
Learning Belief Networks in Domains
with Recursively Embedded

Pseudo Independent Submodels

J. Hu Y. Xiang
Dept. of Computer Science, Univ. of Regina

Regina, Saskatchewan, Canada S4S 0A2

Abstract

A pseudo independent (PI) model is a proba-
bilistic domain model (PDM) where proper
subsets of a set of collectively dependent
variables display marginal independence. PI
models cannot be learned correctly by many
algorithms that rely on a single link search.
Earlier work on learning PI models has sug-
gested a straightforward multi-link search al-
gorithm. However, when a domain contains
recursively embedded PI submodels, it may
escape the detection of such an algorithm.
In this paper, we propose an improved al-
gorithm that ensures the learning of all em-
bedded PI submodels whose sizes are upper
bounded by a predetermined parameter. We
show that this improved learning capability
only increases the complexity slightly beyond
that of the previous algorithm. The perfor-
mance of the new algorithm is demonstrated
through experiment.

Keywords: Belief networks, probabilistic domain
model, learning, search.

1 INTRODUCTION

Learning belief networks has been researched actively
by many as an alternative to elicitation in knowledge
acquisition [3, 1, 4, 2]. A pseudo-independent (PI)
model is a probabilistic domain model (PDM) where
proper subsets of a set of collectively dependent vari-
ables display marginally independence (hence pseudo-
independent) [8, 6]. Commonly used algorithms for
learning belief networks rely on a single link lookahead
search to identify local dependence among variables.
These algorithms cannot learn correctly when the do-
main model is a PI model [7]. The pseudo-independent
property of PI models requires multi-link lookahead

search in order to detect the collective dependency [8].
As the computational complexity increases exponen-
tially with the number of links to lookahead, a multi-
link search must be performed cautiously. In order to
manage the increased complexity, it is suggested [6]
that the single link search should be performed first
and then the number of links to lookahead should be
increased one-by-one.

Several issues remain open. A straightforward multi-
link lookahead search as suggested in [8] will perform a
single link lookahead search, then a double link looka-
head search, and then a triple link lookahead search,
etc. It turns out that some PI models will escape such
a multi-link search (to be detailed below). Therefore,
Xiang [6] suggested to perform a single link looka-
head search first, followed by a combination of dou-
ble link lookahead and single link lookahead search,
followed by a combination of triple, double and single
link lookahead search, etc. However, it is unclear what
is the most effective way to combine lookahead search
of different number of links.

In this paper, we propose an algorithm for learning be-
lief networks from PI domains. We focus on learning
decomposable Markov networks [8], although the algo-
rithm can be extended to learning Bayesian networks.
We show that our algorithm will ensure correct learn-
ing of PI models that contain no embedded submodels
beyond a predetermined size. The time complexity of
the algorithm is analyzed.

We shall assume that readers are familiar with com-
monly used graph-theoretic terminologies such as con-
nected graph, component of a graph, chordal graph,
clique, I-map, Bayesian networks, Markov networks,
etc.

The rest of the paper is organized as follows: In section
2, we briefly introduce PI models. In section 3, we
present the algorithm. The property of the algorithm
is analyzed in section 4. In section 5, we analyze the
complexity. We present our experimental results in

section 6.

2 BACKGROUND

To make this paper self-contained, we introduce the
basic concepts on PI models briefly in this section.
We will use freely the formal definitions in [6]. More
detailed discussions and examples can be found in the
above reference.

If each variable X in a subset A is marginally inde-
pendent of A \ {X}, we shall say that variables in
A are marginally independent. A set N of variables
are collectively dependent if for each proper subset
A ⊂ N , there exists no proper subset C ⊂ N \ A
such that P (A|N \ A) = P (A|C). A set N of vari-
ables are generally dependent if for any proper subset
A, P (A|N \ A) 6= P (A).

A pseudo-independent (PI) model is a probabilistic do-
main model (PDM) where proper subsets of a set of
collectively dependent variables display marginal inde-
pendence. PI models can be classified into three types.
In a full PI model, every proper subset of variables are
marginally independent.

Definition 1 A PDM over a set N (|N | ≥ 3) of vari-
ables is a full PI model if the following two conditions
hold:

(S1) For each X ∈ N , variables in N \ {X} are
marginally independent.

(S2) Variables in N are collectively dependent.

In a partial PI model, not every proper subset of vari-
ables are marginally independent.

Definition 2 A PDM over a set N (|N | ≥ 3) of vari-
ables is a partial PI model if the following three con-
ditions hold:

(S1’) There exists a partition {N1, . . . , Nk} (k ≥ 2)
of N such that variables in each subset Ni are
generally dependent, and for each X ∈ Ni and
each Y ∈ Nj (i 6= j), X and Y are marginally
independent.

(S2) Variables in N are collectively dependent.

In a PI model, it may be the case that not all vari-
ables in the domain are collectively dependent. An
embedded PI submodel displays the same dependence
pattern of the previous PI models but involves only a
proper subset of domain variables.

Definition 3 Let a PDM be over a set N of generally
dependent variables. A proper subset N ′ ⊂ N (|N ′| ≥
3) of variables forms an embedded PI submodel if the
following two conditions hold:

(S4) N ′ forms a partial PI model.

(S5) The partition {N1, . . . , Nk} of N ′ by S1’ extends
into N . That is, there is a partition {A1, . . . , Ak}
of N such that Ni ⊆ Ai, (i = 1, .., k), and for
each X ∈ Ai and each Y ∈ Aj (i 6= j), X and Y
are marginally independent.

In general, a PI model can contain one or more PI
submodels, and this embedding can occur recursively
for any finite number of times.

PDMs can often be concisely represented by a graph
called an I-map [5] of the PDM. In this paper, we shall
mainly use undirected I-maps. In particular, we focus
on learning an I-map that is a decomposable Markov
network (DMN). A DMN consists of a graphical struc-
ture and a probability distribution factorized accord-
ing to the structure. The structure is a chordal graph
whose nodes are labeled by domain variables.

Since variables in a PI submodel are collectively de-
pendent, in a minimal I-map of the PDM, the vari-
ables in the submodel is completely connected. The
marginal independence between subsets in the sub-
model is thus unrepresented. The undirected I-maps
can be extended into colored I-maps [6]. The marginal
independence between subsets are highlighted in a col-
ored I-map by coloring the corresponding links.

Definition 4 An undirected graph G is a colored
I-map of a PDM M over N if (1) G is a minimal
I-map of M , and (2) for each PI submodel m, links
between each pair of nodes from distinct marginally
independent subsets in m are colored. Other links are
referred to as black.

A partial PI model is shown in Table 1. The PDM has
four variables, which are partitioned into three inde-
pendent subsets. The PDM contains three embedded
PI submodels over

N1 = {a, b, c}, N2 = {d, a, c}, N3 = {d, b, c}.

Figure 1 shows the colored I-map of this model. The
colored links are drawn as dotted.

It has been shown [7] that common algorithms for
learning belief networks cannot learn a PI model cor-
rectly because they rely on a single link lookahead
search to identify local dependence among variables.
For example, if these algorithms are used to learn the
above model (assuming learning starts with an empty

Table 1: A partial PI model with embedded PI sub-
models.

(d, a, b, c) P (.) (d, a, b, c) P (.)
(0, 0, 0, 0) 0.02 (1, 0, 0, 0) 0.03
(0, 0, 0, 1) 0.02 (1, 0, 0, 1) 0.01
(0, 0, 1, 0) 0.06 (1, 0, 1, 0) 0.01
(0, 0, 1, 1) 0 (1, 0, 1, 1) 0.05
(0, 1, 0, 0) 0.1 (1, 1, 0, 0) 0.09
(0, 1, 0, 1) 0.06 (1, 1, 0, 1) 0.07
(0, 1, 1, 0) 0.14 (1, 1, 1, 0) 0.15
(0, 1, 1, 1) 0.1 (1, 1, 1, 1) 0.09

c

d

ba

Figure 1: The colored I-map of a partial PI model
shown in Table 1.

graph) only the link (d, c) can be connected and the
returned graph is not an I-map of the PDM.

3 THE LEARNING ALGORITHM

The pseudo independence property of PI models re-
quires more sophisticated search procedures in learn-
ing. Suppose a PI submodel over N ′ ⊂ N is parti-
tioned into k marginally independent subsets. If we
lookahead by multiple links at each search step such
that N ′ is completely connected by a set of new links,
and test P (X|Y, N ′ \ X, Y) = P (X|N ′ \ X, Y), where
(X, Y) is one of the new links, we will get a negative
answer. This prompts the completion of N ′ in the
learned graph. Based on this observation, a straight-
forward multi-link search is suggested in [8]. Such a
search will perform a single link lookahead, followed
by a double link lookahead, followed by a triple link
lookahead, etc.

A multi-link search is more expensive than a single link
search since O(|N |2i) sets of links need to be tested
before one set of links is adopted. Since the complex-
ity increases exponentially with the number of links
to lookahead, an multi-link search must be performed
cautiously. Three strategies are proposed in [6] to
manage the computational complexity: (1) perform-
ing single link search first, (2) increasing the number
of links to search one-by-one, and (3) making learning
inference-oriented.

Although the previous straightforward multi-link

search can learn correctly many PI models, it was
found that some PI submodels may still escape the
learning algorithm. For example, if we apply such
a search to the PI model in Table 1, the single link
search will add the link (d, c). The following double
link search will first discover the PI submodel over N2

and add links (d, a) and (a, c). It then discovers the
PI submodel N3 and add links (d, b) and (b, c). But
the PI submodel over N1 will never be learned by the
double link lookahead or lookahead with higher num-
ber of links, since only a single link (a, b) is uncon-
nected. Consequently, the learning outcome will not
be an I-map.

Realizing this deficiency of the straightforward multi-
link search, an improved multi-link search algorithm
was proposed in [6]. In addition to the incorporation
of the above three strategies, the search is performed
in the following manner: A single link lookahead is
performed first, followed by a combination of double
link lookahead and single link lookahead, followed by
a combination of triple, double and single link looka-
head, etc. We shall refer to such a systematic search
that lookaheads by no more than i > 1 links as an
i-link search. We refer to a multi-link search which
examines only j ≥ 1 links at each step until no more
links can be learned as an j-link-only search.

The algorithm proposed in [6], however, did not specify
what is the most effective way to combine lookahead
search of different number of links. This is the issue we
address in this paper. We start by asking the question
why some PI models may escape the straightforward
multi-link search. The previous example shows that
the main reason is the recursive embedding of PI sub-
models. If a PI submodel M1 is embedded in another
PI model M2, M1 will be learned first. After that, if
the number of unlearned links in M2 is less than the
current number of links to lookahead, M2 will not be
learned correctly in the later search steps. In order to
learn M2, backtracking to lower number of lookahead
links is necessary. Hence the problem translates to a
proper arrangement of backtracking during learning.

We propose a multi-link search algorithm (ML) which
overcomes the deficiency mentioned above. The learn-
ing outcome is represented as DMN. The algorithm
focus on learning the chordal structure from the data.
Once the chordal graph is obtained, the numerical
probability distribution can be estimated from the
data.

ML starts with an empty graph. It performs a single
link search first. The first stage of the search now ends.

ML then performs a double-link-only search. If some
links are learned during the double-link-only search,
ML backtracks to perform another single link search.

Afterwards, it performs double-link-only search again
and backtracks if necessary as before. The combi-
nation of double-link-only and single link search will
continue until no link is learned in a double-link-only
search. We shall refer to this repeated combination of
the double-link-only search and the single link search
as a combined-double-link search. Now the second
stage of the search ends.

Next, ML will perform a triple-link-only search. If
some links are learned during the search, ML back-
tracks to repeat the previous two stages. Afterwards,
it performs another triple-link-only search and back-
tracks if necessary as before. We shall refer to this
repeated combination of the triple-link-only, double-
link-only and single link search as a combined-triple-
link search. Note that a combined-triple-link search
can include several combined-double-link search. Now
the third stage of the search ends.

ML continues with a combined-four-link search, fol-
lowed by a combined-five-link search, etc., until a
combined-k-link search, where k > 1 is a predeter-
mined integer. The pseudo-code of this algorithm is
presented below.

Algorithm ML
Input: A dataset D over a set N of variables, a

maximum number k of lookahead links.
Return: The learned graph.
Comment: lookahead(i) is the function for

an i-link-only search.
begin
1 initialize a graph G = (N,E = φ);
2 for j := 1 to k do
3 i := j;
4 while i ≤ j do
5 modified := lookahead(i);
6 if (i > 1) AND (modified = true)
7 then i := 1; {backtracking}
8 else i := i + 1;
9 return G and halts.
end

In algorithm ML, the search stages are indexed by j
(line 2) and each iteration of the outer for loop corre-
sponds to one stage. The first iteration has i = j = 1
(lines 2 and 3). The single link search lookahead(1)
(line 5) will be performed. The test in line 6 will fail
and i becomes 2 (line 8). This terminates the while
loop as well as the first iteration of the for loop. It
corresponds to the first stage of search.

The next iteration of for loop has i = j = 2.
The double-link-only search lookahead(2) will be per-
formed. If some links have been added, the test in
line 6 will succeed and i becomes 1. This causes the
execution of another single link search lookahead(1).
Afterwards, i becomes 2 and another double-link-only
search will be performed. If nothing has been added,

modified is false and i becomes 3. This terminates
the while loop and the second iteration of the for loop.
It corresponds to the second stage of search.

The next iteration of for loop has i = j = 3. The
triple-link-only search lookahead(3) will be performed.
If some links have been added, the test in line 6 will
succeed and i becomes 1. This causes the repeti-
tion of the previous two stages. This execution of
lookahead(3) and repetition of stages 1 and 2 contin-
ues until an execution of lookahead(3) returns false.
Afterwards, i becomes 4 and the while loop will be
terminated. It will also terminate the third iteration
of the for loop and end the third stage of search.

The function lookahead(i) performs an i-link-only
search. It consists of multiple passes and each pass is
composed of multiple steps. Each step tests one set of
i links. Each pass learns one set of i links after testing
all distinct and legal combinations, one at each search
step, of i links. This function may be implemented
using different scoring metrics. We defer the presen-
tation of our implementation using the cross-entropy
scoring metric to section 6.

(c)

a

d

Stage 1 Stage 2 Stage 2

a b

cc(a)

d

b

c

a

(b)

d

b

Figure 2: The process of learning the PI model shown
in Table 1.

Figure 2 shows the execution of ML in learning the PI
model in Table 1 with the value of k set as k = 2. ML
starts with a single link search (The first stage). After
all links are examined, one set of links L1 = {(d, c)}
is learned. The learned graph is shown in Figure 2
(a). In the second stage, ML performs the double-
link-only search first, which learns two sets of links
L2 = {(d, a), (a, c)}, L3 = {(d, b), (b, c)}. These links
are contained in the PI submodels over N2 and N3.
The corresponding graph is shown in Figure 2 (b).
Since some new links are added after the double-
link-only search, ML backtracks to perform the sin-
gle link search again. During this search one set of
links L4 = {(a, b)} is added and Figure 2 (c) is ob-
tained. ML continues to perform another double-link-
only search but no more links can be learned. The ML
halts with a complete graph which is a correct I-map.

4 PROPERTY OF THE
ALGORITHM

Can ML learn any PI model correctly? Clearly the an-
swer is no as ML only searchs up to a predetermined
number i of lookahead links. A PI submodel that con-
tains more than i colored links may escape ML. Then
what is the characteristics of the PI models that can
be learned by ML? The following theorem answers this
question.

Theorem 5 Let M be a PI model such that each em-
bedded PI submodel in M contains no more than i col-
ored links, the algorithm ML with parameter i will re-
turn an I-map of M .

Proof:

Let GM be the minimal colored I-map of M . All black
links in GM can be learned by the initial single link
search lookahead(1) in the first stage. We show that
ML will learn colored links in every embedded PI sub-
model.

When i = 1, M contains no embedded PI submodels
(no colored links) and the result is trivially true.

When i = 2, each embedded PI submodel in M con-
tains only three variables. There are two colored links
and one black link among these three variables. The
black link will be learned by the initial single link
search as mentioned above. The two colored links can
be learned by lookahead(2) in the second stage.

Now we assume that when i = k, if an embedded PI
submodel has no more than k unlearned colored links,
then these links can be learned by the first k stages.
Suppose i = k + 1. Every PI submodel with no more
than k colored links in M can be learned by assump-
tion. For each PI submodel x with k + 1 colored links
in M , x either contains one or more embedded PI sub-
models or contains none.

If x contains at least one embedded PI submodel y of
j ≥ 2 colored links, then we have j ≤ k and y must
have been learned in the first k stages by assumption.
Since the number of remaining colored links in x is
k + 1 − j ≤ k − 1, these links must also have been
learned in the first k stages by assumption.

If x contains no embedded PI submodel, then it can be
learned by lookahead (k + 1) at the beginning of stage
k + 1. The theorem is proven. 2

Given the parameter k for ML, some PI submodels
with more than k colored links may still be learned.
Suppose a PI submodel x has more than k colored links
and has two other PI submodels y and z embedded
in it. If the number of colored links in y or z is no

more than k, then y and z can be learned by ML. If
the number of remaining colored links in x is no more
than k, then x can also be learned by ML. A formal
treatment of such cases will be included in a longer
version of this paper.

5 COMPLEXITY ANALYSIS

For each pass in an i-link-only search, O(N2i) sets of i
links need to be tested, one set at each step. Therefore
each pass contains O(N2i) steps. Since each pass adds
one set of i links, an i-link-only search contains O(N2

i
)

passes.

In order to derive the upper bound of the total number
of passes in a k-link search, we construct a directed
graph such that each node in the graph corresponds
to one pass during the search and each arrow indicates
the chronological order of successive passes. We shall
label each node by the number of links to lookahead
in the pass. A graph so constructed will be a directed
chain. For the purpose of a later conversion, nodes
with the same label will be drawn at the same level
and levels are arranged in the decreasing order of the
labels. Figure 3 shows such a graph for the execution
of a 3-link-search.

1 1 1 1 1

2

3 3 3

2

3

2

1 1 1 1

2 2

Figure 3: The execution chain of a 3-link search.

Once we obtain such a chain, it can be converted into a
set of trees (a forest) as follows. Each node not at the
top level will be assigned a parent at the next higher
level, and the child and the parent will be connected by
an undirected link. The parent of a node is assigned as
the first node in the next higher level down the chain.
After each node not at the top level has been assigned
a parent, we remove all arrows from the graph. The
resultant graph is shown in Figure 4. Each component
of the graph is a tree. This is because each node not
at the top level has a unique parent. We shall refer to
the graph as an execution forest.

1 1 1 1 1 1

3 3 3

2

3

2

1 1 1

2 2 2

Figure 4: The execution forest of a 3-link search.

We now use the execution forest to analyze the com-

plexity of an i-link-search. For each node at level i
(1 < i ≤ k), some child nodes correspond to learning
passes each of which adds a set of i − 1 links. Other
child nodes correspond to non-learning passes that add
no links. The number of non-learning passes can not
be more than the number of learning passes. The num-
ber of learning passes is bounded by O(N2

i−1). Hence

each node at level i (1 < i ≤ k) has O(N2

i−1
) children.

Next, we derive the number of passes at each level.
The number of passes at the level k (top level) is
O(N2

k). The number of passes at the level k − 1 is

O(
N2

k
∗ N2

k − 1
) = O(

N2∗2

k ∗ (k − 1)
).

The number of passes at the level 2 is

O(
N2

k
∗ N2

k − 1
∗ . . . ∗ N2

2
) = O(

N2∗(k−1)

k ∗ (k − 1) ∗ . . . ∗ 2
).

Finally, the number of passes at the level 1 is

O(
N2

k
∗ N2

k − 1
∗. . .∗ N2

2
∗N2) = O(

N2∗k

k ∗ (k − 1) ∗ . . . ∗ 2 ∗ 1
).

Therefore, the total number of search steps is

O(N2∗k) ∗ O(N2

k
)

+ O(N2∗(k−1)) ∗ O(N2∗2

k∗(k−1))

+ . . .

+ O(N2∗2) ∗ O(N2∗(k−1)

k∗(k−1)∗...∗2)

+ O(N2) ∗ O(N2∗k

k∗(k−1)∗...∗2∗1)

= O((N2∗(k+1)) ∗ (1
k

+ 1
k∗(k−1)

+ . . . + 1
k∗(k−1)∗...∗2∗1).

Since the factor (1
k

+ 1
k∗(k−1)

+ . . . + 1
k∗(k−1)∗...∗2∗1) is

upper-bounded by 1, the total number of search steps
in a k-link-search is O(N2∗(k+1)).

In order to complete the complexity analysis, we need
to take into account of the complexity of each search
step, which is dependent on the choice of scoring met-
ric used in lookahead(i). Our implementation, to be
detailed in the next section, is based on the algorithm
in [8]. The complexity of one search step is

O(n + η(η log η + 2η)),

where n is the number of cases in the dataset and
η is the maximum size of cliques. Hence the overall
complexity of the algorithm is

O(N2(k+1)(n + η(η logη + 2η)).

Compared with the complexity of a straightforward
multi-link search algorithm [8]

O(k N2k(n + η(η log η + 2η)),

the complexity of a k-link-search using ML is higher
but not much higher. The benefit of the slightly in-
creased complexity is the capability of learning recur-
sively embedded PI models.

6 IMPLEMENTATION AND
EXPERIMENTAL RESULTS

Given the algorithm ML, the only missing detail in
implementation is the function lookahead(i). Our im-
plementation of this function is based on the algo-
rithm in [8]. Instead of testing the conditional inde-
pendence directly, a test of whether new links decrease
the Kullback-Leibler cross entropy is performed. This
is justified the following shown in [8]. (1) Minimiz-
ing the K-L cross entropy between a dataset D and
a DMN obtained from D is equivalent to minimizing
the entropy of the DMN. (2) A learning process start-
ing with an empty DMN structure and driven by the
minimization of the above K-L cross entropy is par-
alleled by the process of removing false independence
(missing links relative to some minimal I-map) in the
intermediate DMNs.

The pseudo code of the lookahead(i) function is shown
below. A threshold δ is used to differentiate between
a strong dependence and a weak one (may be due to
noise). A greedy search can thus be applied (line 4
through 9) to avoid adding unnecessary links and links
due to weak dependence [8]. The condition that L is
implied by a single clique C means that all links in
L are contained in the subgraph induced by C. This
requirement helps to reduce the search space.

Function BOOL lookahead(int i);
Input: i is the number of lookahead links.
Comment: δh is a threshold.
begin
1 modified := false;
2 repeat
3 initialize the entropy decrement dh′ := 0;
4 for each set L of links (|L| = i, L ∩ E = φ), do
5 if G∗ = (N,E ∪ L) is chordal and L is implied by a
6 clique, then compute the entropy decrement dh∗;
7 if dh∗ > dh′, then dh′ := dh∗, G′ := G∗;
8 if dh′ > δh, then G := G′, done := false,
9 modified := true;
10 else done := true;
11 until done = true;
12 return modified;
end

The following demonstrate our implementation with
two datasets. Our primary emphasis is the capability
of learning correctly PDMs with recursively embedded
PI submodels. First, a dataset of 1000 cases was gen-
erated from the PDM shown in Table 1. The successful
run used k = 2, δh = 0.001. The learning process is
the same as Figure 2. The experiment is summarized
in Table 2.

Next, we use a PDM from [6] described below:

Three balls are drawn each from a different urn. Urn
1 has 20% white balls and the rest of balls are black.

Table 2: Summary of learning the PDM in Table 1
with k=2, δh = 0.001.

i − link− learned # graphs cross entropy
only search link set tested decrement

1 {(d, c)} 6 0.0033
2 {(d, a), (a, c)} 26 0.0139
2 {(d, b), (b, c)} 29 0.0022
1 {(a, b)} 30 0.0389

Urn 2 anf urn 3 have 60% and 50% of white balls,
respectively. A music box plays if all three balls are
white or exactly one is white. A dog barks if two
random lights are both on or both off. John complains
if it’s too quiet (neither the box plays nor the dog
barks) or too noisy (both the box plays and the dog
barks).

The model is concisely specified as a Bayesian network
shown in Figure 5. Its colored I-map is shown in Fig-
ure 6.

ball3 light1 light2

music_box

ball2

ball1

John

dog

Figure 6: The colored I-map for the music-box-dog-
John example.

The PDM contains five embedded PI submodels over

N1 = {ball1, ball3, music box},

N2 = {ball2, ball3, music box},

N3 = {ball1, ball2, ball3, music box},

N4 = {light1, light2, dog},

N5 = {music box, dog, John}.

Note that the first two PI submodels are recursively
embedded in the third PI submodel.

We generated a dataset of 2000 cases from the music-
box-dog-John domain. Using k = 3 and δh = 0.004,
the algorithm learned the I-map successfully. The
learning process is shown in Figure 7.

The algorithm started by performing the single link
search. In the first pass, one link was learned:

L1 = {(light1, dog)}

m

J

d

l2l1

(c)

b3
b2

b1

(b)

m

J

d

l2

Stage 3Stage 2Stage 1

l1b3
b2

b1

J

b1
b2

(a)

dm

l2l1b3 b3

J

m d

l2

(d)

l1
b2

b1

Figure 7: The process of learning the music-box-dog-
John model.

It took 28 search steps (28 candidate graphs tested).
In the second pass, after 27 steps, another link was
learned:

L2 = {(ball3, music box)}.

Since nothing was learned in the third pass, a 2-link-
only search was performed next. After 884 steps, three
sets of links were learned in the following order:

L3 = {(light1, light2), (light2, dog)},

L4 = {(ball2, ball3), (ball2, music box)},

L5 = {(ball1, ball3), (ball1, music box)}.

Then the algorithm backtracked to perform a single
link search with one link learned:

L6 = {(ball1, ball2)}.

During the next single link search and the following
2-link-only search, no link was added. Hence a 3-link-
only search was performed, which learned the last set
of links:

L7 = {(music box, dog), (dog, John),

(John, music box)}.

The backtracking occurred afterwards, but no more
links was learned. Finally, the algorithm halted and
returned the correct I-map. A total of 3583 candidate
graphs were tested. A summary of the experiment is
shown in Table 3.

7 CONCLUSION

PI models escape the detection of many algorithms
for learning belief networks that rely on a single link
search to detect local dependency. They form a class of
difficult PDMs for automated learning. PI models do
exist in practice with parity problems and modulus ad-
dition problems as special examples [6]. Earlier work

P(dog=b|light1=on,light2=off)=0
P(dog=b|light1=off,light2=on)=0
P(dog=b|light1=off,light2=off)=1

light ε {on,off}
ball ε {white,black}

P(light2=on)=0.7
P(light1=on)=0.5

P(ball1=w)=0.2

P(ball3=w)=0.5
P(ball2=w)=0.6 P(John=c|music_box=q,dog=b)=0

P(John=c|music_box=p,dog=b)=1

P(John=c|music_box=p,dog=q)=0
P(John=c|music_box=q,dog=q)=1

P(dog=b|light1=on,light2=on)=1
{bark,quiet}

ball1 ball2 ball3 light1 light2

dog

John
music_box

P(music_box=p|all balls=w)=1
P(music_box=p|one ball=w)=1
P(music_box=p|all balls=b)=0
P(music_box=p|one ball=b)=0John {complain,satisfied}ε

music_box ε {play,quiet}
dog ε

Figure 5: The specification of the music-box-dog-John model.

Table 3: Summary of learning music-box-dog-John
model.

i − link − only learned # graphs cross entropy
search link set tested decrement

1 L1 28 0.0822
1 L2 55 0.0069
2 L3 432 0.6109
2 L4 708 0.1922
2 L5 939 0.0146
1 L6 1149 0.4802
3 L7 2327 0.6895

by Xiang et al. [8] proposed a straightforward multi-
link search algorithm to learn PI models. In this work,
we show that when a PDM contains recursively embed-
ded PI submodels, it may escape the straightforward
multi-link search algorithm. We have presented an im-
proved algorithm that learns a DMN as an I-map of a
domain with recursively embedded PI submodels. We
have shown that the algorithm will uncover all embed-
ded PI submodels as long as the size of the submodel
is within a predetermined bound. The performance of
the algorithm is demonstrated with experiments.

We have also analyzed the complexity of the improved
algorithm. The result shows that the improved learn-
ing capability of the new algorithm only cause slight
increase in the complexity compared with the straight-
forward multi-link search algorithm.

We believe that no search steps in the improved algo-
rithm may be deleted without jeopardizing the above
learning capability. We are currently working to for-
mally establish this result.

References

[1] G.F. Cooper and E. Herskovits. A Bayesian method
for the induction of probabilistic networks from data.
Machine Learning, 9:309–347, 1992.

[2] D. Heckerman, D. Geiger, and D.M. Chickering. Learn-
ing Bayesian networks: The combination of knowledge
and statistical data. In Proceedings of the Tenth An-
nual Conference on Uncertainty in Artificial Intelli-
gence (UAI–94), pages 293–301, Seattle, WA, 1994.

[3] E. Herskovits and G.F. Cooper. Kutato: an entropy-
driven system for construction of probabilistic expert
systems from database. In Proceedings of the 6th An-
nual Conference on Uncertainty in Artificial Intelli-
gence (UAI–90), pages 54–62, Cambridge, 1990.

[4] W. Lam and F. Bacchus. Learning Bayesian networks:
an approach based on the mdl principle. Computational
Intelligence, 10(3):269–293, 1994.

[5] J. Pearl. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann,
San Mateo, California, 1988.

[6] Y. Xiang. Learning belief networks in pseudo-
independent domains. Technical Report CS-96-07, Uni-
versity of Regina, September 1996.

[7] Y. Xiang, S.K.M. Wong, and N. Cercone. Critical re-
marks on single link search in learning belief networks.
In Proceedings of the Twelfth Annual Conference on
Uncertainty in Artificial Intelligence (UAI–96), pages
564–571, Portland, Oregon, 1996.

[8] Y. Xiang, S.K.M. Wong, and N. Cercone. A ’micro-
scopic’ study of minimum entropy search in learning
decomposable Markov networks. Machine Learning,
26:65–92, 1997.

