

CIS1910 Discrete Structures in Computing (I)

Winter 2019, Solutions to Assignment 1

PART A

1. Possible answers are (a) $S = \{1,2\}$ (b) $S = \{0,1\}$ (c) $S = \{1,\{0\}\}$ (d) $S = \{0,\{0\}\}$. For example, the elements of $S = \{1,\{0\}\}$ are 1 and $\{0\}$, i.e., S does not contain 0 but contains $\{0\}$.

2. Possible answers are (a) $S=\{2,3\}$ (b) $S=\{2,\{1\}\}$ (c) $S=\{1,2\}$ (d) $S=\{1,\{1\}\}$. For example, the elements of $S=\{2,\{1\}\}$ are 2 and $\{1\}$. In particular, $\{1\}$ belongs to S. However, since 1 does not belong to S, $\{1\}$ is not a subset of S.

4. We find (a) {{}} (b) {{},{{}}, {0}, {{},0}}
(d) {{},{{}}, {0}, {1}, {{},0}, {{},1}, {0,1}, {{},0,1}}.
For example, the set {{},0} contains two elements: the empty set {} and the integer 0. Its subsets are {}, {{}, {}, 0} and {{},0}.

5. (a) This is not possible: whatever the set S, the empty set {} is a subset of S.

(b) There is only one set like that: the empty set {}.

(c) Any singleton set S has exactly two subsets: {} and S.

(d) A singleton set has 2 subsets (e.g., the subsets of $\{0\}$ are $\{\}$ and $\{0\}$) and a pair set has 4 (e.g., the subsets of $\{0,1\}$ are $\{\}, \{0\}, \{1\}$ and $\{0,1\}$. There is no set with exactly 3 subsets.

6. (a) $B \times C = \{(0,0), (0,1), (0,2), (1,0), (1,1), (1,2)\}$ and $C \times B = \{(0,0), (0,1), (1,0), (1,1), (2,0), (2,1)\}$ (b) $B \times A \times C = \{(0,0,0), (0,0,1), (0,0,2), (1,0,0), (1,0,1), (1,0,2)\}$ and $(B \times A) \times C = \{((0,0),0), ((0,0),1), ((0,0),2), ((1,0),0), ((1,0),1), ((1,0),2)\}$ (c) $B^3 = B \times B \times B = \{(0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1)\}$ and $B^2 \times B = \{((0,0),0), ((0,0),1), ((0,1),0), ((0,1),1), ((1,0),0), ((1,0),1), ((1,1),0), ((1,1),1)\}$ and $B \times B^2 = \{(0,(0,0)), (0,(0,1)), (0,(1,0)), (0,(1,1)), (1,(0,0)), (1,(0,1)), (1,(1,0)), (1,(1,1))\}$

7. (a) $B \times C = C \times B$ iff $B = \{\}, C = \{\}$ or B = C.

If B={}, C={} or B=C, we obviously have B×C=C×B. If not, B≠{}, C≠{} and B≠C, and we can show that B×C≠C×B: indeed, we can then find an element x that is in B but not C, or vice versa; the two cases are similar, so, without loss of generality, let us assume that x∈ B and x∉ C; since C is not empty, there is some element y∈C; therefore, $(x,y)\in B\timesC$, but $(x,y)\notin C\timesB$ since x∉C. (b) B×A×C=(B×A)×C iff A={}, B={} or C={}.

If A={}, B={} or C={}, we obviously have $B \times A \times C = (B \times A) \times C = {}$. If not, $A \neq {}$, $B \neq {}$ and $C \neq {}$, and $B \times A \times C \neq (B \times A) \times C$: indeed, the sets $B \times A \times C$ and $(B \times A) \times C$ are not empty then, and while the former is a set of triples, the latter is a set of pairs.

8. {}=1..0=]0,0[, {1}=1..1=[1,1], $\mathbb{N}=0..+\infty$, $\mathbb{N}^*=1..+\infty$, $\mathbb{Z}=-\infty..+\infty$, $\mathbb{Z}^-=-\infty..-1$, \mathbb{Z}^* , $\mathbb{Z}^+=1..+\infty$, $\mathbb{R}=]-\infty,+\infty[$, $\mathbb{R}^-=]-\infty,0[$, \mathbb{R}^* , $\mathbb{R}^+=]0,+\infty[$

PART B

11. We find (a) $\{0, -2\}$ (b) $\{\}$ (c) $\{-2\}$ (d) $\{-\sqrt{2}, 0, \sqrt{2}\}$. For example, here is a way to solve the first equation. Let x be a real number. $1-(x+1)^2=0$ iff $1=(x+1)^2$. This is according to (37) with $a=1-(x+1)^2$, b=0, $c=(x+1)^2$. Moreover, $(x+1)^2=1$ iff x+1=1 or x+1=-1. This is according to (34) with a=x+1, b=1. Finally, according to (37), we have x+1=1 iff x=1-1=0 and we have x+1=-1 iff x=-1-1=-2. In the end, $1-(x+1)^2=0$ iff x=0 or x=-2.

12. (a) We have to find all the real numbers x such that x belongs to the domain \mathbb{R} and $1-(x+1)^2$ belongs to the codomain \mathbb{R} . All real numbers satisfy these conditions. In other words, the domain of definition of f is \mathbb{R} .

(b) For example, we can easily show that there is no real number x such that $1-(x+1)^2 = 2$. In other words, 2 has no preimage under f; it does not belong to the range of f.

(c) Since 0 belongs to the domain of definition of f, it has an image under f: $f(0)=1-(0+1)^2=0$. (d) According to 11*a*, the preimages of 0 are 0 and -2.

(e) The domain of definition of f is then the set of all real numbers except 0 and -2

(the image of 0, or -2, would be 0, but 0 does not belong to the codomain).

13. (a) [1,+∞[

- (b) 0 does not belong to the range of f.
- (c) 0 does not have an image under f.

(d) According to 11b, the number 0 does not have a preimage under f.

(e) [1,+∞[

- 14. (a) The set of all real numbers except -1.
- (b) 1 does not belong to the range of f.
- (c) f(0)=1+1/(0+1)=2
- (d) According to 11c, the preimage of 0 is -2.
- (e) The set of all real numbers except -2 and -1.

15. (a) ℝ

- (b) 2 does not belong to the range of f.
- **(c)** f(0)=0
- (d) According to 11d, the preimages of 0 are $-\sqrt{2}$, 0 and $\sqrt{2}$.
- (e) The set of all real numbers except $-\sqrt{2}$, 0 and $\sqrt{2}$.

PART C

21. We find **(a)** $(1000\ 0100)_2$ **(b)** $(11\ 0011\ 1100\ 0110)_2$ For example:

	X								
0	1	2	4	8	16	33	66	132	div 2
	1	0	0	0	0	1	0	0	mod 2

L

22. We find **(a)** 223 **(b)** 31675 For example:

\rightarrow									
1	1	0	1	1	1	1	1		
	3	6	13	27	55	111	223		

23. We find **(a)** $(F73850)_{16}$ **(b)** $(253023316545757)_8$

For example, since $(7)_8 = (111)_2$, $(5)_8 = (101)_2$, $(6)_8 = (110)_2$, $(3)_8 = (011)_2$, etc., we have $(75634120)_8 = (111\ 101\ 110\ 011\ 100\ 001\ 010\ 000)_2 = (1111\ 0111\ 0011\ 1000\ 0101\ 0000)_2$. The result follows from the fact that $(1111)_2 = (F)_{16}$, $(0111)_2 = (7)_{16}$, $(0011)_2 = (3)_{16}$, etc.

24. We find **(a)** $(DBA45)_{16}$ **(b)** $(61727)_8$

D	^{1}A	B	¹ 3	E		5	^{3 2} 6	^{2 1} 4	3
+		F	0	7			×	7	5
D	B	A	4	5	1	4	¹ 0	5	7
					5	5	6	5	
					6	1	7	2	7