, then it is a well-defined
NIN-AND tree. We show that such a component has a unique leaf
node and it is labeled according to condition 3 of Definition 6.

Let w be an event node connected to the input ofg in T , andw

is connected to the output of a gategw. BecauseT is a tree, after
deletion, the component withw is also a tree which we denote
by Tw. Since each gate inT has out-degree 1,w is the unique
leaf of Tw . Let y+

i
be the causes in the label of a root node in

Tw. From condition 4 of Definition 6, it follows that the causes
in the label of nodew is ∪i y+

i
, where the indexi is over all root

nodes inTw. �
A NIN-AND tree can be evaluated according to the following

recursive algorithm.
Algorithm 1: GetCausalEventProb(T)

Input: A NIN-AND tree T where probability for each root node
is specified.
1 denote leaf ofT by v and gate connected tov by g;
2 for each nodew directly connected to input ofg, do
3 if probability P (w) for event atw is not specified,
4 denote the sub-NIN-AND-tree withw as the leaf byTw;
5 P (w) = GetCausalEventProb(Tw);
6 if (w,g) is a forward link,P ′(w) = P (w);
7 elseP ′(w) = 1− P (w);
8 P (v) =

∏
w P ′(w);

9 returnP (v);
Consider an execution of GetCausalEventProb(T) whereT is

shown in Fig. 4 and probabilities for root nodes are specified as

P (e+ ← c+1 ) = 0.85, P (e+ 6← c+2 ) = 0.2, P (e+ ← c+3 ) = 0.7.

Leaf v is labelede+ 6← c+1 , c+2 , c+3 andg is the lower NIN-AND
gate in the figure. Thefor loop iterates through the two input
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nodes ofv. Let w (line 2) be the node labelede+ 6← c+2 . Since
P (w) has been specified, lines 3 through 5 are skipped. Sincew

connects tog by a forward link, we haveP ′(e+ 6← c+2 ) = 0.2

(line 6).
Next, let w be the node labelede+ ← c+1 , c+3 . BecauseP (w) is

not specified, the recursive call GetCausalEventProb(Tw) in line
5 is made, whereTw is the sub-NIN-AND-tree withw as the leaf
and with the upper NIN-AND gate only.

In the recursive call, leafv is labelede+ ← c+1 , c+3 . The for
loop iterates through two root nodesw1 labelede+ ← c+1 and
w2 labelede+ ← c+3 . In the first iteration overw1, sinceP (w1)

is specified andw1 is connected to the NIN-AND gate by a
forward link, we haveP ′(w1) = P (w1) in line 6. Similarly,
we haveP ′(w2) = P (w2) in the second iteration. After the
for loop is completed,P (e+ ← c+1 , c+3 ) = P ′(w1) ∗ P ′(w2) =

0.85∗0.7 = 0.595 is computed at line 8. GetCausalEventProb(Tw)
now completes with the value returned.

This brings line 5 in the original GetCausalEventProb(T) to
completion. Since the nodew, labeled by e+ ← c+1 , c+3 , is
connected to the lower NIN-AND gate by a negation link,
P ′(w) = 1 − P (w) = 0.405 is computed in line 7. Thefor
loop is now completed. In line 8,P (v) = 0.2 ∗ 0.405 = 0.081

is computed. The final resultP (e+ 6← c+1 , c+2 , c+3 ) = 0.081 is
then returned.

The following theorem establishes the soundness of Get-
CausalEventProb. We define thedepth of a NIN-AND tree to
be the maximum number of gate nodes contained in a path from
a root to the leaf.

Theorem 1:Let T be a NIN-AND tree where probability for
each root node is specified in the range(0, 1) andP (v) be returned
by GetCausalEventProb(T ). ThenP (v) is a probability in the
range (0, 1) and it combines given probabilities according to
reinforcement with failure conjunction and independence, or un-
dermining with success conjunction and independence, specified
by the topology ofT .
Proof:

According to Lemma 1,Tw in GetCausalEventProb is a valid
NIN-AND tree. Hence, algorithmGetCausalEventProb is well
defined.

GetCausalEventProb evaluates first the output event for
each gate node whose inputs are root events. If causes in root
event labels are reinforcing, evaluation is performed according
to Eqn (2). Otherwise (undermining), evaluation is performed
according to Eqn (5). Hence, the evaluation result is a probability
in the range(0, 1) and reflects the effect of reinforcement, due to
Proposition 1, or undermining, due to Proposition 3.

After the evaluation, root nodes no longer participate in further
evaluations and can be deleted from the tree. The remining subtree
is still a valid NIN-AND tree with the depth reduced by one.
GetCausalEventProb repeats the above computation until the
depth is reduced to zero. The statement is true for the evaluation
at each depth and hence the theorem holds. �

Note that the topology ofT is a crucial piece of knowledge.
For the recovery example, suppose the physician articulates a
different order, which is shown in Fig. 5. In this scenario, the
physician feels that the reinforcing interaction betweenc1 andc2
should be considered first. The undermining interaction between
sets {c1, c2} and {c3} should then be considered. Applying
GetCausalEventProb, we obtainP (e+ 6← c+1 , c+2 ) = 0.03 and
P (e+ ← c+1 , c+2 , c+3 ) = 0.679.

e     c+        +
+        +     +e     c , c 

e     c1
+        + e     c+        +

e     c , c , c1     2     3
+        +     +     +

2

3
1     2    

Fig. 5. The alternative NIN-AND tree model for the recovery example.

VII. RELAXING DEFAULT ASSUMPTIONS

A NIN-AND tree assumes, by default, failure conjunction
and independence for sets of reinforcing causes, and success
conjunction and independence for sets of undermining causes.
For some sets of causes, the default assumptions may not be
consistent with the expert’s knowledge. As the result, the expert
may disagree with the probability of the output event of a
gate node. When this occurs, the NIN-AND tree model allows
coherent incorporation of the new information by deleting the
corresponding gate node from the tree and replacing the evaluated
probability value by a directly assessed value. In particular, letg

be the gate in question and its output be connected to event node
v. If the expert disagrees with the event probability computed for
node v, the entire subtree withv as the leaf can be discarded
by deleting the link(g, v). Nodev remains in the resultant new
NIN-AND tree as a root node. The expert can then assess a proper
event probability forv.

For instance, with the NIN-AND tree in Fig. 4, suppose that
the expert disagrees withP (e+ ← c+1 , c+3 ) = 0.595. Instead, (s)he
feels that0.4 is more appropriate. Note that this assignment is
consistent with the undermining nature of the interaction between
c1 and c3, but the degree of undermining is different from
what the default assumptions dictate. Then root nodes labeled
by e+ ← c+1 and e+ ← c+3 can be removed, as well as
the gate connected to them. As the result, nodee+ ← c+1 , c+3
becomes a root node andP (e+ ← c+1 , c+3 ) = 0.4 is assigned
to it. Applying GetCausalEventProb to the new NIN-AND tree,
P (e+ ← c+1 , c+2 , c+3 ) = 0.88 is obtained.

This flexibility of the NIN-AND tree allows it to be used inter-
actively, increasing its expressive power as a tool for probability
elicitation: An expert can start by articulating a NIN-AND tree
where each root is labeled by a single-causeci. The default
assumptions on failure and success independence now allow
computation of the probability for each non-root causal event.
This can be viewed as the first approximation of the expert’s
subjective belief. The expert can then examine each computed
event probability and decide if it is consistent with his/her belief.

Upon identification of disagreement over a nodev connected
to the output of a gateg, the expert can trace backward to
input events connected tog. The expert will decide whether (s)he
disagrees with the probabilities of any input events. If no such
disagreement is identified, then the expert must be disagreeing
with the degree of reinforcement or undermining implied by
the default assumptions on event conjunction and independence.
(S)he can then assess a probability for the output event as
illustrated above.
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On the other hand, if disagreement with the probability of an
input event connected tog is identified, the processing continues
by tracing further back from the event nodev towards root nodes.

During the above processing, the expert’s attention shifts from
the leaf to roots and assessment at each step is local (relative to
the output and inputs of a single gate). Therefore, a software with
a well-designed GUI (allowing the expert to draw the NIN-AND
tree topology, to indicate a point of disagreement, and to replace
a probability) is sufficient to aid the elicitation. A knowledge
engineer is not required after the initial training on the operation
of the software.

It is possible that as the expert traces disagreements, deletes
subtrees, and replaces event probabilities, an initially deep NIN-
AND tree becomes shallow in the end. Many root node labels now
consist of a subset of causes, instead of a single-cause initially.
The resultant NIN-AND tree becomes topologically different.
This does not mean that the initial NIN-AND tree was wrong:
The initial tree has served its useful role in elicitation and has
adapted more faithfully to the expert’s subjective knowledge.

VIII. C OMPLEXITY ANALYSIS

Elicitation of a CPT using the NIN-AND tree model involves
the specification of the tree topology and the numerical parame-
ters. The complexity of topology specification can be measured
by the number of nodes in the NIN-AND tree. Because each gate
node is connected to a unique event node through a forward link,
only event nodes need to be counted. For instance, the NIN-AND
tree in Fig. 5 has five event nodes and two gate nodes. By pairing
the two gate nodes with their output event nodes, the equivalent
number of nodes to be specified is counted as five.

Given an arbitrary NIN-AND tree ofn root event nodes, the
total number of event nodes of the tree can be increased as
follows: Select a gate node ofk ≥ 3 incoming links. Replace
the gate node and the event nodes connected to it with a subtree
of two or more gate nodes. For instance, a gate node connected
to the input event nodese+ ← c+1 , e+ ← c+2 , e+ ← c+3 and
the output event nodee+ ← c+1 , c+2 , c+3 can be replaced with the
subtree in Fig. 5. The number of event nodes contributed to the
total counting is thus increased from four to five. Note that this
modification involves changing the labels of some event nodes
and modifying some forward links into negation links. Since the
focus here is the counting of the total number of event nodes,
these issues are not of the concern.

If the above replacement is performed repeatedly, eventually
there will be no gate node left ofk ≥ 3 incoming links. At this
point, the total number of event nodes reaches its upper bound.
In the resultant tree, each gate node has exactly two input events.
Hence, the number of total event nodes is upper bounded by
2n−1, yielding the complexity ofO(n) for topology specification.

Next, we consider the specification of numerical parameters.
Given the topology of the NIN-AND tree, only the probability for
each root event node needs to be directly assessed, again yielding
the complexity ofO(n).

Suppose that the number of parent variables involved in the
CPT is n. The above deals with the acquisition of a single
probabilityP (e+|c+1 , c+2 , ..., c+n ) = P (e+ ← c+1 , c+2 , ..., c+n ) of the
CPT where all causes are turned on. For each other probability
in the CPT, some causes are turned off, e.g.,c1 is turned off
in probability P (e+|c−1 , c+2 , ..., c+n ) = P (e+ ← c+2 , ..., c+n ). The
only necessary modification to the NIN-AND tree is to remove

the root node labeled bye+ ← c+1 (or e+ 6← c+1 ) and then
P (e+ ← c+2 , ..., c+n ) can be computed in the same fashion. Note
that if the removal of the root node reduces the incoming links of
thecorresponding gate node to one, the gate node can be removed
aswell. Since no new probability parameters need to be assessed,
the acquisition of the entire CPT has the complexity ofO(n).

The preceding presentation assumes no modification to the
computed probabilities of intermediate events. If the human expert
doesnot agree with some of the default assumptions encoded in
the NIN-AND tree, some probabilities of intermediate events need
to be directly assessed as outlined in Section VII. The number of
such probabilities are upper-bounded by the maximum possible
number of event nodes in the NIN-AND tree, namely,2n − 1.
Hence, the complexity isO(n). If α probabilities in the CPT
requires such modification, then the complexity of acquisition of
the CPT becomesO(α n). The value ofα is expected to be a
small positive integer in practice.

In the worst case, the human expert can do away from the
causal model and directly assess each probability value of the
CPT. The complexity would beO(2n). Therefore, the NIN-AND
tree can be viewed as a flexible tool that provides a range of
acquisition complexity fromO(n) to O(α n) to O(2n). In one
extreme, the expert only has to assess the causal interactions
qualitatively as reinforcing or undermining and then single-cause
event probabilities. The default assumptions for reinforcement and
undermining will filling in the gap between theO(n) assessments
and necessaryO(2n) probability values in the CPT. As the
experience of expert becomes richer and the time of the expert
becomes more available, more default patterns for reinforcement
and undermining embedded in the evaluated probability values
can be replaced by directly assessed probability values, making
them more accurate.

IX. CPT ELICITATION WITH THE NIN-AND TREE

We demonstrate how to use the NIN-AND tree to elicit CPTs
in BNs with a more challenging example. It is feasible (though
undesirable) to directly elicitate the CPT for previous examples,
but it is much less so for this example. Consider an effect (child)
variablee with a set of seven causes (parents) in a BN:c1, ..., c7.
Suppose that a human expert identifies the following three subsets
of causes and the interaction within each subset:

• Subsets1: c1 and c2 are undermining each other.
• Subsets2: c3, c4 and c5 are reinforcing each other.
• Subsets3: c6 and c7 are reinforcing each other.

The expert assesses that the interaction between subsetss1 ands2

is also undermining and, together as a group, they reinforces3.
These assessments produce the NIN-AND tree in Fig. 6. Suppose
that the following probabilities for single-cause events are also
assessed:

P (e+ ← c+1 ) = 0.65, P (e+ ← c+2 ) = 0.35, P (e+ ← c+3 ) = 0.8,

P (e+ ← c+4 ) = 0.3, P (e+ ← c+5 ) = 0.6,

P (e+ ← c+6 ) = 0.75, P (e+ ← c+7 ) = 0.55.

To evaluateP (e+|c+1 , ..., c+7 ), GetCausalEventProb is applied to
obtain

P (e+|c+1 , ..., c+7 ) = P (e+ ← c+1 , ..., c+7 ) = 0.912.

Note that the noisy-OR model would produce 0.999. To evaluate
P (e+|c+1 , c+2 , c−3 , c+4 , c+5 , c+6 , c+7 ), eliminate nodee+ 6← c+3 from
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Fig. 6. An example NIN-AND tree.

Fig. 6 and modify output labels forg2, g3 andg5. The evaluation
gives

P (e+|c+1 , c+2 , c−3 , c+4 , c+5 , c+6 , c+7 )

= P (e+ ← c+1 , c+2 , c+4 , c+5 , c+6 , c+7 ) = 0.906.

The same NIN-AND tree has been used to assess both prob-
abilities above. This is desirable but not required. That is, the
NIN-AND tree model does not require that different causal prob-
abilities to be assessed using the same tree. If the expert feels that
a particular combination of a subset of causes follows a different
pattern of interaction, a distinct NIN-AND tree can be used for
acquiring the corresponding causal probability. Commonly, it is
expected that one tree topology is used for assessment of all
probabilities in a CPT. If the expert is happy with the result,
the complexity of his/her assessment task isO(n), wheren is the
number of causes.

For the sake of demonstration, suppose that the expert believes
that 0.906 is too high forP (e+|c+1 , c+2 , c−3 , c+4 , c+5 , c+6 , c+7 ). (S)he
attributes it to probabilityP (e+ 6← c+6 , c+7 ) = 0.113 of the
output event at gateg4 as too low. Instead, (s)he believes that
0.2 is a better assessment. In response, the subtree withg4 as
the leaf is removed and probability0.2 is assigned to the root
event nodee+ 6← c+6 , c+7 . GetCausalEventProb then evaluates
P (e+|c+1 , c+2 , c−3 , c+4 , c+5 , c+6 , c+7 ) to be0.833.

X. CONCLUSIONS

Causal interactions may be reinforcing or undermining. A
causal model to aid CPT elicitation during engineering of
Bayesian networks needs to be expressive enough so that both
types of interactions can be encoded. We have shown that existing
causal models can only model one type of interactions. We present
the first general causal model, the NIN-AND tree, that supports
the expression of both reinforcement and undermining.

Existing causal models, except the RNOR, limit model param-
eters to probabilities of single-cause events. As the RNOR, the
NIN-AND tree allows integration of probability parameters of
both single-cause events and multi-cause events.

In addition to numerical probability parameters, the NIN-AND
tree model requires elicitation of the tree topology, which is
equivalent to a partial ordering on how causal interactions of
causesshould be integrated. Given that interactions of opposite
naturesare considered and the role of each cause relative to
each type of interactions must be specified, this appears to be
a necessary but not expensive overhead.

As any parameterized models, not all possible causal interac-
tions can be expressed by the NIN-AND tree. For instance, it is
conceivable that causesc1 and c2 reinforce each other, andc1
andc3 undermine each other. Using the NIN-AND tree, eitherc3
is modeled as undermining the reinforcing groupc1 and c2, or
c2 is modeled as reinforcing the undermining groupc1 and c3.
To model the above interaction exactly as stated, (1) additional
information must be specified on how the two groups (with a
shared cause) interact; and (2) a multiply connected structure is
needed, which is no longer a tree.

In conclusion, the NIN-AND tree provides a simple yet
expressive model for efficient CPT elicitation in engineering
probabilistic graphical models. It is worth noting that Pearl [11]
analyzed causation using functional causal models and our work
is consistent with his functional approach. In particular, we have
proposed the NIN-AND tree as a useful boolean functional model.
Our ongoing efforts include extending the NIN-AND tree from
binary to multi-valued variables and exploring the model for
efficiency gain in probabilistic inference.

ACKNOWLEDGEMENTS

The financial support from National Sciences and Engineering
Research Council (NSERC) of Canada through Discovery Grant
to the first author is acknowledged. We thank anonymous review-
ers for their helpful comments.

REFERENCES

[1] F.J. Diez. Parameter adjustment in Bayes networks: The generalized
noisy or-gate. In D. Heckerman and A. Mamdani, editors,Proc. 9th
Conf. on Uncertainty in Artificial Intelligence, pages 99–105. Morgan
Kaufmann, 1993.

[2] S.F. Galan and F.J. Diez. Modeling dynamic causal interactiosn with
Bayesian networks: temporal noisy gates. InProc. 2nd Inter. Workshop
on Causal Networks, pages 1–5, 2000.

[3] I. Good. A causal calculus (i).British Journal of Philosophy of Science,
11:305–318, 1961.

[4] E. Graham. How to live in harmony with your mother-in-law
or daughter-in-law. http://www.marriagemissions.com/
family_issues/how_to_live.php.

[5] D. Heckerman. Causal independence for knowledge acquisition and
inference. In D. Heckerman and A. Mamdani, editors,Proc. 9th
Conf. on Uncertainty in Artificial Intelligence, pages 122–127. Morgan
Kaufmann, 1993.

[6] D. Heckerman and J.S. Breese. Causal independence for probabilistic
assessment and inference using Bayesian networks.IEEE Trans. on
System, Man and Cybernetics, 26(6):826–831, 1996.

[7] M. Henrion. Some practical issues in constructing belief networks.
In L.N. Kanal, T.S. Levitt, and J.F. Lemmer, editors,Uncertainty in
Artificial Intelligence 3, pages 161–173. Elsevier Science Publishers,
1989.

[8] U. Kuter, D. Nau, D. Gossink, and J.F. Lemmer. Interactive course-of-
action planning using causal models. InProc. 3rd Inter. Conf. Knowledge
Systems for Coalition Operations, pages 37–51, 2004.

[9] J.F. Lemmer and D.E. Gossink. Recursive noisy OR - a rule for
estimating complex probabilistic interactions.IEEE SMC, Part B,
34(6):2252–2261, 2004.

[10] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann, 1988.

[11] J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge
University Press, 2000.



10

[12] G. Shafer.The Art of Causal Conjecture. MIT press, 1997.
[13] P. Spirtes, C. Glymour, and R. Scheines.Causation, Prediction, and

Search (Springer Lecture Notes in Statistics). New York: Springer-
Verlag, 1993.

[14] P. Spirtes, C. Glymour, and R. Scheines.Causation, Prediction, and
Search (Springer Lecture Notes in Statistics, 2nd ed.). Cambridge, MA:
MIT Press, 2000.

[15] S. Srinivas. A generalization of noisy-or model. In D. Heckerman
and A. Mamdani, editors,Proc. 9th Conf. on Uncertainty in Artificial
Intelligence, pages 208–215. Morgan Kaufmann, 1993.

Yang Xiang is a Professor of Computing & Information Science
at the University of Guelph, Canada, where he also directs the
Intelligent Decision Support System Lab. He received his Ph.D.
from the University of British Columbia, Canada. His research
interests include probabilistic and decision-theoretic graphical
models, multiagent graphical models, collaborative design, de-
cision making and planing, distributed constraint satisfaction,
knowledge discovery and data mining, diagnosis and scheduling.
He published a monograph on multiagent probabilistic reasoning
using graphical models and developed WebWeavr, a comprehen-
sive Java toolkit for decision support with graphical models.

Ning Jia received his Bachelor degree of Information Science
from Peking University, China in 1998 and Master degree of
Computer Science from University of Guelph, Canada in 2005.
Since 2005, he has been working for Desire2Learn Inc.


