
Optimization of Inter-Subnet Belief Updating
in Multiply Sectioned Bayesian Networks

Y. Xiang
Department of Computer Science, University of Regina

Regina, Saskatchewan, Canada S4S 0A2, yxiang@cs.uregina.ca

Abstract

Recent developments show that Multiply
Sectioned Bayesian Networks (MSBNs) can
be used for diagnosis of natural systems as
well as for model-based diagnosis of artificial
systems. They can be applied to single-agent
oriented reasoning systems as well as multi-
agent distributed reasoning systems.

Belief propagation between a pair of subnets
plays a central role in maintenance of global
consistency in a MSBN. This paper studies
the operation UpdateBelief, presented orig-
inally with MSBNs, for inter-subnet propaga-
tion. We analyze how the operation achieves
its intended functionality, which provides
hints for improving its efficiency.

New versions of UpdateBelief are then de-
fined that reduce the computation time for
inter-subnet propagation. One of them is
optimal in the sense that the minimum
amount of computation for coordinating
multi-linkage belief propagation is required.
The optimization problem is solved through
the solution of a graph-theoretic problem:
the minimum weight open tour in a tree.

Keywords: Bayesian networks, Belief propa-
gation, multi-agent reasoning.

1 Introduction

Multiply sectioned Bayesian networks (MSBNs) [9] is
an extension of Bayesian networks (BNs) [4, 3, 1], orig-
inally developed for modular knowledge representation
and more efficient inference computation in large ap-
plication domains [7]. The basic assumption of MS-
BNs is localization [9, 8, 7]: Subdomains of the tar-
get domain are loosely coupled such that evidence and
queries focus on one subdomain for a period of time

before shifting to a different subdomain. Based on lo-
calization, a MSBN represents a large domain by a set
of interrelated Bayesian subnets, such that inference
computation can be confined within one subnet at a
time.

Two recent developments in probabilistic reasoning us-
ing BNs widened the scope of potential applicability
of the MSBN representation/inference formalism.

Srinivas [5] proposed a hierarchical approach for
model-based diagnoses. The representation formalism
used can be viewed as a special case of MSBNs. For
example, the set of input nodes I, output node O,
mode node M , and dummy node D [5], which forms
an interface between a higher level and a lower level in
the hierarchy, is a d-sepset [9]. The ’composite joint
tree’ [5] corresponds to the ’hypertree’ [9]. The way in
which inference is performed in the composite join tree
corresponds to the operation ShiftAttention [9]. There-
fore, his work showed that MSBNs can be applied to
diagnosis of natural systems (e.g., human body [7]) as
well as artificial systems (e.g., electronic circuits [5]).

Instead of viewing a MSBN as representing multiple
perspectives of a single reasoning agent, a MSBN can
be viewed as representing multiple agents in a do-
main each of which holds one perspective of the do-
main. Following this semantics, Xiang [6] extended
MSBNs to distributed multi-agent probabilistic rea-
soning, where multiple agents (subnets) collect local
evidence asynchronously in parallel and exchange in-
formation infrequently to achieve a common goal. We
shall sometime use the terms ’subnet’ and ’agent’ in-
terchangeably in the paper.

Given the widened applicability of the MSBN formal-
ism, this paper reexamines the key inference opera-
tion UpdateBelief [9] of MSBNs for propagating be-
lief from one subnet to another. We propose two
new versions of UpdateBelief to improve its efficiency.
We compare the two improvements and indicate their
trade-offs.

9

α

b

χ

ο

τ

ν

τ

τ

ι

δ

β

ι

ι

ζ

ρ

D2

D3

D1

D2 D3

D1

{ , }τ ι{ , }τ ι

D1

D2

D3

D4D5

D6

D7D8

D

Figure 1: Left: A three-subnet MSBN. Middle: The hypertree organization of the MSBN in the left. Right: A
general hypertree structured MSBN.

Section 2 briefly reviews the MSBN formalism and de-
fines the concepts that the rest of the paper depends
on. Section 3 describes the role of UpdateBelief intu-
itively, and analyzes how it achieves its intended func-
tionality by proving a theorem. Based on the hints
provided by the proof, Section 4 proposes a new ver-
sion of UpdateBelief that reduces its computation
time. Section 5 discusses intuitively the possibility of
further efficiency improvement. The issue is then for-
mulated as an optimization problem in tree traversals
with the solution given in Section 6. We summerize
the difference of the three versions of UpdateBelief
and their trade-offs in Section 7.

2 Overview of MSBNs

This section briefly reviews the MSBN formalism. We
shall use freely the formal results in [9, 6], subject to
some simplification, for concepts that the rest of the
paper depends on.

A MSBN M consists of a set of interrelated Bayesian
subnets. Each subnet shares a non-empty set I of vari-
ables with at least one other subnet. This interfacing
set I must be a d-sepset, which ensures that, when the
pair of subnets is isolated from the rest of M , I renders
the two subnets conditionally independent. Figure 1
(left) shows a three-subnet MSBN.

Subnets of M are organized into a hypertree structure.
The hypernodes are subnets of M . The hyperlinks are
d-sepsets between subnets. A hypertree structured M
ensures that each hyperlink render the two parts of
M that it connects conditionally independent. Fig-
ure 1 (middle) shows the hypertree organization of the
MSBN in Figure 1 (left). Figure 1 (right) depicts a
general hypertree structured MSBN.

The hypertree structured M is converted into a linked
junction forest (LJF) F of the identical structure as its
run time representation. Each hypernode in the hy-
pertree is a junction tree (JT) (clique tree) converted

from the corresponding subnet in the hypertree struc-
tured M . Evidence can be propagated between JTs
of F by passing the probability distribution (PD) of
I, which would not be efficient if the cardinality of I
is large. The efficiency can be improved by exploiting
the following structure internal to I.

Definition 1 (host tree) Let I be the d-sepset be-
tween JTs T a and T b. A host tree H of T a rela-
tive to T b is obtained by recursively removing every
leaf clique C of T a that satisfies one of the following
conditions. (1) C ∩ I = φ. (2) C ∩ I is a subset of
another clique on the current H.

H is the minimum subtree that contains I. Only
cliques in H are involved directly with the evidence
propagation between JTs. H is further reduced to a
linkage tree for definition of propagation channels.

Definition 2 (linkage tree) Let I be the d-sepset
between JTs T a and T b. A linkage tree of T a rel-
ative to T b is obtained by recursively removing nodes
(variables contained in a clique) or cliques from the
host tree H of T a as follows.
(1) If a node x 6∈ I is contained in a single clique C,
remove x from C.
(2) If a clique C becomes a subset of an adjacent clique
D after the above operation, union C into D.

The removal of x corresponds to a marginalization op-
eration on x. The union of C into D deletes C and the
link (C, D) from H, and reconnects to D all cliques
originally adjacent to C. Correct evidence propagation
between JTs of F can be achieved iff every linkage tree
contains exactly the nodes in the corresponding I.

Each clique in a linkage tree L is a linkage. Each link-
age in L has a corresponding host clique C in H and
hence the name host tree. The linkages in L are in-
dexed as L1, L2, . . . in any order consistent with L.
That is, for every i there is a unique j < i such that
Lj is adjacent to Li.

Figure 2: A JT where each upper case letter represents a variable in the d-sepset, and each lower case letter
represents a variable not in the d-sepset.

A E G I J g L M

A G I J K L M

A B D E F G I J L M

B D E F H I J L M

4B C D F H J L M

C

C

C

C

A G I J K L M

A B D E F G I J L M

B D E F H I J L M

B C D F H J L M

3

4

2L

L

L

L11

2

3

Figure 3: The host tree (left) and linkage tree (right) of the JT in Figure 2.

The tree structure of L allows the PD on I (in the
form of belief table B(I)) be propagated between JTs
by passing only belief tables on individual linkages
since B(I) =

∏
B(Lj)/

∏
B(Rk) (see [9] for defini-

tions of operations on belief tables) where B(Lj) =∑
Uj\Lj

B(Uj) is the belief table of the linkage Lj

whose host is Uj , and B(Rk) is the belief table of a
sepset (intersection of two adjacent cliques) in L. This
may reduce the propagation traffic significantly when
L consists of many small cliques.

The conversion of M into F ensures that the joint
probability distribution (JPD) of F assembled from
belief tables of F be equal to that of M .

Figure 2 shows a JT whose d-sepset with an adjacent
JT is I = {A, B, C, D, E, F, G, H, I, J, K, L, M}. The
host tree of the JT is shown in Figure 3 (left). The
linkage tree is shown in Figure 3 (right). The clique at
the lower left corner of Figure 3 (left) has been deleted
since after the variable g in it is removed, it becomes
a subset of clique C2 and itself is unioned into C2.
The indexing of linkages are shown in Figure 3 (right)
and, for each linkage, its host is labeled in Figure 3
(left) with the same index. Each linkage happens to
be identical to its host in this example. But in general
this is not the case.

To answer queries by efficient local computation in F ,
it must be made consistent. F is locally consistent if all
JTs are internally consistent, i.e., when marginalized
onto the same set of variables, different belief tables in

a JT yield the same PD. F is boundary consistent if
each pair of adjacent JTs are consistent with respect
to their d-sepset I. F is globally consistent iff it is both
locally consistent and boundary consistent.

A set of operations [9, 6] are developed to
achieve consistency in F during evidential reasoning.
BeliefInitialization establishes initial global con-
sistency. DistributeEvidence causes an outward be-
lief propagation within a JT, and brings the JT inter-
nally consistent after evidence on variables in a sin-
gle clique has been entered. UnifyBelief brings a
JT internally consistent after evidence on variables in
multiple cliques has been entered. EnterEvidence
updates belief in a JT in light of new evidence,
and brings the JT internally consistent again by
calling either DistributeEvidence or UnifyBelief.
AbsorbThroughLinkage brings two linkage hosts in
different JTs into consistency. UpdateBelief up-
dates the belief of a JT T relative to an adjacent JT,
and brings T internally consistent. In a single agent
MSBN, ShiftAttention allows the user to enter mul-
tiple pieces of evidence into a JT of current atten-
tion, and, when the user shifts attention to a target
JT, maintains consistency along the hyperpath in the
hypertree structured F from the current JT to the
target. In a multi-agent MSBN, CommunicateBelief
regains global consistency after multiple agents have
obtained evidence asynchronously in parallel. Both
ShiftAttention and CommunicateBelief rely on
UpdateBelief for inter-subnet belief propagation.

3 Insight into the UpdateBelief
Operation

The operation UpdateBelief plays a central role in
inter-subnet communication. It is defined as follows.

Operation 3 (UpdateBelief [9]) Let {L1, . . . , Lm}
be the set of linkages of a JT T a relative to T b. Let Ua

i

and U b
i be the linkage hosts of Li (i = 1, . . . , m) in T a

and T b, respectively. When UpdateBelief is initiated
by T a relative to T b, the following is performed. For
each i (in ascending order) AbsorbThroughLinkage is
called in Ua

i to absorb from U b
i through Li, followed by

a DistributeEvidence called in Ua
i .

Intuitively, UpdateBelief can be understood as fol-
lows. In order to bring two adjacent JTs into con-
sistency, we need to propagate the belief table B(I)
from T b to T a. Since the size of B(I) is exponential
to the size of I, the propagation can be expensive. In
multi-agent MSBNs with remotely located agents, we
need to pass B(I) through communication channels.
UpdateBelief makes use of conditional independence
among members of the d-sepset, and propagates B(I)
by only passing the belief tables B(Li), which are col-
lectively smaller in size when B(I) is large. For ex-
ample, if the d-sepset I contains ten binary variables,
B(I) has a size of 1024. If I = L1 ∪L2 ∪L3 with each
Li containing 5 variables, then the three belief tables
on linkages have a total size 96.

However, this savings in propagation traffic has a price
to pay. The belief propagation over multiple linkages
must be coordinated to achieve the intended effect. As
analyzed in [9], each AbsorbThroughLinkage should
be followed by the operation DistributeEvidence in
T a. When T a is large, DistributeEvidence per-
formed repeatedly can be expensive. Based on the
argument “communication is slower than computa-
tion” [2], the tradeoff is justified [6] by observing that
DistributeEvidence involves only local computation
within a subnet. Admitting that communication sav-
ings should be preferred over computation savings, this
paper aims to improve the efficiency of the local com-
putation as much as possible.

In the original presentation of UpdateBelief [9], how
the operation works is not fully analyzed. The proof
of the following theorem gains further insight into this
operation, and provides hints for improvement of its
efficiency.

Theorem 4 Let I be the d-sepset between JTs T a and
T b. Let {L1, . . . , Lm} be the set of linkages. Let the
two JTs be internally consistent. Let B(Ia) (B(Ib))
be the belief table on I defined by marginalization of
B(T a) (B(T b)).

After UpdateBelief, B′(T a) = B(T a) ∗B(Ib)/B(Ia),
and T a is internally consistent.

Proof: We prove by induction on the index of link-
ages. AbsorbThroughLinkage in UpdateBelief is per-
formed by T a in the order L1, . . . , Lm. After the per-
formance of AbsorbThroughLinkage through L1, we
have B1(T a) = B(T a) ∗ B(Lb

1)/B(La
1).

After AbsorbThroughLinkage is performed through
L2, we have B2(T a) = B1(T a) ∗ B(Lb

2)/B1(La
2).

Note that the two B() in the right-hand side of the
previous equation are now replaced by B1(). The
appearance of B1(La

2) instead of B(La
2) is due to

the first DistributeEvidence that follows the first
AbsorbThroughLinkage. After DistributeEvidence,
T a is internally consistent and B(La

2) is updated into
B1(La

2). We also obtain the following equation:

B1(La
2) = B(La

2) ∗ B(L1 ∩b L2)/B(L1 ∩a L2),

where ’∩a’ signifies that the intersection is defined in
T a and so is the B().

Substituting B1(T a) and B1(La
2), we obtain

B2(T a) = B(T a) ∗ B(Lb
1) ∗ B(Lb

2)/B(L1 ∩b L2)
B(La

1) ∗ B(La
2)/B(L1 ∩a L2)

= B(T a) ∗ B(L1 ∪b L2)
B(L1 ∪a L2)

,

where the second equality holds because of the way in
which linkages are defined and indexed (Section 2).

Assume that, after AbsorbThroughLinkage is per-
formed through Li followed by DistributeEvidence,
we have the following two equations.

Bi(T a) = B(T a) ∗
B(

⋃b
j≤i Lj)

B(
⋃a

k≤i Lk)
(1)

Bi(La
i+1) = B(La

i+1) ∗
B((

⋃b
j≤i Lj) ∩b Li+1)

B((
⋃a

k≤i Lk) ∩a Li+1)
(2)

After AbsorbThroughLinkage is performed through
Li+1, we have Bi+1(T a) = Bi(T a)∗B(Lb

i+1)/Bi(La
i+1).

By substituting Bi(T a) and Bi(La
i+1), it yields

Bi+1(T
a)

= B(Ta) ∗
B(

⋃b

j≤i
Lj) ∗ B(Lb

i+1)/B((
⋃b

j≤i
Lj) ∩b Li+1)

B(
⋃a

k≤i
Lk) ∗ B(La

i+1)/B((
⋃a

k≤i
Lk) ∩a Li+1)

= B(Ta) ∗
B(

⋃b

j≤i+1
Lj))

B(
⋃a

k≤i+1
Lk))

, (3)

where the second equality holds because of the way
in which linkages are defined and indexed (Section 2).

After the DistributeEvidence is performed, T a is in-
ternally consistent, and it follows that

Bi+1(L
a
i+2) = B(La

i+2) ∗
B((

⋃b

j≤i+1
Lj) ∩b Li+2)

B((
⋃a

k≤i+1
Lk) ∩a Li+2)

. (4)

From the inductive assumptions (1) and (2), we have
now proven the conditions (3) and (4). Therefore, after
AbsorbThroughLinkage is performed through the last
linkage Lm, we obtain the updated belief

B′(T a) = Bm(T a) = B(T a) ∗
B(

⋃b
j≤m Lj))

B(
⋃a

k≤m Lk))

= B(T a) ∗ B(Ib)/B(Ia),

where the last equality holds due to the way in which
the linkage tree is defined. T a is internally consistent
after the last DistributeEvidence. 2

4 Efficiency Improvement of
UpdateBelief

In the proof of Theorem 4, it is observed that the in-
ductive conclusion on Bi+1(La

i+2) (equation (4)) can
be proven as long as the host tree (Section 2) is made
consistent after the AbsorbThroughLinkage through
Li+1. The consistency of the entire JT is not neces-
sary. Hence belief propagation beyond the boundary of
the host tree, as performed by DistributeEvidence,
is not necessary. We therefore define a new oper-
ation DistributeEvidenceOnHostTree which is the
same as DistributeEvidence except that it termi-
nates at the leaves of the host tree. For example,
if DistributeEvidenceOnHostTree is called in the
clique {A, B, D, E, F, G, I, J, L, M} in the JT of Fig-
ure 2 (labeled C2 in Figure 3 (left)), the belief prop-
agation will proceed along two chains only: One from
C2 to C1 and the other from C2 to C4.

Replacing DistributeEvidence by the new operation,
we can define a new version of UpdateBelief.

Operation 5 (UpdateBelief2)
Let {L1, . . . , Lm} be the set of linkages of a JT T a

relative to T b. Let Ua
i and U b

i be the linkage hosts of
Li (i = 1, . . . , m) in T a and T b, respectively. When
UpdateBelief2 is initiated by T a relative to T b, the
following is performed.

For i = 1 through m, AbsorbThroughLinkage
is called in Ua

i to absorb from U b
i through

Li. For i = 1, . . . , m − 1, it is followed by
DistributeEvidenceOnHostTree called in Ua

i . For
i = m, it is followed by DistributeEvidence called
in Ua

m.

Corollary 6 Let I be the d-sepset between JTs T a and
T b. Let {L1, . . . , Lm} be the set of linkages. Let the
two JTs be internally consistent. Let B(Ia) (B(Ib))
be the belief table on I defined by marginalization of
B(T a) (B(T b)). After UpdateBelief2, B′(T a) =
B(T a) ∗B(Ib)/B(Ia), and T a is internally consistent.

Proof: After each DistributeEvidenceOnHostTree,
the host tree is internally consistent. Hence, all inter-
mediate results on Bi(T a) and Bi(La

i+1) in the proof
of Theorem 4 are still valid except that T a as a whole
is not internally consistent until after the performance
of DistributeEvidence at the end of UpdateBelief2.

2

UpdateBelief2 performs re-
peatedly DistributeEvidenceOnHostTree instead of
DistributeEvidence. Computational savings are ob-
tained by not having to propagate belief beyond the
host tree for a number of times proportional to the
number of linkages. When the host tree is significantly
smaller than the JT, the savings can also be significant.

5 Further Improvement of
UpdateBelief

Examination of the proof of Theorem 4 shows that
propagation of belief to the entire host tree is still un-
necessary. For the result of the theorem to be valid,
it is sufficient to update Bi−1(La

i+1) to Bi(La
i+1), af-

ter AbsorbThroughLinkage through Li. This implies
that, between two successive AbsorbThroughLinkage,
it is sufficient to propagate the new belief only to the
next host clique. Based on this idea, a more efficient
UpdateBelief can be defined. We illustrate the new
operation with an example.

C 5

C C C

C

12

3

4

Figure 4: A host tree with five linkage hosts.
Consider the host tree in Figure 4. We assume that
each clique is a host, and each clique is indexed
by the index of the corresponding linkage. Suppose
AbsorbThroughLinkage is performed in the order i =
1, . . . , 5. After AbsorbThroughLinkage through L1,
we propagate the new belief in C1 to C2 (one inter-
clique propagation). After AbsorbThroughLinkage
through L2, we propagate the new belief in C2 to C1

and then to C3 (two inter-clique propagations). Prop-
agating new belief this fashion, we need to perform
1+2+2+3 = 8 inter-clique belief propagations, before
the AbsorbThroughLinkage through L5. Compared to

4 + 4 + 4 + 4 = 16 inter-clique propagations needed in
UpdateBelief2, there is an about 50% computational
savings.

Additional savings can be obtained by optimizing the
new operation. We note that AbsorbThroughLinkage
is performed in the ascending order of linkage indexes.
However, linkages can be indexed by any order consis-
tent with the host tree (Section 2). We therefore have
the freedom to choose the order that can maximize the
computational savings.

If we choose the order i = 5, 2, 1, 3, 4 for the host tree
in Figure 4, we only need to perform 1 + 1 + 1 + 2 = 5
inter-clique belief propagations: Three propagations
less than the previous order.

In the next section, we present the result on how to
determine the optimal order of linkages (the order for
performing AbsorbThroughLinkage) given a host tree.

6 Optimization of UpdateBelief

The problem of finding the optimal order for the per-
formance of the operation AbsorbThroughLinkage in
UpdateBelief can be abstracted as follows.

Problem Statement 7 Given a weighted tree of n
nodes, number the nodes from 1 to n such that∑n−1

i=1 w(i, i + 1) is minimized, where w(i, i + 1) is the
path weight from node i to node i + 1 according to the
numbering.

The tree in this model corresponds to the given host
tree. Each node corresponds to a host clique. The
link weight corresponds to the amount of computation
for propagating belief from one clique to an adjacent
clique in the host tree. The model assumes that every
node is a host. If this is not the case, the propagation
through non-host nodes can be modeled into the link
weights such that the resultant tree has no non-host
node.

We define the concept tour to be used in solving the
above problem.

Definition 8 (tour) A tour of a graph is a walk that
visits each node at least once. A closed tour is a
tour that starts and ends with the identical node. Oth-
erwise, it is an open tour.

The problem can now be equivalently expressed as fol-
lows.

Problem Statement 9 Given a weighted tree of n
nodes, find an open tour with the minimum weight.

In order to develop an algorithm that solves the above
problem, we first study a closed tour, since, as will be

shown, (1) the problem of a minimum weight closed
tour can be solved easily; and (2) the minimum weight
open tour has a simple relationship with the mini-
mum weight closed tour. To simplify the intermediate
derivations, we assume that all link weights are identi-
cal. We then simply deal with a minimum length tour
with the length of each link being one. We remove this
assumption at the end.

Lemma 10 A closed tour of a tree with the minimum
length traverses each link exactly twice.

Proof: We prove by induction. The statement is triv-
ially true for a tree with only one link. Assume that
it is true for a tree with k link(s).

Consider a tree with k + 1 links. For any leaf x and
its adjacent node y, if we remove x and the link (x, y),
the resultant subgraph is a tree with k link(s). By
assumption, it has a minimum length closed tour that
traverses each link exactly twice. To include x and
(x, y) in the closed tour, one must at least travel from
y to x and then come back. This completes a closed
tour of the original tree with the minimum additional
link traversal. 2

For example, a closed tour of the minimum length for
the tree in Figure 5 is (C5, C2, C6, C7, C8, C7, C6, C2,
C1, C9, C10, C9, C1, C3, C1, C4, C1, C2, C5). The length
of the tour is 18, which is twice of the number of links
of the tree.

C

10

C

CC C

C C

C

C

C

5 2 1 3

4
6

78

9

Figure 5: A tree of nine links.
We define a terminal chain to be used in the following
discussion.

Definition 11 A terminal chain in a tree is a path
(a walk without repeated nodes) that terminates at both
ends by leaf nodes.

For instance, one terminal chain in Figure 5
is (C5, C2, C6, C7, C8). The simple open path
(C10, C9, C1) is not a terminal chain, since C1 is not a
leaf.

We now establish the relation between a minimum
length closed tour and a minimum length open tour
through a terminal chain.

Lemma 12 An open tour of a tree can be constructed
such that its length is the length of a minimum length

closed tour minus that of a terminal chain.

Proof: It suffices to show that an open tour can be
constructed by reconnecting a minimum length closed
tour r such that a terminal chain is traversed only
once.

Let l be an arbitrary terminal chain in the tree. Start
from one end of l and travel along the chain. For each
internal node y in l, let the two adjacent nodes of y on
l be x and z, and let the direction of the traversal be
from x to z. At each y of degree 3 or more, traverse
first an adjacent node u (u 6= x and u 6= z) and the
subtree rooted at u in the same way as in r. After
returning to y from u, traverse another adjacent node
v (v 6= x and v 6= z) in the same fashion. After all
adjacent nodes (other than x and z) of y have been
exhausted, travel from y to z and continue along l.
The open tour terminates when the other end of l is
reached. The open tour travels the same set of links
as r except that links on l are traversed only once.

2

We illustrate the constructive proof using Figure 5.
Suppose we are given the minimum length (18) closed
tour (C5, C2, C6, C7, C8, C7, C6, C2, C1, C9, C10, C9,
C1, C3, C1, C4, C1, C2, C5) and a terminal chain
(C5, C2, C6, C7, C8) of length 4. By reconnect-
ing the tour and traversing the chain only once,
we obtain the open tour (C5, C2, C1, C9, C10, C9,
C1, C3, C1, C4, C1, C2, C6, C7, C8). It has the length
18 − 4 = 14.

Lemma 13 extends Lemma 12 to a minimum length
open tour.

Lemma 13 An minimum length open tour of a tree
has the length of a minimum length closed tour minus
the length of a longest terminal chain.

Proof: Assume an open tour is constructed as in the
proof of Lemma 12, which is based on a terminal chain
of the longest length of all terminal chains. It is suf-
ficient to show that no single link traversal can be re-
moved from this tour such that it remains to be an
open tour.

Each link along the terminal chain is traversed only
once. If any one of these link traversals is removed,
the tour will be disconnected. Each link in a subtree
other than the terminal chain is traversed twice, one
of them travels away from the terminal chain, and the
other travels towards the chain. If any of these link
traversals is removed, the tour of the subtree will be
disconnected. 2

We now remove the assumption of identical link weight
and the result for the tour problem follows.

Theorem 14 An minimum weight open tour of a
weighted tree can be constructed by modifying a mini-
mum weight closed tour such that a terminal chain of
the maximum weight is traversed only once.

Proof: This is a direct extension of Lemma 13 to
weighted trees. The replacement of length by weight
is valid because Lemma 10, 12, 13 and their proofs are
still valid if the term length is replaced by the term
weight and weights are different. 2

In Figure 6, the terminal chain of the maximum weight
(1 + 2 + 4 + 8 + 6 = 21) is (C8, C7, C6, C2, C1, C4).
Therefore, a minimum weight open tour is
(C8, C7, C6, C2, C5, C2, C1, C3, C1, C9, C10, C9, C1, C4)
and the minimum weight is 2 ∗ (1 + 2 + 4 + 4 + 8 + 3 +
2 + 6 + 4) − 21 = 47.

C

C

CC C

1C C

C

C

C

5 2 1 3

4
6

78

9

10
2

4

8

4

6
3

2

4

Figure 6: A weighted tree for the problem of the min-
imum weight tour.

Based on Theorem 14, Algorithm 15 finds a minimum
weight open tour for a given tree. The steps 1 through
5 of the algorithm find a terminal chain with the max-
imum weight. It can be viewed as a variation of Dijk-
stra’s shortest-path algorithm in a tree. It differs from
the latter in that it finds the longest (heavest) path
between a non-predetermined pair of leaves. The step
6 constructs a minimum weight open tour in a way as
described in the proof of Lemma 12. It also produces a
numbering of nodes as stated in Problem Statement 7.

The algorithm has a complexity of O(n2) for both time
and space.

Figure 7 illustrates Algorithm 15. The weighted tree is
identical to that in Figure 6 up to a renaming of nodes.
The renaming is performed such that the five leaves are
indexed from 1 to 5, satisfying the input description
of Algorithm 15. Note that the indexing of nodes in
Figure 6 is consistent with the tree structure, but the
indexing in Figure 7 is not.

Following Algorithm 15, we obtain M [1..5] =
(18, 21, 20, 21,19) as shown in Figure 7. Therefore,
x = 2, y = 4 and a heavest terminal chain is one
from v2 to v4. This is the same as we obtained
earlier from Figure 6. The step 6 may (since the
result is not unique) fill the array t as t[1..14] =
(2, 8, 7, 6, 1,6,9, 5, 9,10, 3,10,9,4) which corresponds
to the same minimum weight open tour as we obtained

f[5,1] =16
f[5,2] =19

f[5,4] =10

f[4,1] =18
f[4,2] =21

f[4,5] =10
f[4,4] = 0
f[4,3] =11

f[1,1]= 0
f[1,2]=11
f[1,3]=17
f[1,4]=18
f[1,5]=16

f[2,1]=11
f[2,2]= 0
f[2,3]=20
f[2,4]=21
f[2,5]=19

v2

v1

3

2

10vv7

2

4

v5

f[3,5]= 9

M[4]=21

f[3,4]=11
f[3,3]= 0
f[3,2]=20

4

f[10,1]=15
f[10,2]=18
f[10,3]= 2
f[10,4]= 9
f[10,5]= 7

v4

6

vf[3,1]=17 3

f[8,5]=18
f[8,4]=20
f[8,3]=19
f[8,2]= 1

v8

f[8,1]=10

f[7,1]= 8
f[7,2]= 3
f[7,3]=17
f[7,4]=18
f[7,5]=16

4

1

8v6
v9

f[9,5]= 4
f[9,4]= 6
f[9,3]= 5
f[9,2]=15
f[9,1]=12

f[6,5]=12
f[6,4]=14
f[6,3]=13
f[6,2]= 7
f[6,1]= 4

f[5,3] = 9

f[5,5] = 0
M[5]=19

M[1]=18

M[2]=21
M[3]=20

Figure 7: A weighted tree to illustrate Algorithm 16.

Algorithm 15

Input: A weighted tree of a set N of n > 2 nodes with m
leaves v1, . . . , vm and n − m > 0 internal nodes
vm+1, . . . , vn.

Var: f [1..n,1..m], M [1..m] : array of reals;
t[1..2n] : array of integers.

Output: An open tour defined by t[] and a numbering of
nodes.

begin
1 for j = 1 to m, do f [j, j] := 0
2 for j = 1 to m, do

while there exists i (1 ≤ i ≤ m)
and f [i, j] is undefined, do

if vi is adjacent to a node vk and f [k, j] is
defined, then f [i, j] := f [k, j] + w(vi, vk)

3 for i = 1 to m, do M [i] := maxm
j=1 f [i, j]

4 Find the leaf vx such that M [x] = maxm
i=1 M [i]

5 for j = 1 to m, do
if f [x, j] = M [x] then y := j, break

6 Travel along the terminal chain from vx to vy.
At each internal node z on the chain, traverse
each subtree rooted at an adjacent node (not
on the chain) of z in a depth-first fashion.
Record the index of a node in t[] each time
it is visited. Number each node as it is visited
the first time.

7 Return t[] as the open tour and the numbering.
end

earlier from Figure 6. The numbering produced is then
(2, 8, 7, 6, 1,9,5, 10, 3, 4) which satisfies Problem State-
ment 7.

To use the open tour obtained for a new version of
UpdateBelief, we must make sure that the order in
which each node is visited the first time (the num-
bering of nodes returned by Algorithm 15) is consis-
tent with the tree structure. This order corresponds to
the order in which linkages are indexed and the order
in which AbsorbThroughLinkage will be performed.
This condition is required in the proof of Theorem 4.
As we can see that it is indeed true since the next
node to number (in step 6 of Algorithm 15) is always
adjacent to the subtree traversed so far.

Theorem 16 summarizes the above discussion on Algo-
rithm 15. The proof is trivial given Theorem 14, and
the equivalence of Problem Statement 7 and 9.

Theorem 16 Let T be a weighted tree. The number-
ing of nodes generated by Algorithm 15 is consistent
with T , and the open tour returned has the minimum
weight.

We are now ready to define another improved ver-
sion of UpdateBelief. Since belief propagation to
the host tree is not necessary, we define a new op-
eration DistributeEvidenceOnChain. It is the same
as DistributeEvidence except we only propagate
belief along a specified chain. We define the new
UpdateBelief and state its correctness as follows.

Operation 17 (UpdateBelief3) Let {L1, . . . , Lm}
be the set of linkages of a JT T a relative to T b. Let
Ua

i and U b
i be the linkage hosts of Li (i = 1, . . . , m) in

T a and T b, respectively. When UpdateBelief3 is ini-
tiated by T a relative to T b, the following is performed.

For i = 1 through m, AbsorbThroughLinkage
is called in Ua

i to absorb from U b
i through

Li. For i = 1, . . . , m − 1, it is followed by
DistributeEvidenceOnChain called in Ua

i along the
unique path from Ua

i to Ua
i+1. For i = m, it is fol-

lowed by DistributeEvidence called in Ua
m.

Corollary 18 Let I be the d-sepset between JTs T a

and T b. Let {L1, . . . , Lm} be the set of linkages in-
dexed according to the numbering produced by Algo-
rithm 15. Let the two JTs be internally consistent.
Let B(Ia) (B(Ib)) be the belief table on I defined by
marginalization of B(T a) (B(T b)).

After UpdateBelief3, we have B′(T a) = B(T a) ∗
B(Ib)/B(Ia), and T a is internally consistent.

Given a JT and a d-sepset with an adjacent JT,
UpdateBelief3 is optimal in the sense that the min-

imum amount of computation for coordinating multi-
linkage belief propagation is required.

7 Comparison of Versions of
UpdateBelief

This paper addresses the computation efficiency of be-
lief propagation between a pair of Bayesian subnets in
a MSBN. Inter-subnet belief propagation involves the
passage of the probability distribution on d-sepset I
from one subnet to an adjacent subnet.

A brute force method forms a large clique that con-
tains I in each subnet involved, and pass the belief
table B(I) directly. It is computationally the most
expensive, both locally and inter-subnet-wise.

The first improvement is UpdateBelief. Only belief
tables on linkages are passed, which are collectively
smaller than B(I). It reduces the inter-subnet traffic
but still incurs expensive local computation to coordi-
nate belief propagation over multiple linkages.

The second improvement is UpdateBelief2. Mul-
tiple performances of DistributeEvidence are re-
placed by multiple performances of the opera-
tion DistributeEvidenceOnHostTree. Distribution
beyond the host tree is saved at each perfor-
mance. The saving of inter-subnet traffic obtained by
UpdateBelief is maintained while the efficiency of lo-
cal computation is improved.

The next improvement is UpdateBelief3. Multiple
performances of DistributeEvidenceOnHostTree are
replaced by multiple performances of the operation
DistributeEvidenceOnChain. Each time, distribu-
tion to the entire host tree is reduced to distribution
along a chain leading to the next host. It further
improves the efficiency of local computation beyond
UpdateBelief2, and incurs the minimum amount of
computation to coordinate belief propagation over
multiple linkages.

Our analysis for the minimum weight open tour, which
leads to the definition of UpdateBelief3, has assumed
equal weights in traversing a link in both directions.
The assumption may not hold since belief propagation
between a pair of cliques may incur different amount of
computations when performed in opposite directions.
The results of this paper can be extended to cover the
situation where weights differ at opposite directions.
Due to the limited space, such discussion is beyond
the scope of this paper.

We indicate that the savings in computation time
are obtained by increased sophistication in con-
trol mechanisms. Replacement of the brute force
method (equivalent to a single linkage propagation)

by UpdateBelief requires the coordination of multiple
linkage propagation. Replacement of UpdateBelief
by UpdateBelief2 requires additional control. Dis-
tribution is to be terminated at the leaves of the
host tree. Finally, replacement of UpdateBelief2 by
UpdateBelief3 requires more specific control. Distri-
bution must proceed along predetermined chains.

Acknowledgements

This work is supported by the Dean’s Research Fund-
ing from Faculty of Science, University of Regina, the
General NSERC Grant from University of Regina, and
Research Grant OGP0155425 from NSERC. I am also
grateful to the suggestions from anonymous referees.

References

[1] E. Charniak. Bayesian networks without tears. AI
Magazine, 12(4):50–63, 1991.

[2] R. Davis and R.G. Smith. Negotiation as a
metaphor for distributed problem solving. Arti-
ficial Intelligence, 20(1):63–109, 1983.

[3] R.E. Neapolitan. Probabilistic Reasoning in Expert
Systems. John Wiley and Sons, 1990.

[4] J. Pearl. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. Morgan
Kaufmann, 1988.

[5] S. Srinivas. A probabilistic approach to hierarchi-
cal model-based diagnosis. In Proc. Tenth Conf.
Uncertainty in Artificial Intelligence, pages 538–
545, Seattle, Washington, 1994.

[6] Y. Xiang. Distributed multi-agent probabilistic
reasoning with Bayesian networks. In Z.W. Ras
and M. Zemankova, editors, Methodologies for In-
telligent Systems, pages 285–294. Springer-Verlag,
Oct. 1994.

[7] Y. Xiang, B. Pant, A. Eisen, M. P. Beddoes, and
D. Poole. Multiply sectioned Bayesian networks
for neuromuscular diagnosis. Artificial Intelligence
in Medicine, 5:293–314, 1993.

[8] Y. Xiang, D. Poole, and M. P. Beddoes. Exploring
locality in Bayesian networks for large expert sys-
tems. In Proc. Eighth Conference on Uncertainty
in Artificial Intelligence, pages 344–351, Stanford,
CA, 1992.

[9] Y. Xiang, D. Poole, and M. P. Beddoes. Multiply
sectioned Bayesian networks and junction forests
for large knowledge based systems. Computational
Intelligence, 9(2):171–220, 1993.

