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Abstract— Representation of uncertain knowledge using a the noisy-MIN models. Heckerman discussed the noisy-ADD
Bayesiannetwork requires acquisition of a conditional probabil-  model [5f. Heckerman and Breese [6] analyzed a collection of
ity table (CPT) for each variable. The CPT can be acquired by c5ysal independence relations that allows efficient acquisition of
data mining or elicitation. When data are insufficient to support CPTs. In particular, they considered amechanistic, decomposable,

mining, causal modeling, such as the noisy-OR, aids elicitation by . . .
reducing the number of probability parameters to be acquired multiply decomposable, and temporal relations, which are gener-

from human experts. Multiple causes can reinforce each other in glizations of modgls such as the noisy-OR. Galan and Diez .[2]
producing the effect or can undermine the impact of each other. introduced the noisy-AND model. Recently, Lemmer and Gossink
Most existing causal models do not consider causal interactions [9] proposed the recursive noisy-OR (RNOR) model. Instead of
from the perspective of reinforcement or undermining. Our allowing only probability parameters of the effect given each
analysis shows that none can represent both interactions. Except gingle_cause as the input, the RNOR model allows probability
the RNOR, other models also limit parameters to probabilities .

parameters of the effect given subsets of causes. A method based

of single-cause events. We present the first general causal model, . o
the non-impeding noisy-AND tree, that allows encoding of both  ©N the RNOR, tailored to an application, was used by Kuter et

reinforcement and undermining. It supports efficient CPT ac-  al. [8] to handle inhibition.

quisition by elicitating a partial orde_ring of causes in terms of a When multiple causes are present, they may reinforce each
tree topology, plus necessary numerical parameters. It also allows '

incorporation of probabilities for multi-cause events. other. That is, the eff_ect is more likely to occur when more causes
Keywords: knowledge engineering, probabilistic reasoning, un- are active. Alternatively, multiple causes may undermine the
certainty, knowledge acquisition, knowledge modeling, elicitation impact of each other. That is, the effect becomes less likely when
methods. more causes are present. Unlike the RNOR [9], previous works
do not consider causal interactions among variables from the
perspective of reinforcement or undermining. Our analysis shows
that previously proposed causal models, including the noisy-OR,
A Bayesian network (BN) [10] encodes probabilistic knowlthe noisy-MAX, the noisy-AND, the noisy-MIN, the noisy-ADD
edge about a problem domain through a dependence structureiil the RNOR, are limited to represent only one type of causal
the form of a directed acyclic graph and CPTs associated Wititeraction, and cannot express both. Furthermore, except the
nodes of the graph. To construct a BN for a given domain, theRNOR, other models limit input parameters to probabilities of
CPTs must be acquired. The complexity is linear on the number gihgle-cause events.
variables but exponential on the maximum number of parents of a .
. . . - In this work, we present a new causal model, termed the
variable. When a variable has many parents, direct acquisition of . . . .
. . . .. _non-impeding noisy-AND tree, or simply NIN-AND tree, that
its CPT is costly. The CPT may be acquired through data mlnlnﬁ. both f it " t of
However, a given problem domain may have insufficient amou " represent both types of causal interactions among a set o

. L f which are reinforcing and others are undermining.
of data to support mining, but has human experts for ehutaﬂoﬁ.auses’ SOME 0 - .
PP 9 P e the RNOR, probabilities for multi-cause events can be

In such a case, how to elicitate the CPT efficiently becomes. ) )
practical need in knowledge engineering. incorporated as model parameters if so desired. The NIN-AND

téee degenerates to the noisy-OR and the noisy-MAX in the binary

The most widely used model to support such elicitation is th . 4 . .
. . . case, when its topology and input events are restricted, but is more
noisy-OR model pioneered by Good [3] and further studied b . .
xpressive than each in general.

Pearl [10]. The model assumes that a number of binary causé
can produce an effect. Their interaction is expressed by a logicln Section II, we introduce the terminology and define formally
OR gate. Each cause may fail to produce the effect and thm@inforcement and undermining. Section Il presents building
uncertainty is represented by a probabilistic inhibitor conjunctdglocks for modeling reinforcement and undermining. Section IV
with the cause. The noisy-OR gate encodes the assumption thaalyzes limitations of alternative causal models in representing
causes fail independently, from which the number of probabilityhese causal interactions. Section V proposes the NIN-AND tree
parameters to be assessed per CPT is reduced to linear onntteglel. How to use it to obtain causal probabilities is described
number of parent variables. in Section VI. We present, in Section VII, how to use the NIN-
Henrion [7] added to the noisy-OR model a leaky probabilitAND tree when default assumptions do not hold. We analyze
extended the model from binary to multi-valued variables, arttie complexity of elicitation in Section VIII and demonstrate
introduced the noisy-MAX model. A leaky probability captureslicitation of CPTs with the NIN-AND tree in Section IX.
the probability of occurrence of the effect when all explicitly
represented causes are absent. Diez [1] and Srinivas [15] also

studied generalization of the noisy-OR model. Diez [1] introduced
11t was referred to as the noisy-addition there. We will use the name noisy-
Y. Xiang is with the University of Guelph. N. Jia is with Desire2Learn Inc.ADD to be consistent with the naming of other alternatives.
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II. BACKGROUND elements inR’. Sets of causes iR are said tor ei nf or ce

A Uncertain Causes and Causal Events each other, if for every subsét’ C R, it holds that

.+ .+
We aim to acquire efficiently the CPT of a variahtecondi- Ple" —y") < Ple” —z7).

tioned on a set of variableg based on their causal relation. Thesets of causes iR are said tounder ni ne each other, if for
causes that we consider are uncertain causes. Following Lemmagiry subset?’ ¢ R, it holds that

and Gossink [9], amncertain causés a cause that can produce an

effect but does not always do so. We denote a set of binary cause Pe’ — 2+) > Pl —a™).

variables asX = {ci,...,cn} and their effect variable (binary) as Intuitively, sets of causesl;, W, ... reinforce each other if
e. For eache;, we denotec; = true by ¢ ande; = false by collectively they are at least as effective in causing the effect as
: , 2

c; . Similarly, we denote: = true by e*. some acting by themselves. If collectively they are less effective,

In this work, we assume that the causal relation between a calfd@gh they must be undermining each other. . .
and an effect has been ascertained. We investigate how to modétemmer and Gossink [9] classify causal interactions into
such relations to support elicitation of probability parameters. F@OSitive causalityversusinhibition. The dividing line between
how to ascertain the causal relation, see, for example Spirt@gs't've causality and inhibition is drawn when causes collectively
Glymour and Scheines [13], [14], Shafer [12], and Pearl [11]. &€ more likely to produce the effect than any proper subset.

We refer to the event that a cause caused an effect to They further classify positive causality into three subclasses:
occur successfully as @ausal eventWe denote this causal eventSYNergy noisy-OR andinterference Synergy and interference are

by et — {cj} or simplye* — Cj- The event is uncertain sinee defined .according to whether causes cpllectivgly are more likely
may be false whem; is true. Its probability is denoted (et — pr less likely to prodL_Jce the effect than in a n0|.s.y-O.R quel.. We
cj) where0 < P(et — cj) < 1. The negation of the causal INterpretate the relation between the tV\{q CIaSS|f|c§t|ons in Fig. 1.,
event, thate; failed to causee, is denoted ag™+ + CZ_+. The Where the shaded area .re.p.resents positive causality and the white
probability of the causal failure evenis P(e™ # cf) =1 - 2€a corresponds to inhibition.
Pt c:”)
We denote the causal event that a&et {ci,...,cn} Of causes o :
+ + I . T + + ositive causality
causede by e" — {c{",...,ch }, or simplye™ «— ¢, ...,cqh, Or .
the vector notation=t < zt. When the cause set is indexed, noisy-OR
such asW; = {ci,...,en}, the causal event can be denoted as R
et — wf- We allow broad interpretations of a causal event by a nhibition
set of causes, as will be seen in later sections. For instance, e i e . )
. . L . ig. 1. Relation between two classifications of causal interactions. Each
are not limited to the interpretation in [9jhe effect is caused by point corresponds to a pattern of causal interaction between an effect and a
at least one of the cause$he probability of the event™ < w  set of causes.
is Ple™ «— wj) = P(e™ —cf,...,ch).

Pearl [10] regards a cause as an event whose occurrence alway¥e believe that collection being stronger than parts in causal
results in an effect, unless it is blocked by an inhibitor. H&trength is a more fundamental dividing line (used by the positive
encodes the causal uncertainty through the uncertain inhibitgRusality versus inhibition classification). In comparison, the
The conjunction of a certain cause and an inhibitor in hidifference between synergy and interference is less fundamental.
formulation is equivalent to an uncertain cause. After all, they all satisfy the property of collection being stronger

When modeling a domain with a BN, the set of all cause§an parts and only differ in the degree of strength.
of an effect variable: is its parent variables. Denote the set of The classification of reinforcement versus undermining defined
all causesof e by C. To capture causes that we do not wish t@bove is consistent with the positive causality versus inhibition
represent explicitly, we include a leaky variabledh classification, but is more general. In Definition 1, when each

Probabilities of causal events can be used to acquire tHé IS @ singleton, reinforcement becomes positive causality and
CPT P(e|C). For example, ifC = {c1,c2,c3, ¢4}, then we undermlnlng beclom.e§.|nh|b|t|or.1.. In_oth.er WOI’dS., the positive
have P(et|cf,cf,ci,cf) = P(et — of,cf,cf,cf) and ca.usahty versus inhibition cla_ls.5|f|cat|on. is a special case of the
P(et|ef ey efcf) = Plet — ¢f,cf,cl). Note that reinforcement versus undermining classification. The generality of
only cause variables of valutue are included in the causal reinforcement and undermining alloyvs modeling of relnforce.m.ent
probability. Under the leaky variable assumption, we havef sets of causes When the causes in some set are undermining. It
P(eﬂcf,cE,cE,cZ) = P(et < 0) = 0. Note P(et «— 0) # also allqws modeling of updermlnmg of sets of causes Whgn the
P(e*) in general. causes in some set are reinforcing. Such modeling expressiveness
is not possible under the positive causality versus inhibition
definition. This will become clear in Section V.

B. Reinforcement and Undermining

When multiple causes are present, they may reinforce each !ll. BUILDING BLOCKS FORREINFORCEMENT AND
other in producing the effect. That is, their combined influence is UNDERMINING
greater than that from only some of them. Alternatively, multiple In this section, we present the building blocks for modeling
causes may undermine each other in producing the effect. Beloginforcement and those for modeling undermining. For each type
we define reinforcement and undermining formally. of causal interaction, we propose default assumptions and encode
Definition 1: Let R = {Wy,Wha,...} be a partition of a seXK these assumptions graphically by a noisy logic gate. We then show
of causes,R’ be a proper subset ak, andY be the union of thatthese assumptions lead to the intended causal interaction (i.e.,



reinforcing or undermining), thus establishing the noisy gate a@¥(e™ « cj) < 1, we haved < P(e™ « u™) < 1 and0 <
the building block of the causal interaction. P(et # v") < 1. Hence,P(e" # zT) < P(et + u'), which

First, we consider reinforcing interactions. We assume thabplies P(e™ «— z7) > P(et™ —ut). O
these causes satisfy failure conjunction and failure independence.

Definition 2: Sets of cause®’y, ..., Wi, whereW; andW; are Unlike the graphical model in [10] which represents success
disjoint for distinct: and j, satisfyf ai | ure conj unction events directly, the dual NIN-AND gate represents failure events,
if the following equation holds, which corresponds to failure independence more directly. Further-

more, the following shows that noisy-OR gates are special cases

+ + + + + + +
(e - wy s W) = (€7 F~wi) A N (e - wy). (1) of dual NIN-AND gates, in the same sense that positive causality
Intuitively, these sets of causes collectively fail to produce thg 4 special case of reinforcement.

effect when each set of causes has failed to produce the eﬁeCt-Proposition 2: A noisy-OR gate is equivalent to a dual NIN-
Definition 3: Sets of cause®d’y, ..., Wi, whereW; andW; are  aND gate with only single-cause input events.
disjoint for distinct: andj, satisfyf ai | ure i ndependence pygof:

e + + + + i . - :
if failure eventse™ - wy", ...,e™ # w,, are independent of each  The proposition follows from the equivalent expression of

other. That is, the following equation holds, Egn (1) as follows:
P((e # Qr) A A (e - wh)) (et —wl, . ,wh)=("—wl)v..v(Ee" —wh).
=Ple" £ wl) ... Plet £ wlh). 2) Alternatively, when each selV; of causes is a singleton,
To graphically model causal interactions that satisfy the abo¥#n (2) can be written as
conditions, we introduce a non-impeding noisy-AND gate, or n
NIN-AND gate. Its inputs are either all causal events, e.g., Plem —cf, . a)=1-J[a-PE" —c), @)
et — c:”,c;”, or all causal failure events, e.qe™ c;r,c; i=1

These events are uncertain and hence the name noisy. Its ouipkich characterizes the noisy-OR gate (see [10])1

event is the conjunction (AND) of the input events. The output o
event is independent of whether the input events involve all causedVe refer to the dual NIN-AND gate in Fig. 2 as the default
of the effecte (non-impeding). This non-impeding property is inmodel for reinforcement. The default model represents only one

contrast with the noisy-AND model [2], which we will elaboratdPattern of reinforcement among sets of causes. We consider other
in Section IV-C. We refer to NIN-AND gates whose inputs ar@2{terns of reinforcement in Section VIl. o

causal events adirect NIN-AND gates and those whose inputs Next, we consider undermining interactions. As this is the
are causal failure events daal NIN-AND gates. As a convention causal interaction less studied, we motivate with an example in

we require each NIN-AND gate to have at least two input event@mily relation: A man who lives with his wife only is likely happy,
and so is with his mother only. When he lives with both, he is

" + " " likely miserable.A recent web article by Elizabeth Graham [4]
e-+Cp € -+Cp reported that out of 17 women in a study group, only two had
T ree a good in-law relationship. The focus of the article was not on

the man in the middle, but it is not difficult to realize the stress
that the man is under, trying to mediate the relationship. Here,
G happiness of the man is the effect and living alone (such as being
i an orphan) is assumed unhappy. Activating a single-cause, living
et ot with one of the women, increases the chance of being happy. The
1s-5n e .
probability is reduced when both causes are active, compared to
the case of only one. Formally, we assume that these causes satisfy
success conjunction and success independence.

. . . . . . Definition 4: Sets of cause®d’y, ..., W, whereW; andW; are
we .mOdG.EI causal |nteract|on§ that gaﬂsfy failure conjunctlo(msjoint for distincti and j, satisfysuccess conj uncti on
and failure independence graphically with a dual NIN-AND gate; .o following relation holds
Fig. 2 illustrates such a gate, where edth= {c;} is a singleton '
and m = n. Note that failure conjunction is expressed by the  e™ —w/, .., wh = (" —wHA..A(eT —wh). (@)
AND gate and failure independence is expressed by the lackThis assumption states that a successful multi-cause event
of direct connection between individual failure events. Note thagquires each cause to be effective. Because it is not immediately
probabilities in Eqn (2) are associated with the input or outpuntuitive, we come back to elaborate after Proposition 3 below.
events but these probabilities are not themselves the input oDefinition 5: Sets of cause$Vi, ..., Wy, where W; and W;
output of the gate. The following proposition establishes that are disjoint for distinct andj, succeed i ndependent|y if
dual NIN-AND gate models reinforcement. success events” — wi, ..., e «— w;! are independent of each
Proposition 1: Let R = {W1, Wo, ...} be a partition of a sek  other. That is, the following relation holds,
of uncertain causes of an effectand sets ink satisfy Eqns (1)
and (2). Then, interaction among sets of cause? is reinforcing.
Proof: =Ple" —wl) ... Plet —wl). (5)
Partition R into {U,V}, whereU c R andV = R\ U. From We model causes that satisfy success conjunction and success
Eqns (1) and (2), we havB(e™ « 21) = P(e™ £ uT)P(e™ « independence graphically with a direct NIN-AND gate. Fig. 3
vT). Because each causgin X is an uncertain cause amd< illustrates such a gate, where edéh = {¢;} is a singleton and

Fig. 2. A dual NIN-AND gate for reinforcement.

P((e* —wh) A (e = )



m = n. Note that success conjunction is expressed by the ANB. The Noisy-MAX Model
gate and success independence is expressed by the lack of diref{ the pinary case, with two inputs and with uncertainty

connection between individual success events. ignored, the output of a noisy-MAX model [7] is true if at least
" + " " one of the two inputs is true, and is false if both inputs are false.
e-C; € -—Cp Hence, the noisy-MAX model behaves the same as the noisy-OR
e model when variables are binary. From the conclusion drawn in
Section IV-A on the noisy-OR, when the domain is binary, the
noisy-MAX model represents only reinforcing interactions.
N i . . C. The Noisy-AND Model
€--20C1,...Ch The behavior of a noisy-AND model [2] is characterized into
two cases. In the first case, the ggtof all causesare true. In
Fig. 3. A direct NIN-AND gate for undermining. the second case, some causes are false.

o4
The following proposition establishes that a direct NIN-AND Ple" —cf,..cn) =

gate models the undermining interaction, whose proof is straight- P(et e—cf)---Plet —ch) :+ {er,en}=C
forward. 0 ¢ A{er, ey CC

Proposition 3: Let R = ...} be a partition of a sek — . .
POSIt R ={W1,Ws, }. Pe From Definition 1, the noisy-AND model represents only rein-
of uncertain causes of effeetand sets ink satisfy Eqns (4) and L .
forcing interactions.

5). Then, interaction among sets of causegkirs undermining. . . . .
®) ’ g 8 g It can be seen that the behavior of the noisy-AND in the first

Again, the direct NIN-AND gate in Fig. 3 is the default model : ; th E 2 and (5). 4 b ¢
for undermining and represents only one pattern of underminii@>€ 'S consistent with Eqns ( ) and (). However, absence of any
e inC obstructs the causal influence of the remaining causes,

among sets of causes. We consider representation of other patt? th | bability t d ts E 4 d
of undermining in Section VII, orces the causal probability to zero, and prevents Egns (4) an

Having established that causes that satisfy success conjuncﬁ% fro.m bemg apphc_able to the ;econd case. We refer to this
and success independence are undermining each other, we elgﬁothgmpedlngbehawor (,)f th.e noisy-AND. On the other hand,
rate the intuition behind. Success conjunction says that when s'&@ direct NIN-AND gate in Fig. 3 allows Eqn; (4) and (5,) to be
of causes succeed in causing the effect in an undermining w ,tended.to the second case, hehce, thg nmnemped|.ng10|s.y- )
each set of causes must have been effective. If any set of causes:: This difference betweeq impeding and non-lmpedlng IS
has occurred but has failed to be effective, it would not undermiri rnﬂcant. _AS the result, the noisy-AND repres.e.nts reinforcement
the other sets of causes. In the in-law example, wife has her Wa)y‘f ile the direct NIN-AND represents undermining.
make husband happy (her way to manage the family matter) and
mother often has a different way. When both are trying to impaBt. The Noisy-MIN Model
how the family matter is handled (for instance, how rooms should|n the binary case, with two inputs and with uncertainty
be decorated, how kids should be educated, etc.), idea of neitfiffored, the output of a noisy-MIN model [1] is false if at least
can be implemented smoothly and completely, and the man hasife of the two inputs is false, and is true if both inputs are
resolve the conflict, which reduces the chance of his being hapgyie. Hence, the binary noisy-MIN model behaves the same as
As for success independence, given that living with mother onfife noisy-AND model. According to the above analysis, when

has made the man happy, it does not change the tendency thattfee domain is binary, the noisy-MIN model represents only
man can be happy after marrying his wife and living separatefginforcing interactions.
from his mother. An additional example on undermining is given

in Section V. E. The Recursive Noisy-OR Model

IV. LIMITATIONS OF ALTERNATIVE CAUSAL MODELS Lemmer and Gossink [9] proposed the RNOR model. To
Before presenting the new causal model for reinforcement afgquire the effect probability due to a set of causes, the RNOR
undermining, we analyze alternative causal models and revéaddel can combine causal probabilities due to subsets of causes,
their limitations in modeling the two types of causal interactiongvhere each subset can contain multiple causes. According to the

As we have defined reinforcement and undermining under tRNOR, for a set of cause& = {cg,....,cn—1}, if Ple™ «
binary context, the following analysis is restricted to such e ,....c, ;) is not directly assessed by the expert, it is evaluated
context as appropriate. as

Plet — car, ...,c:lll) =

A. The Noisy-OR Model

First, we analyze the noisy-OR model [3], [10]. Proposition 1 n—1 1— Plet — 2T\ ch)
shows that when uncertain causes satisfies Eqns (1) and (2), 1 - H 1 Plet m — :

S R . e ; - 1—Plet —zt\{c,c" H
their interaction is reinforcing. Proposition 2 shows that a noisy- =0 i (1) %on
OR gate is equivalent to a dual NIN-AND gate of single- Because Eqn (6) is derived from a rewriting of Eqn (3) observed
cause input events, since they both satisfy Eqns (1) and (By the noisy-OR model, the RNOR inherits the assumptions of
Therefore, Definition 1, Propositions 1 and 2 collectively implythe noisy-OR. Therefore, according to the analysis of the noisy-
that the noisy-OR model can represent only reinforcement but MR model in Section IV-A, the RNOR model can only represent
undermining. reinforcement, as acknowledged in [9]. As shown by Lemmer

(6)



and Gossink, Eqn (6) produces a numerical value in the rangeTo summarize, Table | compares the properties of alternative
[0,1] as long as causes i are reinforcing. However, if they causal models with the NIN-AND tree model to be presented
are undermining, the result from the equation may not be a vakahd analyzed below. Note that none of the alternative models can
probability (the numerical value may be outside the rafigd]). incorporateprobability parameters for multi-cause events, except
the RNOR and the NIN-AND tree.
E. The Noisy-ADD Model Note §|SO that althqugh the nqisy-MAX gnq th.e. noisy-MIN
are applicable to multi-valued variables, their inability to model
The noisy-ADD [5] can only represent reinforcement. Considgjoth reinforcement and undermining in the binary case implies
a noisy-adder with two binary causes andc, whose domains thattheir inability in general. Therefore, our analysis of these two

are{0,1}. It has the following DAG model models based on binary variables is conclusive in general.
€L —o e iz e—cp V. THENIN-AND TREE

where i; and i, are intermediate variables and the effect= A. A Motivating Example

i1 + 42 € {0,1,2}. The model assumeB(i; = Olc; = 0) = 1 Consider two setsY and Y of causes that reinforce each

and0 < P(i; = lle; = 1) < 1 for j = 1,2. For simplicity, we other. It is possible that causes withiti undermine each other,
assumeP(i; = lle; = 1) = P(iz = 1|cz = 1) and denote their and so do causes withiii. In general, such interplay of causal
value byg. Note that interactions of different natures can form a hierarchy. In this
section, we present a graphical representation to model such a
Ple=ller=1lc2=0)=¢ and Ple=2ler=1c2=0)=0 hierarchy. It FiJs based (g)]n lt)he direcF'z and dual NIN-AND gates
To assess expressiveness of the model, we first consider #émel has a tree topology. We term it then-impeding noisy-AND
effecte = 1 and then consider the disjunctien= 1 or e = 2. treeor NIN-AND tree. We assume that a human expert assesses
Denote P(e = 1|c; = 1,c2 = 1) by r and first we compare reinforcing and undermining interactions among causes according
with ¢. A simple derivation shows = 2¢(1 — q). If ¢ < 0.5, to some partial order and is able to articulate the hierarchy.
thenr > ¢. If ¢ > 0.5, thenr < ¢. By Definition 1, if a causal ~ For example, consider a patient who is in the process to recover
model is reinforcing, then no matter what valilet — y*) from a diseaseD. Taking medicineM helps recovery and so
is, the relationP(e™ — y™) < P(e™ «— z') must hold does regular exercise. The patient’s normal diet contains minerals
and its negation must hold for undermining. Being unable tdat facilitate recovery but taking with medicing reduces the
maintain the inequality across the entire range of values feffectiveness of both. The causes and effect involved are as
P(e™ — yT) implies that the noisy-ADD is unable to represenfollows:

either reinforcement or undermining if we focus on effect 1. o ¢ : Recovery from diseasé within a particular time
Next, we focus on the disjunctive effeetc {1, 2}, i.e.,e # 0. period.

DenoteP(e # Olc; = 1,co = 1) by ¢ and it can be shown that « ¢ Taking medicineM.

t =q(2—q). SinceP(e # Olcy = 1,c0 = 0) = P(e = 1|eg = « cj: Regular exercise.

1,¢2 = 0) = ¢, we comparel with ¢. From¢ = ¢(2 — q) > ¢ . c;;: Patient’s taking his/her normal diet.

for 0 < ¢ < 1, we conclude that noisy-ADD can only represent For the purpose of prognosis, one needs to acquire

reinforcement if we focus on disjunctive effeetc {1, 2}. P(et|cf,cf,cf) = Plet « cf,cf,cf). To ease the task, a
physician may consider first the undermining interaction between

G. Other Models c1 andcs. (S)he then considers the reinforcing interaction between

sets{c1, cs} and{c2}. Thus, the physician has articulated an order

For models considered in [6], the amechanistic model h stepwise evaluation. The physician also assesses

essentially a star topology and other three models (decomposable, . . . N . N
multiply decomposable and temporal) are essentially binary treesP(e” < ¢i ) = 0.85, P(e” «c3 ) = 0.8, P(e” «c3) =0.7.
When the binary tree is instantiated according to the noisy-OR.s is all the information that the physician can provide, the

the nqigy-Al\!D, .th.e OOiSy'MAX' the noisy-MIN, or the NoiSy- .5 5] interaction can be modeled as the NIN-AND tree in Fig. 4.
ADD, itinherits limitations of these models as discussed above. In

these models, each root node must also be a single-cause variable + + + +
and multi-cause event probability parameters are not considered. €-—0C €-—=Cs
+ +
H. Summary . . e~+C,
€ -—Cq, C3
TABLE |
SUMMARY OF PROPERTIES OF ALTERNATIVE CAUSAL MODELS
Model Reinforcement| Undermining | Multi-cause input
noisy-OR yes no no i + + o+ 4+
noisy-AND yes no no e -+Cq, Cy, C3
noisy-MAX yes no no
no!sy-MIN Yes no no Fig. 4. The NIN-AND tree model for the recovery example.
noisy-ADD yes no no
RNOR es no es .
NIN-AND tree zes ves zes From the upper direct NIN-AND gate and Eqn (3)(et —

cf ) = 0.595 is derived: a result of undermining. Its output



is negated (shown by the white oval) before entering the lowerDegree restriction in Condition 1 ensures that an event repre-
dual NIN-AND gate and the corresponding event has probabilisents the output of no more than one gate and is connected to the
P(et o+ cf,c?f) = 0.405. From the lower dual NIN-AND gate input of no more than one gate. Condition 4 (a) corresponds to a
and Eqgn (2), the following are derived: directNIN-AND gate (e.g., the upper gate in Fig. 4). Condition 4

b) corresponds to a dual NIN-AND gate (e.g., the lower gate in
P(e’ el i ef) = Ple” #cf ,ef)P(e” # ¢f) = 0.081, I(:|2; 4). ngantically, 4 (a) corresp(?nds Eo %ets of unde?mining
and P(et «— ¢, cf, cf) = 0.919. Itis a result of reinforcement. causesand 4 (b) corresponds to sets of reinforcing causes.

The CPT obtained is shown below, WheF€{e+|c;,c;,c§) is The NIN-AND tree mpdel is more general than the _n0|sy-QR
obtained based on the leaky cause assumpfiga; |c], c5 , i) (aswell as .the binary n0|sy-MAX) and has the Iattgr as its spec!al
by direct elicitation,P(¢*|c], ¢f, ¢f) through a dual NIN-AND  case. For instance, Fig. 2 corresponds to the noisy-OR and is a

gate, andP(e*|c, ¢, ¢f) through a direct NIN-AND gate. special case of the NIN-AND tree, where each root node is labeled
- - by e™ - cj (single-cause) and there are no negation links. We
P(e |Cy €2 03+) = 0 summarize this in the following proposition.
P(efley c5,e5) = 07 Proposition 4: The NIN-AND tree degenerates to the noisy-
P(efley,c5.e5) = 0.8 OR, if it has a single NIN-AND-gate, has no negation links, and
P(efler,ef, Cg) = 094 labels every event node by a causal failare s ;.

) = 085
eflef ey e5) = 0.595 VI. NIN-AND T REE EVALUATION
)
)

= 097 A NIN-AND tree can be used to evaluatB(e™ «— z™)

= 0919 given P(e™ — yT) or P(e™ « y™) for each root node. The
computation can be performed recursively by decomposing the

B. The Definition noisy-AND tree into subtrees. The following lemma shows that

The following defines the NIN-AND tree formally. In the Such decomposition is valid.
definition, we have extended the set operatomndn to vectors ~ Lemma 1:Let 7' be a NIN-AND tree, the leaf of* be v, and
according to the obvious interpretation_ the gate connected to be g. Letw and q be deleted front,
Definition 6: Let ¢ be an effect and( = {ci,...,cn} be a set as well as the links incoming tg. In the remaining graph, each
of uncertain causes that is known to have occurreddl A- AND component is either an isolated event node or a NIN-AND tree.

t r ee for modeling the causal interaction among elementssof Proof:
is a directed tree where the following holds: It suffices to show that if a component resultant from the

deletion is not an isolated event node, then it is a well-defined
is shown as a black oval andgat e node is shown as a NIN-AND tree. We show that such a component has a unique leaf

NIN-AND gate. Each event node has at most one incomiHbOde and it is labeled according to condition 3 of Definition 6.

link and at most one outgoing link. Each gate has at least Letw be an event node connected to the |npq§m1’| T, andw

two incoming links and exactly one outgoing link. is cor_mected to the output (_)f a.geyt@. Becausel |§ a tree, after
2) Every link connects an event node with a gate node. Thquletlon, .the component ,W'th’ is also a tree Wh,'Ch we d.enote

are two types of linksf orwar d links and negat i on by . Since each gate iff’ has ogt-degree Ly is the unique .

links. Each link is directed from itsai | node to itshead leaf of T, Let ﬂj be the cayggs n the label of a root node in

node consistently along the input-to-output stream of gate@”' From condition 4 of Definition 6, it follows that the causes

'S, - ) .

A forward link is shown as a line and is implicitly directed.” ?e Igbel of nodev is Uj y;", where the index is over all root

A negation link is shown as a line with a white oval at th&10des INTw. =

head and is explicitly directed. A NIN-AND tree can be evaluated according to the following
3) All terminal nodes are event nodes and each is labeled byegursive algorithm.

causal eventin the form™ — y* ore™ + y*. Exactlyone  Algorithm 1: GetCausalEventProb(T)

terminal node, called theeaf , is connected to the output Input: A NIN-AND tree 7" where probability for each root node

of a gate and hag™ = z ™. Each other terminal node isis specified.

connected to the input of a gate and is @ot . For each 1 denote leaf of" by v and gate connected toby g;

root, yt is a proper subset af". With i indexing roots, it 2 for each nodev directly connected to input of, do

holds thatlJ, y* = z*. For every two roots labeled byt 3  if probability P(w) for event atw is not specified,
andy™, it hol_dls thatyt Nyt = 0 B denote the sub-NIN-AND-tree witly as the leaf byT,;
. Y; Yy, =V

4
4) Multiple inputs of a gatey must be in one of the following Z P(w) = GetCausal EventProb(Tw);
7

1) There are two types of nodes on the tree.evrent node

. . X ;O .
cases: if (w,g) is a forward link, P’ (w) = P(w);

IseP'(w) =1 — P(w);
a) Each is either connected by a forward link to a nodg p(i)si ]‘[(w)P’(w)' (w)

labeled withe™ «— yT, or by a negation link to a node 9

. + - + .
labeled withe™ #- y™. The output ofg is connected  cpgider an execution of GetCausalEventProb(T) wherie

by a fqmgrd link to a node labeled WitW, - Uiﬂj' shown in Fig. 4 and probabilities for root nodes are specified as
b) Each is either connected by a forward link to a node

labeled withe™ « yT, or by a negation link to a node P(et —cf) =085 Ple™ £ c3) =02,P(e" «cf)=0.7.

. + - + .
labeled W'the. < y". The output Ofg_ |s+connecied Leaf v is labelede™ « ¢, cf, 3 andg is the lower NIN-AND
by a forward link to a node labeled wit™ - Uiy, - gate in the figure. Thdor loop iterates through the two input

return P(v);



nodes ofv. Let w (line 2) be the node labeled™ + c3 . Since
P(w) has been specified, lines 3 through 5 are skipped. Since
connects tog by a forward link, we haveP’(e* + cf) = 0.2
(line 6).

Next, let w bethe node labeled™ « ¢, cd. BecauseP(w) is
not specified, the recursive call GetCausalEventPrgh(n line
5 is made, wher&’, is the sub-NIN-AND-tree withv as the leaf
and with the upper NIN-AND gate only.

In the recursive call, leaf is labeledet «— clﬂc?f. The for
loop iterates through two root nodes, labelede™ «— ¢ and
wo, labelede™ «— c;;. In the first iteration overw;, since P(w1)
is specified andw; is connected to the NIN-AND gate by a
forward link, we haveP’(w) P(wy) in line 6. Similarly,
we have P’(ws) P(ws) in the second iteration. After the
for loop is completedP(et «— ¢, cd) = P'(w1) * P'(w2) =
0.85%0.7 = 0.595 is computed at line 8. GetCausalEventPmbY
now completes with the value returned.

This brings line 5 in the original GetCausalEventProb(T) t
completion. Since the node, labeled byet cf,cgr, is
connected to the lower NIN-AND gate by a negation link
P'(w) = 1 — P(w) = 0.405 is computed in line 7. Theor
loop is now completed. In line 8P(v) = 0.2 % 0.405 = 0.081
is computed. The final resulP(e™ + cf,c,cd) = 0.081 is
then returned.

The following theorem establishes the soundness of G%tr

CausalEventProb. We define thiepth of a NIN-AND tree to

e~/Cie @€-/Cy
e~—c3
- C3
e-+cq, Cy

ieJ'k ci, 5 C3

Fig. 5. The alternative NIN-AND tree model for the recovery example.

VII.

A NIN-AND tree assumes, by default, failure conjunction
and independence for sets of reinforcing causes, and success

RELAXING DEFAULT ASSUMPTIONS

Ronjunction and independence for sets of undermining causes.

For some sets of causes, the default assumptions may not be
consistent with the expert's knowledge. As the result, the expert
may disagree with the probability of the output event of a
gate node. When this occurs, the NIN-AND tree model allows
coherent incorporation of the new information by deleting the
corresponding gate node from the tree and replacing the evaluated
robability value by a directly assessed value. In particularg let

be the gate in question and its output be connected to event node

be the maximum number of gate nodes contained in a path fromy¢ the expert disagrees with the event probability computed for

a root to the leaf.

Theorem 1:Let T be a NIN-AND tree where probability for
each root node is specified in the rari@el) and P(v) be returned
by GetCausal EventProb(T). Then P(v) is a probability in the

node v, the entire subtree with as the leaf can be discarded
by deleting the link(g,v). Nodev remains in the resultant new
NIN-AND tree as a root node. The expert can then assess a proper
event probability forw.

range (0,1) and it combines given probabilities according to gq, instance, with the NIN-AND tree in Fig. 4, suppose that

reinforcement with failure conjunction and independence, or u
dermining with success conjunction and independence, specifi
by the topology ofT.

Proof:

According to Lemma 17, in GetCausal Event Prob is a valid
NIN-AND tree. Hence, algorithntietCausal Event Prob is well
defined.

GetCausal EventProb evaluates first the output event for

fhe expert disagrees wit(e™ — ¢, ¢1) = 0.595. Instead, (s)he
1:C3

tedis thato.4 is more appropriate. Note that this assignment is
consistent with the undermining nature of the interaction between
c1 and c3, but the degree of undermining is different from
what the default assumptions dictate. Then root nodes labeled
by e « ¢f and et (:3+ can be removed, as well as
the gate connected to them. As the result, netle— ¢, ¢

1763
becomes a root node anbl(e™ — ¢, cd) = 0.4 is assigned

each gate node whose inputs are root events. If causes in rpf;. Applying GetCausalEventProb to the new NIN-AND tree,

event labels are reinforcing, evaluation is performed accordi
to Egn (2). Otherwise (undermining), evaluation is performe
according to Eqn (5). Hence, the evaluation result is a probabili

et —cf,cg,cf) = 0.88 is obtained.

d This flexibility of the NIN-AND tree allows it to be used inter-
5)(:tive|y, increasing its expressive power as a tool for probability

in the range(0, 1) and reflects the effect of reinforcement, due t@icitation: An expert can start by articulating a NIN-AND tree

Proposition 1, or undermining, due to Proposition 3.

where each root is labeled by a single-cause The default

After.the evaluation, root nodes no longer participatg .in furthg{ssumptions on failure and success independence now allow
evaluations and can be deleted from the tree. The remining subtgggnputation of the probability for each non-root causal event.

is still a valid NIN-AND tree with the depth reduced by one:

This can be viewed as the first approximation of the expert's

GetCausal Event Prob repeats the above computation until th%ubjective belief. The expert can then examine each computed

depth is reduced to zero. The statement is true for the evaluat
at each depth and hence the theorem holds. O

Note that the topology of" is a crucial piece of knowledge.

ent probability and decide if it is consistent with his/her belief.
Upon identification of disagreement over a nogdeonnected
to the output of a gate, the expert can trace backward to

For the recovery example, suppose the physician articulatesnput events connected i The expert will decide whether (s)he
different order, which is shown in Fig. 5. In this scenario, thelisagrees with the probabilities of any input events. If no such

physician feels that the reinforcing interaction betwegrandc,
should be considered first. The undermining interaction betwe
sets {c1,c2} and {c3} should then be considered. Applying
GetCausalEventProb, we obtai(e™ # cf,cf) = 0.03 and

P(et «—cf i, cf) = 0.679.

disagreement is identified, then the expert must be disagreeing
wiith the degree of reinforcement or undermining implied by
the default assumptions on event conjunction and independence.
(S)he can then assess a probability for the output event as
illustrated above.



On the other hand, if disagreement with the probability of athe root node labeled byt « cf (or et # ¢]) and then
input event connected tg is identified, the processing continuesP(e™ « ¢, ...,c;) can be computed in the same fashion. Note
by tracing further back from the event nodéowards root nodes. that if the removal of the root node reduces the incoming links of

During the above processing, the expert’s attention shifts frothe corresponding gate node to one, the gate node can be removed
the leaf to roots and assessment at each step is local (relativeaswell. Since no new probability parameters need to be assessed,
the output and inputs of a single gate). Therefore, a software witie acquisition of the entire CPT has the complexity(yf).
awell-designed GUI (allowing the expert to draw the NIN-AND The preceding presentation assumes no modification to the
tree topology, to indicate a point of disagreement, and to replacemputed probabilities of intermediate events. If the human expert
a probability) is sufficient to aid the elicitation. A knowledgedoesnot agree with some of the default assumptions encoded in
engineer is not required after the initial training on the operatidhe NIN-AND tree, some probabilities of intermediate events need
of the software. to be directly assessed as outlined in Section VII. The number of

It is possible that as the expert traces disagreements, deletash probabilities are upper-bounded by the maximum possible
subtrees, and replaces event probabilities, an initially deep NINumber of event nodes in the NIN-AND tree, namely, — 1.

AND tree becomes shallow in the end. Many root node labels nddence, the complexity i (n). If « probabilities in the CPT

consist of a subset of causes, instead of a single-cause initiatquires such modification, then the complexity of acquisition of

The resultant NIN-AND tree becomes topologically differentthe CPT become®(a n). The value of« is expected to be a

This does not mean that the initial NIN-AND tree was wrongsmall positive integer in practice.

The initial tree has served its useful role in elicitation and has In the worst case, the human expert can do away from the

adapted more faithfully to the expert’s subjective knowledge. causal model and directly assess each probability value of the

CPT. The complexity would b&(2™). Therefore, the NIN-AND

VIII. COMPLEXITY ANALYSIS tree can be viewed as a flexible tool that provides a range of

Elicitation of a CPT using the NIN-AND tree model invoIvesvau'S'tIon complexity fromO(n) to O(a n) t0 O(2"). 'f‘ one
xtreme, the expert only has to assess the causal interactions

the specification of the tree topology and the numerical param%x . . . o -
alitatively as reinforcing or undermining and thesingle-cause

ters. The complexity of topology specification can be measuréd . . .
by the number of nodes in the NIN-AND tree. Because each gae[)éent probabilities. The default assumptions for reinforcement and

node is connected to a unique event node through a forward "rlﬂpdermlnlng will filling in the gap between th@(n) assessments

only event nodes need to be counted. For instance, the NIN-AI\?E'S‘OI necessary)(2") probability values in the CPT. As the

tree in Fig. 5 has five event nodes and two gate nodes. By pairi erience of expert becomes richer and the time of the expert
the two gate nodes with their output event nodes, the equival comes more available, more default patterns for reinforcement
number of nodes to be specified is counted as fi\;e and undermining embedded in the evaluated probability values

Given an arbitrary NIN-AND tree of, root event nodes, the can be replaced by directly assessed probability values, making
total number of event nodes of the tree can be increased tggm more accurate.

follows: Select a gate node df > 3 incoming I|nk§ Replace IX. CPT ELICITATION WITH THE NIN-AND TREE
the gate node and the event nodes connected to it with a subtree

of two or more gate nodes. For instance, a gate node connec,teﬁve demonstrate how to use the NIN-AND.tree tq elicit CPTs
+ o+ +  _+ + and N BNs with a more challenging example. It is feasible (though

to the input event nodest — cl, e —cy, e —cj > - o ¢

the output event nodet — ¢, ¢, 63+ can be replaced with the undg;lrable) to directly ellclltate the CPT for.preV|ous examplgs,

subtree in Fig. 5. The number of event nodes contributed to thet it iS much less so for this example. Consider an effect (child)
\ariablee with a set of seven causes (parents) in a BN:.., c7.

total counting is thus increased from four to five. Note that th g > )
modification involves changing the labels of some event nodeyppose that a human expert identifies the following three subsets

and modifying some forward links into negation links. Since th8 causes and the interaction within each subset:
focus here is the counting of the total number of event nodes,» Subsetsi: c¢; andc; are undermining each other.
these issues are not of the concern. e Subsetss: c3, ¢4 andcs are reinforcing each other.

If the above replacement is performed repeatedly, eventuallys Subsetss: cg andc; are reinforcing each other.
there will be no gate node left df > 3 incoming links. At this The expert assesses that the interaction between sulysatsls;
point, the total number of event nodes reaches its upper boufgialso undermining and, together as a group, they reinfegce
In the resultant tree, each gate node has exactly two input evertgese assessments produce the NIN-AND tree in Fig. 6. Suppose
Hence, the number of total event nodes is upper bounded that the following probabilities for single-cause events are also
2n—1, yielding the complexity ofD(n) for topology specification. assessed:

Next, we consider the specification of numerical parameter n N n e + e
Given the topology of the NIN-AND tree, only the probability for %D(e —er) =065, Ple —ey) =035, Ple” —c5) =08,
each root event node needs to be directly assessed, again yielding Plet —c¢f)=03,Pet — ) =06,
the complexity ofO(n). + N + +

Suppose that th((a Zlumber of parent variables involved in the Ple” —cg) =0.75, P(e” —er) = 0.55.
CPT is n. The above deals with the acquisition of a singldo evaluateP(eﬂcl*,...,c?), GetCausalEventProb is applied to
probability P(e™|c, cf , ...,ch) = P(et ¢, ef,...,c.}) of the  obtain
CPT where all causes are turned on. For each other probability
in the CPT, some causes are turned off, ecg.is turned off
in probability P(e™|c],cd,...,ch) = P(et « cf,...,ch). The Note that the noisy-OR model would produce 0.999. To evaluate
only necessary modification to the NIN-AND tree is to remové(e™|c], c5 . c5,ci,cd, el cf), eliminate nodeet - ci from

P(eﬂcf, ...,c;r) =Pt — cf, ...,c;r) = 0.912.
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Fig. 6. An example NIN-AND tree.

Fig. 6 and modify output labels fay,, g3 andgs. The evaluation

In addition to numerical probability parameters, the NIN-AND
tree model requires elicitation of the tree topology, which is
equivalent to a partial ordering on how causal interactions of
causesshould be integrated. Given that interactions of opposite
naturesare considered and the role of each cause relative to
each type of interactions must be specified, this appears to be
a necessary but not expensive overhead.

As any parameterized models, not all possible causal interac-
tions can be expressed by the NIN-AND tree. For instance, it is
conceivable that causes and c» reinforce each other, and;
andc3 undermine each other. Using the NIN-AND tree, eithgr
is modeled as undermining the reinforcing grotjpand c,, or
co is modeled as reinforcing the undermining growpand cs.

To model the above interaction exactly as stated, (1) additional
information must be specified on how the two groups (with a

shared cause) interact; and (2) a multiply connected structure is
needed, which is no longer a tree.

In conclusion, the NIN-AND tree provides a simple yet
expressive model for efficient CPT elicitation in engineering
probabilistic graphical models. It is worth noting that Pearl [11]
analyzed causation using functional causal models and our work
is consistent with his functional approach. In particular, we have
proposed the NIN-AND tree as a useful boolean functional model.
Our ongoing efforts include extending the NIN-AND tree from

gives

+ .+ o+ = A+ F
P(e |617627637C4vc5766767)

+ o+ +

= P(eJr —c] 6 ,ci,c;,cﬁ ,c;r) = 0.906.

binary to multi-valued variables and exploring the model for
efficiency gain in probabilistic inference.
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abilities to be assessed using the same tree. If the expert feels fha
a particular combination of a subset of causes follows a different
pattern of interaction, a distinct NIN-AND tree can be used for
acquiring the corresponding causal probability. Commonly, it is
expected that one tree topology is used for assessment of gli
probabilities in a CPT. If the expert is happy with the result,
the complexity of his/her assessment taskis:), wheren is the
number of causes.

For the sake of demonstration, suppose that the expert believes
that 0.906 is too high fOlP(eﬂcf, c;r, C3 c:[, c;, cg, c;r) (S)he [3]
attributes it to probabilityP(e™ « cf,ci) = 0.113 of the
output event at gatg, as too low. Instead, (s)he believes that!
0.2 is a better assessment. In response, the subtree gwiths
the leaf is removed and probability2 is assigned to the root [5]
event nodee™ « cd,cl. GetCausalEventProb then evaluates
P(eﬂcir,c;r,cg,c:f,c;,cg,c;r) to be0.833.

(2]

[6]
X. CONCLUSIONS

Causal interactions may be reinforcing or undermining. Al7]
causal model to aid CPT elicitation during engineering of
Bayesian networks needs to be expressive enough so that both
types of interactions can be encoded. We have shown that existifgj
causal models can only model one type of interactions. We present
the first general causal model, the NIN-AND tree, that supportﬁ)]
the expression of both reinforcement and undermining.

Existing causal models, except the RNOR, limit model param-
eters to probabilities of single-cause events. As the RNOR, tH@
NIN-AND tree allows integration of probability parameters ofyy;
both single-cause events and multi-cause events.
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