Prof. Pascal Matsakis

CIS1910

1. Basics

Reading assignment: Up to Section 1.1 of the zyBook

CIS1910

Basics

THE THREE COMMANDMENTS

tuples and sets functions numeral systems

CIS1910

THE THREE COMMANDMENTS

Basics

1 Thou shalt tell the truth, the whole truth, and nothing but the truth.

I'm a billionaire. If I were a billionaire then I would go to the moon every day. $7 \times 3 + 1 = 15$ It is not true that $7 \times 3 + 1 = 15$. It is false that $7 \times 3 + 1 = 15$. It is wrong to say that $7 \times 3 + 1 = 15$ is true. Do we have $7 \times 3 + 1 = 15$?

Reading assignment: Up to Section 1.1 of the zyBook

CIS1910	Basics
THE THREE COMMANDMENTS	1.4
 Thou shalt designate all things with appropriate symbols. Follow standards. Keep it short, simple, and clear. 	
Your instructor Pascal (or kfst, Fathead, 🔆, 1)	
How many digits in the hand? 5 (or $\underline{\mathcal{F}}$, 🙀)	
There is a student in this class, let's call him John (or Joe, Jim, s)
There is this integer, let's call it i (or j, k, m, n)	
Consider two integers, i and j. Consider ten other integers, i_1 , i_2 ,	, i ₁₀ .
a, b, c,, z, q, β, y,, m, 0, 1, 2,, 9, +, -, x, ÷, <, <, A, V	* *

Reading assignment: Up to Section 1.1 of the zyBook

Reading assignment: Up to Section 1.1 of the zyBook

the three commandments

TUPLES AND SETS

functions numeral systems

CIS1910	Basics
TUPLES AND SETS: Tuples	1.8

Consider a nonnegative integer n. An *n-tuple*, or *tuple* of *length* n, is a collection of n objects where order and multiplicity have significance.

(u) is a 1-tuple, (0,1) is a 2-tuple, (Pascal, ©, Guelph) is a 3-tuple. We have $(0,1)\neq(1,0)$ and $(0,0,1)\neq(0,1)$.

The objects in a tuple are the **terms** of the tuple.

The first term of ((x,y),z) is (x,y) and the second term is z.

The 0-tuple is the **empty tuple**; a 1-tuple is a **singleton**; a 2-tuple is a **pair**; a 3-tuple is a **triple**; etc.

() is the empty tuple, (u) is a singleton, (0,1) is a pair.

CIS1910 Basics TUPLES AND SETS: Sets 1.9

set: a collection of objects; order and multiplicity have NO significance.

 $A=\{0,1\}=\{1,0\}=\{0,1,0,0,1\}, B=\{0,1,2,3,...,99\}, C=\{1,1/2,1/3,1/4,...\} \\ D=\{(0,1),3.1,Dumbo,B\}\neq((0,1),3.1,Dumbo,B)$

The objects in a set are called the **elements** of the set. The notation $e \in S$ denotes that e is an element of the set S (read "e is an element of S" or "e belongs to S" or "S contains e").

0∈A, 2∉A, A∉B, 78∈B, 0.125∈C, B∈D, 0∉D, {}∉A, {}∉{}, {}∈{{}}

The set with no elements is the **empty set**; it is denoted by $\{\}$ or \emptyset . A set with exactly one element is a **singleton** (**set**); a set with two elements is a **pair** (**set**); etc.

```
Reading assignment: Up to Section 1.2 of the zyBook
```

CIS1910	Basics
TUPLES AND SETS: Subsets and Supersets	1.10

Let A and B be two sets.

We say that A is a **subset** of B (or that A is included in B; B includes A; B is a **superset** of A) and we write $A \subseteq B$, iff every element of A is also an element of B.

We say that A is a **proper subset** of B (or that B is a **proper superset** of A), and we write $A \subseteq B$, iff $A \subseteq B$ and $A \neq B$.

A={0,1}, B={0,1,2,3,...,99}, D={Pascal,Dumbo,3.1,B} A \subseteq A, A $\not\subset$ A, A \subseteq B, A \subseteq B, B $\not\subset$ D, $\emptyset \subseteq$ {}, {} \subseteq A

CIS1910	Basics
TUPLES AND SETS: Cartesian Product	1.11

Let A and B be sets. The **Cartesian product** of A and B, denoted by AxB, is the set of all pairs (a,b), where a \in A and b \in B. AxA is also denoted by A².

Let A, B, C be sets. The **Cartesian product** of A, B, C, denoted by AxBxC, is the set of all triples (a,b,c), where a \in A, b \in B, c \in C. AxAxA is also denoted by A³.

etc.

 $\{0,1\}x\{\}=\{\}, \{0,1\}^2=\{(0,0),(0,1),(1,0),(1,1)\}, \\ \{0,1\}x\{u,v,w\}=\{(0,u),(0,v),(0,w),(1,u),(1,v),(1,w)\}$

Reading assignment: Up to Section 1.3 of the zyBook

CIS1910	Basics
TUPLES AND SETS: Common Number Sets	1.12

N is the set $\{0,1,2,...\}$ of natural numbers. Z is the set $\{...,-2,-1,0,1,2,...\}$ of integers. Z⁺ is the set $\{1,2,3,...\}$ of positive integers. R is the set of real numbers. R⁻ is the set of negative real numbers. R* is the set of nonzero real numbers. etc.

Reading assignment: Up to Section 1.3 of the zyBook

CIS1910	Basics
TUPLES AND SETS: Integer Intervals	1.13

Let m and n be two integers.

m..n is the set of all the integers that are greater than or equal to m and less than or equal to n.

 $m.+\infty$ is the set of all the integers that are greater than or equal to m.

 $-\infty$...n is the set of all the integers that are less than or equal to n.

etc.

 $\begin{array}{l} 0..9 = \{0,1,2,3,4,5,6,7,8,9\} \\ -\infty..+\infty = \mathbb{Z} \\ 1..+\infty = \mathbb{Z}^+ \end{array}$

Reading assignment: Up to Section 1.3 of the zyBook

CIS1910	Basics
TUPLES AND SETS: Real Intervals	1.14

Let u and v be two real numbers.

[u,v] is the set of all the real numbers that are greater than or equal to u and less than or equal to v.

]u,v[is the set of all the real numbers that are greater than u and less than v.

[u,v[is the set of all the real numbers that are greater than or equal to u and less than v.

 $[u, +\infty)$ is the set of all the real numbers that are greater than or equal to u.

 $]-\infty,v[$ is the set of all the real numbers that are less than v.

]−∞,0[= ℝ⁻	
[4,4]={4}	
[4,4[=Ø	

etc.

the three commandments tuples and sets

FUNCTIONS

numeral systems

Let U and V be two sets. A **function** from U to V is a triple (U,V,G) where G is a subset of UxV such that for any $u \in U$, $v_1 \in V$ and $v_2 \in V$:

if
$$(u,v_1) \in G$$
 and $(u,v_2) \in G$ then $v_1 = v_2$.

U is the *domain* of the function, V the *codomain*, G the *graph*.

CIS1910	Basics
FUNCTIONS: Images, Preimages	1.17

Consider a function f=(U,V,G).

If (u,v) belongs to G then v is denoted by f(u), i.e., **f(u)=v**. It reads "f of u is v", "the *image* of u under f is v" or "u is a *preimage* of v under f".

Reading assignment: Up to Section 1.4 of the zyBook

CIS1910	Basics
FUNCTIONS: Domain of Definition	1.18

Consider a function f=(U,V,G).

The **domain of definition** of f is the subset of U defined as follows: u of U belongs to the domain of definition iff it has an image under f (we then say that f is **defined at** u).

CIS1910	Basics
FUNCTIONS: Range	1.19

Consider a function f=(U,V,G).

The **range** of f is the subset of V defined as follows: v of V belongs to the range iff it has a preimage under f.

Reading assignment: Up to Section 1.5 of the zyBook

CIS1910		Basics
FUNCTIONS: No	otation	1.20
	a function f]
f:u⊖f(u)	a function f that maps u to f(u); u is the input variable	information
$f: U \rightarrow V$	a function f from U to V	same
$\begin{array}{c} f: U \rightarrow V \\ u \mapsto f(u) \end{array}$	a function f from U to V that maps u to f(u)	information
u ⊢3−2u	a function from some set (maybe \mathbb{R} , or a subset of \mathbb{R}) to some other set (same) that maps u to 3–2u, i.e., if the function is defined at u then the image of u is 3–2u	
f:u⊢3-2u	same as above, except that the function has a name: f	
	Reading assignment: Up to Section 1.5 of the zyBoc	DK

CIS1910 FUNCTIONS: Notation	Basics 1.21
f : (u,v) → f((u,v))	a function f whose domain is a set of 2-tuples and that maps (u,v) to f((u,v)); u and v are the input variables
$f:(u,v)\mapsto f(u,v)$	same as above (abuse of notation)
the function f(u)	not allowed in 1910 (misuse of notation)
the function 3–2u	not allowed in 1910 (misuse of notation)

Reading assignment: Up to Section 1.6 of the zyBook

CIS1910	Basics
FUNCTIONS: Examples	1.22

Consider the function f : $\mathbb{R} \to \mathbb{R}$ $x \mapsto 2 - \sqrt{x}$

Domain is \mathbb{R} and codomain is \mathbb{R} . Domain of definition is $[0,+\infty[$ and range is $]-\infty,2]$. For any x in $[0,+\infty[$, $f(x)=2-\sqrt{x}$. $f(\not>1), f(0)=2, f(3)=2-\sqrt{3}, f(9)=-1$

Consider the function f : $[-10,10] \rightarrow [0,+\infty[$ $x \mapsto 2-\sqrt{x}$

Domain is [-10,10] and codomain is $[0,+\infty[$. Domain of definition is [0,4] and range is [0,2]. For any x in [0,4], $f(x)=2-\sqrt{x}$. $f((1), f(0)=2, f(3)=2-\sqrt{3}, f(2))$

the three commandments tuples and sets functions

NUMERAL SYSTEMS

CIS1910	Basics
NUMERAL SYSTEMS: Quotient and Remainder	1.24

For any $a \in \mathbb{N}$, $d \in \mathbb{N}$, with $d > 0$,	a is the dividend , d is the divisor ,
there exist $q \in \mathbb{N}$, $r \in \mathbb{N}$, with $r < d$, such that $a = dq + r$.	q is the quotient , r is the remainder .
q and r are unique.	q is denoted by $a \ div \ d$ and r is denoted by $a \ mod \ d$.

How many times does 3 "fit" into 7? 2 times, and 7=2x3+12 = 7 div 3 and 1 = 7 mod 3

CIS1910	Basics
NUMERAL SYSTEMS: Base b Expan	sion 1.25
For any $b \in \mathbb{N}$, $n \in \mathbb{N}$, with $b > 1$, $n > 0$, there exist $k \in \mathbb{N}$, $a_k \in \mathbb{N}$, $a_{k-1} \in \mathbb{N}$, $a_0 \in \mathbb{N}$, with $a_k < b$, $a_{k-1} < b$, $a_0 < b$ and $a_k > 0$ such that $n = a_k b^k + a_{k-1} b^{k-1} + + a_0 b^0$. k , a_k , a_{k-1} , a_0 are unique.	This representation of n is the base b expansion of n . It is denoted by $(a_k a_{k-1} \dots a_0)_b$. $a_k, a_{k-1}, \dots a_0$ are base b digits .
11 in terms of powers of 2: $11=1x2^3+0x$ $k=3, a_3=1, a_3=1, a_4=1$	$a_2^{2+1}x^{2^1+1}x^{2^0}a_2^{-1}=0, a_1^{-1}=1, a_0^{-1}=1$
197 in terms of powers of 3: $197=2x3^4+1$	$x_{3}^{3}+0x_{2}^{3}+2x_{3}^{1}+2x_{3}^{0}$
$k=4, a_4=2, a_4=2, a_{197}=(21022)$	$a_{3}=1, a_{2}=0, a_{1}=2, a_{0}=2$

Reading assignment: Up to Section 2.1 of the zyBook

CIS1910	Basics
NUMERAL SYSTEMS: Common Bases	1.26
b=10: decimal expansion b=16: hexadecimal expansion b=8: octal expansion b=2: binary expansion	
The decimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. The hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D The octal digits are 0, 1, 2, 3, 4, 5, 6, 7. The binary digits, or bits , are 0, 1.	9, E, F.

hexadecimal, octal and binary representation of the integers 0 through 15																
b=10	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
b=16	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
b=8	0	1	2	3	4	5	6	7	10	11	12	13	14	15	16	17
b=2	0	1	10	11	100	101	110	111	1000	1001	1010	1011	1100	1101	1110	1111

Reading assignment: Up to Section 2.1 of the zyBook


```
Reading assignment: Up to Section 2.1 of the zyBook
```

CIS1910	Basics							
NUMERAL SYSTEMS: Base 10 to	o <i>b</i> 1.28							
637=(?) ₄								
$637 = (((2 \times 4 + 1) \times 4 + 3) \times 4 + 3) \times 4 + 1)$ $div 4 \longrightarrow mod$ $159 = ((2 \times 4 + 1) \times 4 + 3) \times 4 + 3$ $div 4 \longrightarrow mod 4$ $-39 = (2 \times 4 + 1) \times 4 + 3$ 3	nd 4 L							
div 4 \longrightarrow mod 4 present the calculation like t $9 = 2 \times 4 + 1$ 3								
$\int div 4 \rightarrow mod 4$ $\int 2 = 2 \qquad 1$	0 2 9 39 159 637 div 4							
0 2	63/=(21331) ₄							

CIS1910

NUMERAL SYSTEMS: Base 2 to 8/16 and Vice Versa 1.29

Basics

 $(11010100)_2 = (?)_8$

Since $8=2^3$ make groups of **3** terms starting from right: $(11010100)_2 = 1 \times 2^7 + 1 \times 2^6 + 0 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 0$ $=(1\times2^7+1\times2^6)+(0\times2^5+1\times2^4+0\times2^3)+(1\times2^2+0\times2^1+0)$ $=(1\times2^{1}+1)\times2^{6}+(0\times2^{2}+1\times2^{1}+0)\times2^{3}+(1\times2^{2}+0\times2^{1}+0)$ $=(1\times2^{1}+1)\times8^{2}+(0\times2^{2}+1\times2^{1}+0)\times8^{1}+(1\times2^{2}+0\times2^{1}+0)$ $3 \times 8^2 +$ = 2 $\times 8^{1} +$ 4 = (3 2 **4**)₈ present the $(11010100)_2 = (11\ 010\ 100)_2 = (324)_8$ calculation like this

Other example: $(47)_{16} = (?)_2$ $(47)_{16} = (0100\ 0111)_2 = (1000111)_2$

Reading assignment: Up to Section 2.1 of the zyBook

CIS1910	Basics
NUMERAL SYSTEMS: When 10+10=100	1.30

_		
Baco	0.	
Dase	0:	
	···	

 1 1 7 5 1

+ 743

= 1714

Base 2:

1

$$\begin{array}{r}
1 1 1 0 \\
x & 1 0 \\
\hline
1 1 1 1 1 0 \\
1 1 1 0 \\
\hline
1 1 0 \\
\hline
1 1 0 0 \\
\hline
1 0 0 1 1 0
\end{array}$$

the three commandments tuples and sets functions numeral systems

END