

CIS1910 Discrete Structures in Computing (I)

Winter 2019, Assignment 2

All answers must be justified in a clear, concise and complete manner. If two answers require the same explanations, justify your first answer only, and refer the reader to that justification for the second answer.

PART A (12+4=16 marks)

- **1.** Consider the following binary operations on \mathbb{R}^2 :
- $$\begin{split} \oplus : \mathbb{R}^2 \times \mathbb{R}^2 &\to \mathbb{R}^2 \\ ((a,b),(c,d)) &\mapsto (ad+bc,bd) \\ \otimes : \mathbb{R}^2 \times \mathbb{R}^2 &\to \mathbb{R}^2 \end{split}$$

 $((a,b),(c,d)) \mapsto (ac,bd)$

- (a) Show that \otimes is commutative.
- (b) Show that \oplus is associative.
- (c) Show that \otimes is not distributive over \oplus .
- (d) Show that there is a neutral element for \oplus .

2. Let \star be a binary operation on a set S. Assume the domain of definition of \star is S², assume \star is associative and n is the neutral element for \star . Now, let s and t be two elements of S. We say that t is a *left inverse* of s under \star iff t \star s = n. We say that t is a *right inverse* of s iff s \star t = n. Show that if an element of S has both a left inverse and a right inverse under \star then the left inverse and the right inverse are equal.

PART B (3.5+8.5=12 marks)

Consider the Boolean algebra ($\{0,1\},+,\cdot,-$) as in slide 2.11. The Boolean operations $+, \cdot$ and - can then be defined by the tables below. Here, the symbol + reads "or" instead of "plus", the symbol \cdot reads "and" instead of "dot", and the symbol - reads "not" instead of "bar".

Х	У	x+y	Х	У	ху	х	X
0	0	0	0	0	0	0	1
0	1	1	0	1	0	1	0
1	0	1	1	0	0		
1	1	1	1	1	1		

This Boolean algebra is at the basis of circuit design. A computer is made up of a number of circuits. The basic elements of circuits are gates. Typically, there are one or more inputs to a gate, and only one output. Gate inputs are driven by voltages having two nominal values (e.g., 0V and 5V); these values are represented by the symbols 0 and 1 respectively. The output of a gate also provides two nominal values of voltage only. Common gates are:

11. What is the output to the circuit below?

12. Construct circuits to produce the following outputs:

- *(a)* x · y
- (b) $x + \overline{x \cdot y}$
- (c) $(x+y+\overline{z})\cdot(\overline{x}+\overline{y}+z)$
- (d) $\overline{(\mathbf{x} \cdot \overline{\mathbf{y}}) + (\mathbf{y} \cdot \overline{\mathbf{z}})}$

PART C (3+4+3+5+4+4=23 marks)

When answering the questions below, be aware that there are different ways to express $p \rightarrow q$ *. For example:*

"if p, then q"	"q if p"	"p is sufficient for q"
"if p, q"	"q when p"	"a sufficient condition for q is p"
"p implies q"	"q unless not p"	"q is necessary for p"
"p only if q"	"q follows from p"	"a necessary condition for p is q"

There are also different ways to express $p \leftrightarrow q$.

21. Which of these are propositions? What are the truth values of those that are propositions?

(*a*) $\sqrt{n=2}$.

- (b) Consider an integer n: $\sqrt{n=2}$ and n=4.
- (c) Consider an integer n: if $\sqrt{n=2}$ then n=4.
- (d) How are you doing?
- (e) Most dogs fly.
- (f) Be brave.

22. Let p be the proposition "I read the newspapers" and let q be the proposition "I get depressed". Translate each of the following propositional expressions into English: (a) $\neg p$, (b) $p \lor q$, (c) $p \rightarrow q$, (d) $p \land q$, (e) $p \leftrightarrow q$, (f) $(\neg p) \rightarrow (\neg q)$, (g) $(\neg p) \land (\neg q)$, (h) $(\neg p) \lor (p \land q)$.

23. Let p be the proposition "He was very active", let q be the proposition "He had a healthy diet" and let r be "He lived for over 100 years". Translate into propositional expressions:

(a) Being very active and having a healthy diet are the reasons why he lived for over 100 years.

- (b) If he lived for over 100 years it is because and only because he had a healthy diet.
- (c) He was very active, he had a healthy diet, and he lived for over 100 years.
- (d) He lived for over 100 years, but he did not have a healthy diet.
- (e) To live for over 100 years, he had to be very active.
- (f) He was very active, but he did not have a healthy diet;

nevertheless, he lived for over 100 years.

24. Translate each of the following statements into a propositional expression involving exactly two propositions, p and q. In each case, specify what p and q are.

(a) It is necessary to wash the boss' car to get promoted.

- (b) Winds from the south imply a spring thaw.
- (c) If you read the newspaper every day, you will be informed, and conversely.
- (d) A sufficient condition for the warranty to be good

is that you bought the computer less than a year ago.

- (e) Willy gets caught whenever he cheats.
- (f) You can access the website only if you pay a subscription fee.
- (g) You can see the wizard only if the wizard is not in,

and the wizard is not in only if you can see him.

- (h) Getting elected follows from knowing the right people.
- (i) Carol gets seasick whenever she is on a boat.
- (j) It rains if it is a weekend day, and it is a weekend day if it rains.

25. True or false?

- (a) If flies are insects then elephants are mammals.
- (b) Flies are insects iff elephants are mammals.
- (c) If 1+1=3 then elephants are mammals.
- (d) If elephants are mammals then 1+1=3.
- (e) 1+1=3 iff elephants are mammals.
- (f) Elephants are mammals iff 1+1=3.
- (g) If flies are mammals then 1+1=3.
- (*h*) Flies are mammals iff 1+1=3.

26. Construct truth tables for the following propositional expressions:

- (a) $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$
- **(b)** $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \leftrightarrow r)$
- (c) $((p \leftrightarrow q) \land (q \leftrightarrow r)) \rightarrow (p \leftrightarrow r)$
- (d) $((p \leftrightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$