

CIS1910 Discrete Structures in Computing (I)

Winter 2019, Solutions to Assignment 4

PART A.

1. (a) Consider two elements x_1 and x_2 of A such that $f(x_1)=f(x_2)$. Since $(x_1,f(x_1))$ and $(x_2,f(x_2))=(x_2,f(x_1))$ belong to F, the pairs $(f(x_1),x_1)$ and $(f(x_1),x_2)$ belong to F^{-1} . If f is injective then the relation f^{-1} is a function, which implies that $x_1=x_2$. (b) Consider two pairs (y,x_1) and (y,x_2) of F^{-1} . Then (x_1,y) and (x_2,y) belong to F, which means that $y=f(x_1)=f(x_2)$, which implies that $x_1=x_2$ according to the premise. We have shown that f^{-1} is a function, i.e., f is injective.

2. (a) Since f is a bijection, it is a function, and that function is injective, which means that f^{-1} is a *function* from B to A. (b) Consider an element y of B. Since f is surjective, there is an element x of A such that $(x,y) \in F$. Therefore, $(y,x) \in F^{-1}$, which means that y has an image under f^{-1} , i.e., y belongs to the domain of definition of f^{-1} . We have shown that f^{-1} is *total*. (c) Consider an element x of A. Since f is total, there is an element y of B such that $(x,y) \in F$. Therefore, $(y,x) \in F^{-1}$, which means that x has a preimage under f^{-1} , i.e., x belongs to the range of f^{-1} . The function f^{-1} is *surjective*. (d) Since $(F^{-1})^{-1}$ is equal to F, the relation $(f^{-1})^{-1}$ is equal to f, which we know is a function. We have shown that f^{-1} is *injective*. (e) In the end, f^{-1} is *bijective*. (f) Consider an element x of A. Since f is total, it is defined at x, and the pair (x,f(x)) belongs to F. Therefore, $(f(x),x) \in F^{-1}$, which means that $f^{-1}(f(x))=x$.

3. (a) Consider an element x of A. Since f is total, x has an image f(x) under f, and that image belongs to B. Moreover, since g is total, f(x) has an image g(f(x))=h(x) under g, and that image belongs to C. We have shown that h is *total*. (b) Let z be an element of C. Since g is surjective, z has a preimage y under g, i.e., g(y)=z. Moreover, since f is surjective, y has a preimage x under f, i.e., f(x)=y. In the end, g(f(x))=h(x)=z, i.e., x is a preimage of z under h. The function h is *surjective*. (c) Let x_1 and x_2 be two elements of A such that $h(x_1)=h(x_2)$, i.e., $g(f(x_1))=g(f(x_2))$. Since g is injective, $f(x_1)=f(x_2)$ (according to A1a), and since f is injective, $x_1=x_2$ (A1a again). Therefore, h is *injective* (according to A1b). (d) In the end, h is a *bijection*.

PART B.

See Lab 1 Part B and Lab 7 Part B for the use of biconditionals.

4. (a) The domain of definition of f is the set of all the elements x of the domain \mathbb{R} such that 1/x belongs to the codomain \mathbb{R} . It is $\{x \in \mathbb{R} \mid 1/x \in \mathbb{R}\} = \{x \in \mathbb{R} \mid x \neq 0\} = \mathbb{R}^*$.

(b) If y=0 then the solution set is \emptyset . If y≠0 we have $1/x=y \leftrightarrow x=1/y$ and the solution set is $\{1/y\}$.

(c) According to (b), any element y of the codomain of f has a preimage under f, except 0. The range of f is, therefore, \mathbb{R}^* .

(d) f is NOT total, since its domain and domain of definition are not equal; see (a). f is NOT surjective, since its codomain and range are not equal; see (c). Now, consider an element y of the codomain of f and two elements x_0 and x_1 of the domain. According to (b), y has at most one preimage under f: the number 1/y. Therefore, if (y,x_0) and (y,x_1) belong to the graph of the relation f^{-1} , then $x_0=x_1$. This means that f^{-1} is actually a function, and, therefore, f is *injective*. Finally, f is NOT bijective, since it is not total and not surjective.

(e) Let I= \mathbb{R}^* and J= \mathbb{R}^* . Like f, the function $f_{(I,J)}$ is injective. Contrary to f, however, it is total (since its domain and domain of definition are equal) and surjective (since its codomain and range are equal). In the end, $f_{(I,J)}$ is bijective and its inverse is the function $y \mapsto 1/y$ from J to I. In other words (since we can choose the symbol x there instead of y), we have $f_{(I,J)}^{-1} = f_{(I,J)}$.

5. *(a)* **R**

(b) Let x and y be two real numbers. If y<0 then the solution set is \emptyset . If y=0 then the solution set is $\{0\}$. If y>0 we have $x^2=y \leftrightarrow (x=-\sqrt{y} \lor x=\sqrt{y})$ and the solution set is $\{-\sqrt{y}, \sqrt{y}\}$.

(c) According to (b), the range of f is $[0, +\infty)$.

(d) f is *total*. f is *NOT surjective* and, therefore, *NOT bijective*. f is *NOT injective* either: for example, according to (b), the preimages of 1 under f are -1 and 1; since both (1,-1) and (1,1) belong to its graph, the relation f^{-1} is not a function.

(e) If I=J=[0,+ ∞ [then the function $f_{(I,J)}$ is bijective and its inverse is:

$$\begin{array}{c} [0,+\infty[\to [0,+\infty[\\ x \mapsto \sqrt{x} \end{array}] \end{array}$$

6. *(a)* [0,+∞[

(b) If y<0 then the solution set is \emptyset .

If $y \ge 0$ we have $\sqrt{x=y} \leftrightarrow x=y^2$ and the solution set is $\{y^2\}$.

(c) According to (b), the range of f is $[0, +\infty)$.

(d) f is NOT total, NOT surjective, NOT bijective, but it is injective.

(e) If I=J=[0,+ ∞ [then the function $f_{(I,J)}$ is bijective and its inverse is:

$$[0,+\infty[\to [0,+\infty[x \mapsto x^2]$$

7. *(a)* ℝ

(b) If y<0 then the solution set is \emptyset .

If y=0 then the solution set is $\{0\}$.

If y>0 we have $|x|=y \leftrightarrow (x=y \lor x=-y)$ and the solution set is $\{-y,y\}$.

(c) According to (b), the range of f is $[0, +\infty)$.

(d) f is total, but it is NOT surjective, NOT injective, NOT bijective.

(e) If I=J=[0,+ ∞ [then the function $f_{(I,J)}$ is bijective and its inverse is itself:

$$[0,+\infty[\to [0,+\infty[$$

 x \mapsto x

8. (a) The domain of definition of f is the set of all the elements x of the domain \mathbb{R} such that $1/\sqrt{(x+1)}$ belongs to the codomain \mathbb{R} . It is $\{x \in \mathbb{R} \mid 1/\sqrt{(x+1)} \in \mathbb{R}\} = \{x \in \mathbb{R} \mid x+1>0\} =]-1,+\infty[$.

(b) If $y \le 0$ then the solution set is \emptyset . If y > 0 then

 $1/\sqrt{(x+1)}=y$ $\leftrightarrow \sqrt{(x+1)}=1/y$ $\leftrightarrow x+1=1/y^{2}$ $\leftrightarrow x=-1+1/y^{2}$

and the solution set is $\{-1+1/y^2\}$.

(c) The range of f is
$$\mathbb{R}^+$$
.

(d) f is NOT total, NOT surjective, NOT bijective, but it is injective.

(e) Let I=]-1,+ ∞ [and J=]0,+ ∞ [. The function $f_{(I,J)}$ is bijective and its inverse is:

 $]-1,+\infty[\rightarrow]0,+\infty[$ $x\mapsto -1+1/x^{2}$

PART C.

9. x+y=0

- Since 1+1≠0, we have 1ℜ1. The proposition ∀x, (xℜx) is not true. The relation is *NOT reflexive*.
- Consider any real numbers x and y. Assume xℜy. Then x+y=0, i.e., y+x=0, i.e., yℜx. Therefore, the proposition ∀x, ∀y, (xℜy→yℜx) is true. The relation is *symmetric*.
- Since 1+(-1)=(-1)+1=0, we have 1ℜ-1 and -1ℜ1. The proposition ∀x, ∀y, ((xℜy∧yℜx)→x=y) is not true. The relation is *NOT antisymmetric*.
- We have 1ℜ−1 and −1ℜ1, but 1ℜ1. The proposition ∀x, ∀y, ∀z, ((xℜy∧yℜz)→xℜz) is not true. The relation is *NOT transitive*.

10. x−y∈ Q

- Consider any real number x. Since x-x, i.e., 0, is a rational number, we have x $\Re x$. The relation is *reflexive*.
- Consider any real numbers x and y. Assume xNy. Then x-y is a rational number (i.e., there exist two integers p and q such that x-y=p/q). Therefore, y-x is a rational number (we have y-x=P/Q with P=-p and Q=q). In other words, yNx. The relation is *symmetric*.
- Since 1–0 and 0–1 are rational numbers, we have 190 and 091. The relation is *NOT antisymmetric*.
- Consider any real numbers x, y and z. Assume xRy and yRz. Then x-y and y-z are rational numbers (say, p/q and p'/q'). Therefore, x-z=(x-y)+(y-z) is a rational number too (we have x-z=(p/q)+(p'/q')=(pq'+p'q)/(pq)=P/Q with P=pq'+p'q and Q=pq). In other words, xRz. The relation is *transitive*.

11. x=2y

- 1**%**1. The relation is *NOT reflexive*.
- 2\mathcal{R}1 but 1\mathcal{K}2. The relation is *NOT symmetric*.
- Consider any real numbers x and y. Assume $x\Re y$ and $y\Re x$. Then x=2y and y=2x. Therefore, x=2(2x)=4x and y=2(2y)=4y, i.e., x=0 and y=0. Hence, x=y. The relation is *antisymmetric*.
- We have 4\mathcal{R}2 and 2\mathcal{R}1, but 4\mathcal{K}1. The relation is *NOT transitive*.

12. xy≥0

- Consider any real number x. Since $x^2 \ge 0$, we have $x \Re x$. The relation is *reflexive*.
- Consider any real numbers x and y. Assume xℜy. Then xy≥0, i.e., yx≥0, i.e., yℜx. The relation is *symmetric*.
- We have $1\Re 2$ and $2\Re 1$. The relation is *NOT antisymmetric*.
- We have $1\Re 0$ and $0\Re -1$, but $1\Re -1$. The relation is *NOT transitive*.

13. x=1

- Since $0 \neq 1$, we have 0%0. The relation is *NOT reflexive*.
- $1\Re 2$ (since 1=1). However, $2\Re 1$ (since $2\neq 1$). The relation is **NOT symmetric**.
- Consider any real numbers x and y. Assume xRy and yRx. Then x=1 and y=1. Therefore, x=y. The relation is *antisymmetric*.
- Consider any real numbers x, y and z. Assume $x\Re y$ and $y\Re z$. Then x=1 (and y=1). Therefore, $x\Re z$. The relation is *transitive*.

PART D.

14. Let I, J and K be *l*-bit greyscale images of height H and width W.

(a) Consider the function $id: 0..2^{\ell}-1 \rightarrow 0..2^{\ell}-1$

$$\mathbf{u}\mapsto\mathbf{u}$$

id is a bijection, i.e., it is an element of G. Moreover: $\forall (x,y) \in (0..H-1) \times (0..W-1)$, I(x,y) = id(I(x,y))which means that I \mathcal{R} I. We have shown that \mathcal{R} is *reflexive*.

(b) Assume I \mathcal{R} J. Then, there exists an element g of G such that for any (x,y) of (0..H-1)×(0..W-1) we have J(x,y) = g(I(x,y)). We know from A2 that g⁻¹ is a bijection, i.e., it belongs to G. Moreover, according to A2, we have $g^{-1}(J(x,y)) = g^{-1}(g(I(x,y))) = I(x,y)$, which means that J \mathcal{R} I. We have shown that \mathcal{R} is *symmetric*.

(c) Assume I \mathcal{R} J and J \mathcal{R} K. Then, there exist two elements g and h of G such that for any (x,y) of (0..H-1)×(0..W-1) we have J(x,y) = g(I(x,y)) and K(x,y)=h(J(x,y)), and, therefore, K(x,y)=h(g(I(x,y))). Consider the function $k : 0..2^{\ell}-1 \rightarrow 0..2^{\ell}-1$ $u \mapsto h(g(u))$

We know from A3 that k is a bijection, i.e., it belongs to G. In the end, we have found an element of G, the bijection k, such that for any (x,y) of $(0.H-1)\times(0.W-1)$ we have K(x,y)=k(I(x,y)). This means that I \mathcal{R} K. We have shown that \mathcal{R} is *transitive*.

(d) In the end, \mathcal{R} is an *equivalence relation*.

15. (a) Consider an image I whose range is $\{0\}$. Assume the image J is related to I. Then, there exists a bijection g of G such that for any (x,y) of $(0..H-1)\times(0..W-1)$ we have J(x,y)=g(I(x,y))=g(0). Since there are 2^{ℓ} ways to choose g(0), there are 2^{ℓ} ways to choose J. The equivalence class of I is of cardinality 2^{ℓ} .

(b) Consider an image I whose range is $\{0,1\}$. Assume the image J is related to I. Then, there exists a bijection g of G such that for any (x,y) of $(0..H-1)\times(0..W-1)$ we have either J(x,y)=g(I(x,y))=g(0) or J(x,y)=g(I(x,y))=g(1). Since there are 2^{ℓ} ways to choose g(0) and $2^{\ell}-1$ ways left to choose g(1), there are $2^{\ell} \times (2^{\ell}-1)$ ways to choose J. The equivalence class of I is of cardinality $2^{\ell} \times (2^{\ell}-1)$.

(c) Consider an image I whose range is $0..2^{\ell}-1$. Assume the image J is related to I. Using the same reasoning as above, we can show that there are $2^{\ell} \times (2^{\ell}-1) \times ... \times 1$ ways to choose J. The equivalence class of I is of cardinality $(2^{\ell})!$

16. (a) A random value (out of 2^{ℓ}) was chosen for g(0), a random value (out of the $2^{\ell}-1$ values left) was chosen for g(1), etc. (b) g : $u \mapsto (2^{\ell}-1)-u$