

# **CIS1910** Discrete Structures in Computing (I)

Winter 2019, Assignment 4

All answers must be justified in a clear, concise and complete manner. If two answers require the same explanations, justify your first answer only, and refer the reader to that justification for the second answer.

## DEFINITIONS

(a) Let  $\mathfrak{R}$  be the triple (U,V,G), where U and V are two sets and G is a subset of U×V. We then say that  $\mathfrak{R}$  is a *binary relation over* U *and* V.

For any element u of U and for any element v of V, if (u,v) belongs to G we say that u is related to v by  $\Re$  and we write  $u\Re v$ .

The *inverse* of  $\Re$  is the relation  $\Re^{-1} = (V, U, G^{-1})$  where  $G^{-1} = \{(v, u) \in V \times U \mid (u, v) \in G\}$ .

Note that a function from U to V (see slide 1.16) is a binary relation over U and V. The inverse of a function f is the inverse  $f^{-1}$  of the relation f.

(b) Let U be a set and let  $\Re$  be a binary relation over U and U. We then say that  $\Re$  is a *binary relation on* U.

| R is <i>reflexive</i> iff:            | ∀u∈U, uℜu                                                                                                                                                     |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>R</b> is <i>symmetric</i> iff:     | $\forall (\mathbf{u},\mathbf{v}) \in \mathbf{U}^2, (\mathbf{u}\Re\mathbf{v} \to \mathbf{v}\Re\mathbf{u})$                                                     |
| <b>R</b> is <i>antisymmetric</i> iff: | $\forall (\mathbf{u}, \mathbf{v}) \in \mathbf{U}^2, [(\mathbf{u} \Re \mathbf{v} \wedge \mathbf{v} \Re \mathbf{u}) \rightarrow \mathbf{u} = \mathbf{v}]$       |
| R is <i>transitive</i> iff:           | $\forall (\mathbf{u}, \mathbf{v}, \mathbf{w}) \in \mathbf{U}^3, [(\mathbf{u} \Re \mathbf{v} \wedge \mathbf{v} \Re \mathbf{w}) \to \mathbf{u} \Re \mathbf{w}]$ |

(c) Let  $\Re$  be a binary relation on a set U. Assume  $\Re$  is reflexive, symmetric and transitive. We then say that  $\Re$  is an *equivalence relation* on U. The *equivalence class* of an element u of U is the set { $v \in U | u\Re v$ }; we also say about this set that it is an equivalence class of  $\Re$ .

(d) Let  $\Re$  be a binary relation on a set U. Assume  $\Re$  is reflexive, antisymmetric and transitive. We then say that  $\Re$  is an *order relation* on U. The order relation is *total* iff:  $\forall (u,v) \in U^2$ ,  $(u\Re v \vee v\Re u)$ 

(e) A function is *total* iff its domain and domain of definition are equal.

A function is *surjective* iff its range and codomain are equal.

A function is *injective* iff its inverse is a function.

A function is *bijective* iff it is total, surjective and injective; a *bijection* is a bijective function.

### PART A. (2+5+3 marks)

Let f=(A,B,F) be a total function.
(a) Show that if f is injective then ∀(x<sub>1</sub>,x<sub>2</sub>)∈ A<sup>2</sup>, (f(x<sub>1</sub>)=f(x<sub>2</sub>) → x<sub>1</sub>=x<sub>2</sub>).
(b) Show that if ∀(x<sub>1</sub>,x<sub>2</sub>)∈ A<sup>2</sup>, (f(x<sub>1</sub>)=f(x<sub>2</sub>) → x<sub>1</sub>=x<sub>2</sub>) then f is injective.

**2.** Consider a bijection f=(A,B,F). Show that  $f^{-1}$  is a bijection from B to A and that for any element x of A we have:  $f^{-1}(f(x))=x$ .

3. Consider a bijection f from A to B and a bijection g from B to C. Show that the function  $h : A \to C$  $x \mapsto g(f(x))$  is a bijection. (*Hint:* Use A1a and A1b.)

### PART B. (5×5 marks)

**4.** Consider the following functions, where I and J denote two subsets of the set  $\mathbb{R}$  of real numbers.

 $\begin{array}{ll} \mathbf{f}: \mathbb{R} \to \mathbb{R} & \qquad \mathbf{f}_{(\mathbf{I},\mathbf{J})}: \ \mathbf{I} \to \mathbf{J} \\ \mathbf{x} \mapsto 1/\mathbf{x} & \qquad \mathbf{x} \mapsto \mathbf{f}(\mathbf{x}) \end{array}$ 

(a) What is the domain of definition of f?

(b) Let y be an element of the codomain of f. Solve the equation f(x)=y in x. Note that you may have to consider different cases, depending on y.

(c) What is the range of f?

(d) Is f total, surjective, injective, bijective?

(e) Find a pair (I,J) such that  $f_{(I,J)}$  is bijective and its range is the range of f. What is then the inverse of  $f_{(I,J)}$ ?

5. Same questions as above, but with the function  $f : \mathbb{R} \to \mathbb{R}$  $x \mapsto x^2$ 

6. Same questions as above, but with the function  $f : \mathbb{R} \to \mathbb{R}$  $x \mapsto \sqrt{x}$  7. Same questions as above, but with the function  $f : \mathbb{R} \to \mathbb{R}$  $x \mapsto |x|$ 

8. Same questions as above, but with the function  $f : \mathbb{R} \to \mathbb{R}$  $x \mapsto 1/\sqrt{(x+1)}$ 

### PART C. (4×5 marks)

9. Let  $\Re$  be binary relation on  $\mathbb{R}$  defined as follows:  $\forall (x,y) \in \mathbb{R}^2$ ,  $(x\Re y \leftrightarrow x+y=0)$ (a) Is  $\Re$  reflexive? (b) Is it symmetric? (c) Is it antisymmetric? (d) Is it transitive?

**10.** Same questions as above, but with:  $x\Re y \leftrightarrow x-y \in \mathbb{Q}$  where  $\mathbb{Q}$  denotes the set of rational numbers.

11. Same questions as above, but with:  $x\Re y \leftrightarrow x=2y$ 

12. Same questions as above, but with:  $x\Re y \leftrightarrow xy \ge 0$ 

**13.** Same questions as above, but with:  $x\Re y \leftrightarrow x=1$ 

#### PART D. (5+3+2 marks)

In the field of image processing, an image can be defined in many different ways, and many binary relations are of interest. Here, an *image* is a total function from the set  $(0..H-1)\times(0..W-1)$  to the set  $0..2^{\ell}-1$ , where H, W and  $\ell$  are positive integers. It is an *l-bit greyscale image of height H and width W*. It can be represented by a 2-D array of numbers or of shades of grey. For example, the two arrays below represent the same 8-bit greyscale image I of height 4 and width 5; we have I(1,2)=128, I(3,1)=64, etc..

|     | y=0 | y=1 | y=2 | y=3 | y=4 |     | y=0 | y=1 | y=2 | y=3 | y=4 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| x=0 | 0   | 64  | 128 | 192 | 255 | x=0 |     |     |     |     |     |
| x=1 | 0   | 64  | 128 | 192 | 255 | x=1 |     |     |     |     |     |
| x=2 | 0   | 64  | 128 | 192 | 255 | x=2 |     |     |     |     |     |
| x=3 | 0   | 64  | 128 | 192 | 255 | x=3 |     |     |     |     |     |

An element of the codomain  $0..2^{\ell}-1$  of an image is a *grey level*. A total function from  $0..2^{\ell}-1$  to  $0..2^{\ell}-1$  is a *grey-level mapping*, or *lookup table*. A grey-level mapping can be used to change the grey levels of an image.

In the following, G denotes the set of bijections from  $0..2^{\ell}-1$  to  $0..2^{\ell}-1$  and  $\mathcal{R}$  denotes the binary relation on the set of  $\ell$ -bit greyscale images of height H and width W defined by: I  $\mathcal{R} J \leftrightarrow (\exists g \in G, \forall (x,y) \in (0..H-1) \times (0..W-1), J(x,y) = g(I(x,y)))$ 

14. Show that  $\mathcal{R}$  is an equivalence relation. (*Hint*: Use A2 and A3.)

**15.** (a) Show that there exists an image whose equivalence class is of cardinality  $2^{\ell}$ . (b) Show that if H×W≥2 there is an image whose equivalence class is of cardinality  $2^{\ell} \times (2^{\ell}-1)$ . (c) Show that if H×W≥2<sup> $\ell$ </sup> then there exists an image whose equivalence class is of cardinality  $(2^{\ell})!$  (no formal proof required).

**16.** (a) Consider the images I (left) and J (right) below. J was built from I using some grey-level mapping g of G, i.e., J(x,y) was defined as g(I(x,y)), and the two images I and J are related by  $\mathcal{R}$ . How was g chosen?



(b) Consider the images I (left) and J (right) below. J was built from I using some grey-level mapping g of G, i.e., J(x,y) was defined as g(I(x,y)), and the two images I and J are related by  $\mathcal{R}$ . How was g chosen?

