

CIS1910 Discrete Structures in Computing (I)

Winter 2019, Solutions to Assignment 2

PART A

1. Let (a,b), (c,d) and (e,f) be three elements of \mathbb{R}^2 .

(a) We have: $(a,b) \otimes (c,d) = (ac,bd)$	(according to the definition of \otimes)	
Moreover: $(c,d) \otimes (a,b) = (ca,db)$	(according to the definition of \otimes)	
= (ac,bd)	$(since \times is commutative)$	
In the end, $(a,b) \otimes (c,d) = (c,d) \otimes (a,b)$.		Q.E.D.

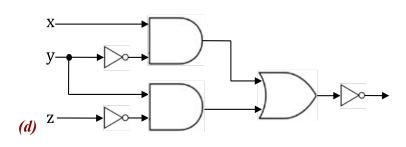
(b)
$$((a,b) \oplus (c,d)) \oplus (e,f) = (ad+bc,bd) \oplus (e,f) = ((ad+bc)f+bde,bdf)$$

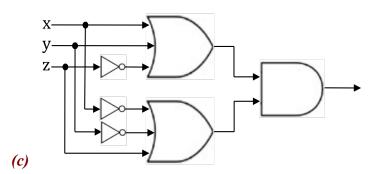
 $= (adf+bcf+bde,bdf)$
 $(a,b) \oplus ((c,d) \oplus (e,f)) = (a,b) \oplus (cf+de,df) = (adf+b(cf+de),bdf)$
 $= (adf+bcf+bde,bdf)$
In the end, $((a,b) \oplus (c,d)) \oplus (e,f) = (a,b) \oplus ((c,d) \oplus (e,f)).$ Q.E.D.

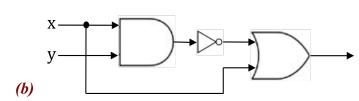
(c) For example, we have: $(0,2) \otimes ((0,1) \oplus (0,1)) = (0,2) \otimes (0,1) = (0,2)$ and $((0,2) \otimes (0,1)) \oplus ((0,2) \otimes (0,1)) = (0,2) \oplus (0,2) = (0,4)$ Since $(0,2) \otimes ((0,1) \oplus (0,1)) \neq ((0,2) \otimes (0,1)) \oplus ((0,2) \otimes (0,1))$, \otimes is not distributive over \oplus . Q.E.D.

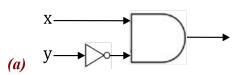
(d) It is easy to check that (0,1) is a neutral element for \oplus : $(a,b) \oplus (0,1) = (0,1) \oplus (a,b) = (a,b)$ Q.E.D.

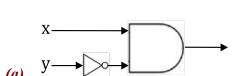
2. Let s, t and t' be elements of S. Assume t is a left inverse of s and t' is a right inverse. We have: (t*s)*t' = n*t' = t'. Moreover, since * is associative: (t*s)*t' = t*(s*t') = t*n = t In the end, t=t'.

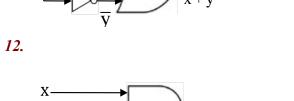


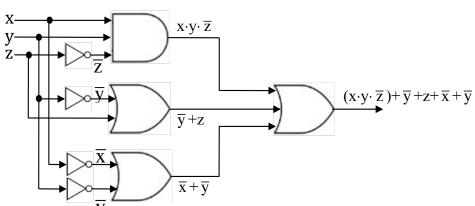












PART B

11.

PART C

21. (a)(d)(f) are not propositions, but (b)(c)(e) are; the truth value of (b) is F, the truth value of (c) is T, and the truth value of (e) is F.

- 22. (a) I don't read the newspapers.
- (b) I read the newspapers, or I get depressed.
- (c) If I read the newspapers then I get depressed.
- (d) I read the newspapers and I get depressed.
- (e) I read the newspapers if and only if I get depressed.
- (f) If I don't read the newspapers then I don't get depressed.
- (g) I don't read the newspapers and I don't get depressed.
- (*h*) I don't read the newspapers, or I read them and I get depressed.

23. (a) $(p \land q) \rightarrow r$ (b) $r \leftrightarrow q$ (c) $p \land q \land r$ (d) $r \land \neg q$ (e) $r \rightarrow p$ (f) $p \land (\neg q) \land r$

- 24. (a) $p \rightarrow q$ with p="you get promoted" and <math>q="you wash the boss' car"
- (b) $p \rightarrow q$ with p= "the winds are from the south" and q= "there will be a spring thaw"
- (c) $p \leftrightarrow q$ with p="you will be informed" and <math>q="you read the newspaper every day"
- (d) $p \rightarrow q$ with p="you bought the computer less than a year ago" and <math>q="the warranty is good"
- (e) $p \rightarrow q$ with p="Willy cheats" and <math>q="Willy gets caught"
- (f) $p \rightarrow q$ with p="you access the website" and <math>q="you must pay a subscription fee"
- (g) $p \leftrightarrow q$ with p="you can see the wizard" and <math>q="the wizard is not in"
- (h) $p \rightarrow q$ with p="you know the right people" and <math>q="you will be elected"
- (i) $p \rightarrow q$ with p= "Carol is on the boat" and q= "Carol gets seasick"
- (j) $p \leftrightarrow q$ with p= "it rains" and q= "it is a weekend day"

25. (d)(e)(f) are false, while (a)(b)(c)(g)(h) are true.

26. (a) The propositional expression $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$ is always true, as shown below. We say that it is a *tautology*.

р	q	r	p→q	q→r	p→r	$(p \rightarrow q) \land (q \rightarrow r)$	$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$
F	F	F	Т	Т	Т	Т	Т
F	F	Т	Т	Т	Т	Т	Т
F	Т	F	Т	F	Т	F	Т
F	Т	Т	Т	Т	Т	Т	Т
Т	F	F	F	Т	F	F	Т
Т	F	Т	F	Т	Т	F	Т
Т	Т	F	Т	F	F	F	Т
Т	Т	Т	Т	Т	Т	Т	Т

р	q	r	p→q	q→r	p⇔r	$(p \rightarrow q) \land (q \rightarrow r)$	$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \leftrightarrow r)$
F	F	F	Т	Т	Т	Т	Т
F	F	Т	Т	Т	F	Т	F
F	Т	F	Т	F	Т	F	Т
F	Т	Т	Т	Т	F	Т	F
Т	F	F	F	Т	F	F	Т
Т	F	Т	F	Т	Т	F	Т
Т	Т	F	Т	F	F	F	Т
Т	Т	Т	Т	Т	Т	Т	Т