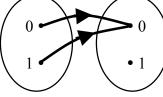


CIS1910 Discrete Structures in Computing (I) Winter 2019, Lab 3 Notes

Here are recommended practice exercises. Many have been covered in Lab 3.

I.

1. The unary operation $(\{0,1\},\{0,1\},\{(0,0),(1,0)\})$ can be represented by a diagram, but it can also be represented by a table:



element	image
0	0
1	0

Represent each possible unary operation on $\{0,1\}$ by a table.

- **2.** What are all the binary operations on $\{0,1\}$?
- **3.** Let n be a positive integer. How many n-ary operations can we define on $\{0,1\}$?

П.

Consider a binary operation \bigstar on a set S.

- **1.** Assume x, y and z are three elements of S such that $x \neq y = x \neq z$. Can we then write y = z?
- **2.** Let u and v be two elements of S. Can we write $u \neq v = v \neq u$?
- **3.** Let u, v and w be three elements of S. Can we write $u \neq (v \neq w) = (u \neq v) \neq w$?
- 4. Assume n is an element of S such that:

for any u in S we have $u \star n = n \star u = u$.

As seen in class, we then say that n is a *neutral element* for \bigstar . Show that no other element of S can be a neutral element for \bigstar .

5. Assume *a* is an element of S such that:

for any u in S we have $u \star a = a \star u = a$.

As seen in class, we then say that *a* is an *absorbing element* for \bigstar . Show that no other element of S can be an absorbing element for \bigstar .

III.

Consider a set B, a unary operation - on B, and two binary operations + and \cdot on B. Assume 0 is the neutral element for + and 1 is the neutral element for \cdot . For any x of B we have:

$$x+0=0+x=x$$
 (1a)

$$\mathbf{x} \cdot \mathbf{1} = \mathbf{1} \cdot \mathbf{x} = \mathbf{x} \tag{1b}$$

Assume, moreover, that for any x, y and z of B we have:

$$x+y=y+x \tag{2a}$$

$$\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x} \tag{2b}$$

$$(x+y)+z=x+(y+z)$$
 (3a)
(x,y) $z=x (y,z)$ (3b)

$$(\mathbf{X} \cdot \mathbf{y}) \cdot \mathbf{Z} - \mathbf{X} \cdot (\mathbf{y} \cdot \mathbf{Z}) \tag{30}$$

$$\begin{array}{ll} x+(y \cdot z)=(x+y) \cdot (x+z) & (4a) \\ (x \cdot y)+z=(x+z) \cdot (y+z) & (4b) \end{array}$$

$$x \cdot (y+z) = (x \cdot y) + (x \cdot z)$$

$$(4c)$$

$$(4c)$$

$$(x+y)\cdot z=(x\cdot z)+(y\cdot z) \tag{4d}$$

$$\mathbf{x} + \overline{\mathbf{x}} = \overline{\mathbf{x}} + \mathbf{x} = 1 \tag{5a}$$

$$\mathbf{x} \cdot \overline{\mathbf{x}} = \overline{\mathbf{x}} \cdot \mathbf{x} = \mathbf{0} \tag{5b}$$

0. (a) (1a) means that 0 is the neutral element for + and (1b) that 1 is the neutral element for \cdot . What about (2a) to (4d)? (b) If \cdot is given a higher precedence than +, some brackets in these equalities become unnecessary. Which ones? (c) If \cdot and + are given the same precedence and left-to-right associativity is assumed, some brackets in these equalities become unnecessary. Which ones?

- **1.** Show that $0+0=1\cdot0=0\cdot1=0$ and $1+1=1\cdot1=1$.
- **2.** Show that $1 = \overline{0}$.
- **3.** Show that for any two elements x and y of B, if x+y=1 and $x \cdot y=0$ then $y=\overline{x}$.
- **4.** Show that for any x of B we have $x = \overline{\overline{x}}$.
- **5.** Show that for any x of B we have x+x=x.
- **6.** Show that for any x of B we have 1+x=x+1=1.
- **7.** Show that for any x of B we have $0 \cdot x = x \cdot 0 = 0$.
- **8.** Show that for any two elements x and y of B we have $\overline{x} \cdot \overline{y} = \overline{x + y}$.