CIS1910

3. Logic

- □ The basis of all mathematical reasoning and of all automated reasoning
- Practical applications to the design of computing machines, to the specification of systems, to artificial intelligence, to computer programming, to programming languages...

Reading assignment: Up to Section 3.1 of the zyBook

CIS1910

Logic

PROPOSITIONAL LOGIC predicate logic

CIS1910	Logic
PROPOSITIONAL LOGIC: Propositions	3.3

A **proposition** is a declarative sentence, i.e., it is a sentence that declares a fact.

"Toronto is the capital of France" "It will rain tomorrow" "1+1=2"

This fact is either true or false, i.e., the *truth value* of the proposition is either *T* or *F*.

A **propositional variable** is a variable that represents an element of the set of all propositions. It is denoted by a letter like p, q, r.

Reading assignment: Up to Section 3.1 of the zyBook

CIS1910	Logic
PROPOSITIONAL LOGIC: Operations	3.4

A **propositional operation** is an operation on the set of all propositions. The most common operations are:

¬ ("not", *negation*, unary)

∧ ("and", *conjunction*, binary)

∨ ("or", *disjunction*, binary)

→ ("if... then...", **conditional**, binary)

↔ ("if and only if", *biconditional*, binary)

A propositional operation is defined by a *truth table*. For example:

p ¬p	p q p∧q	p q p∨q	p q p→q	p q p↔q
FT	FFF	FFF	FF T	FF T
T F	FT F	F T T	FT T	FT F
	TF F	T F T	TFF	T F F
	ТТ Т		TT T	TT T

Reading assignment: Up to Section 3.2 of the zyBook

CIS1910	Logic
PROPOSITIONAL LOGIC: Expressions	3.5

A **propositional expression** is a finite sequence of symbols. The accepted symbols are:

T (which denotes a proposition that is true), F (which denotes a proposition that is false), p, q, r, etc. (which denote propositional variables), \neg , \land , \lor , \rightarrow , \leftrightarrow , etc. (which denote propositional operations), and brackets.

The sequence should make sense, i.e.,

it should become a proposition once specific propositions are considered. Note that a truth table can be attached to any propositional expression.

T, p, $p \land F$, $(\neg p) \lor q$, $(q \rightarrow (\neg r)) \leftrightarrow p$ are propositional expressions. The table attached to $(\neg p) \lor q$ is:

	p	q	¬р	(¬p)Vq	
	F	F	Ť	T	
	F	Ť	Ť	Ť	
	T	F	F	F	
_	Т	Т	F	Т	

Reading assignment: Up to Section 3.3 of the zyBook

CIS1910 PROPOSITIONAL LOGIC: Ec	uivalences	Logic 3.6
Two propositional exp iff they always have t We then use the sym A tautology is a prop	pressions are equivalent the same truth value. bol =	3.0
	propositional expression .e., that is equivalent to F.	
A <i>contingency</i> is a propositional expression that is neither a tautology nor a contradiction.		
$p \rightarrow q \equiv (\neg q) \rightarrow (\neg p)$ $p \rightarrow q \equiv (\neg p) \lor q$ $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$	$\neg p \lor p$ is a tautology. $\neg p \land p$ is a contradiction.	

Reading assignment: Up to Section 3.4 of the zyBook

CIS1910	Logic
PROPOSITIONAL LOGIC: A Note on the Conditional	3.7

 $p \rightarrow q$: there are different ways to express it in English.

"if p, then q"	``q if p″	"p is sufficient for q"
"if p, q″	"q when p"	"a sufficient condition for q is p"
"p implies q"	"q unless not p"	"q is necessary for p"
"p only if q"	"q follows from p"	"a necessary condition for p is q"

In $p \rightarrow q$, p is the **antecedent** and q is the **consequent**

 $q \rightarrow p$ is the **converse** of $p \rightarrow q$ $(\neg p) \rightarrow (\neg q)$ is the **inverse** of $p \rightarrow q$ $(\neg q) \rightarrow (\neg p)$ is the **contrapositive** of $p \rightarrow q$

Reading assignment: Up to Section 3.5 of the zyBook

CIS1910	Logic
PROPOSITIONAL LOGIC: The Link to Boolean Algebra	3.8

Let \mathscr{D} be the set of all propositions. ($\mathscr{D}, \lor, \land, \neg$) behaves like a Boolean algebra:

 $p \lor F \equiv p \qquad p \lor \neg p \equiv T$ $p \land T \equiv p \qquad p \land \neg p \equiv F$ $p \lor q \equiv q \lor p \qquad (p \lor q) \lor r \equiv p \lor (q \lor r)$ $p \land q \equiv q \land p \qquad (p \land q) \land r \equiv p \land (q \land r)$ $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$

Therefore, the idempotent laws, the De Morgan's laws, etc., apply.

Reading assignment: Up to Section 3.6 of the zyBook

propositional logic

PREDICATE LOGIC

_CIS1910	Logic
PREDICATE LOGIC: Predicates (1/2)	3.10

Let U be the set of all cities in the world. Let u be an element of U. Let P(u) be the statement "u *is the capital of France"*.

P(u) becomes a proposition once a specific element is considered for u.

P(*Paris*) is the proposition "*Paris is the capital of France*" (and it is true). P(*Toronto*) is the proposition "*Toronto is the capital of France*" (it is false).

U is the **universe** of the variable u. P is a unary **predicate**:

 $\begin{array}{c} \mathsf{P} : \mathsf{U} \to \mathscr{P} \\ \mathsf{u} \mapsto \mathsf{P}(\mathsf{u}) \end{array}$

CIS1910LogicPREDICATE LOGIC: Predicates (2/2)3.11

Consider $Q : \mathbb{N} \times \mathbb{Z} \to \mathscr{D}$ $(u,v) \mapsto Q(u,v)$ where Q(u,v) is the statement "u+v=0".

Q(u,v) becomes a proposition once specific elements are considered for u and v.

Q(0,1) is the proposition "0+1=0'' (and it is false). Q(1,-1) is the proposition "1+(-1)=0'' (and it is true).

Q is a binary predicate. The universe of u is \mathbb{N} . The universe of v is \mathbb{Z} .

Reading assignment: Up to Section 3.7 of the zyBook

CIS1910		Logic
PREDICATE LOGIC:	Universal Quantifier (1/2)	3.12

Consider $P : \{-1,0,1\} \rightarrow \mathscr{P}$ $u \mapsto P(u)$ where P(u) is the statement " $u^2 \ge u$ ".

 $\forall u, P(u) \text{ (read "for all } u, P \text{ of } u") \text{ is the proposition } P(-1) \land P(0) \land P(1).$ It is true, since P(-1), P(0) and P(1) are all true, i.e., since P(u) is true for all possible values of u.

The proposition $\forall u$, P(u) is the **universal quantification** of P. The symbol \forall is the **universal quantifier**.

Note

You can consider a subset U' of $\{-1,0,1\}$ and the proposition $\forall u \in U'$, P(u). Whatever the predicate P, the proposition $\forall u \in \{\}$, P(u) is true.

Reading assignment: Up to Section 3.8 of the zyBook

CIS1910LogicPREDICATE LOGIC: Universal Quantifier (2/2)3.13

 $\begin{array}{ll} \text{Consider} & Q: \ensuremath{\mathbb{R}} \to \ensuremath{\mathscr{D}} \\ & u \mapsto Q(u) \ensuremath{\text{where}} Q(u) \ensuremath{\text{ is the statement ``u^2 \geq u''.} \end{array}$

 $\forall u, Q(u)$ is false, since there is a u for which Q(u) is false. Q(0.5), for instance, is false: 0.5 is a *counterexample* of $\forall u, Q(u)$.

Note

The proposition $\forall u \in [1, +\infty[, Q(u) \text{ can also be written as } \forall u \ge 1, Q(u) (and it is true).$

Reading assignment: Up to Section 3.8 of the zyBook

CIS1910	Logic
PREDICATE LOGIC: Existential Quantifier (1/2)	3.14

Consider $P : \{-1,0,1\} \rightarrow \mathscr{P}$ $u \mapsto P(u)$ where P(u) is the statement "|u| > u''.

 $\exists u, P(u) \text{ (read ``there exists u such that P of u'')}$ is the proposition $P(-1) \lor P(0) \lor P(1)$. It is true, since, e.g., P(-1) is true.

The proposition $\exists u, P(u)$ is the **existential quantification** of P. The symbol \exists is the **existential quantifier**.

Note

You can consider a subset U' of $\{-1,0,1\}$ and the proposition $\exists u \in U'$, P(u). Whatever the predicate P, the proposition $\exists u \in \{\}$, P(u) is false.

Reading assignment: Up to Section 3.9 of the zyBook

CIS1910LogicPREDICATE LOGIC: Existential Quantifier (2/2)3.15

Consider $Q : \mathbb{R} \to \mathscr{D}$ $u \mapsto Q(u)$ where Q(u) is the statement "|u| > u''.

 $\exists u, Q(u)$ is true, since there is a u for which Q(u) is true. Q(-1), for instance, is true: -1 is an **example** of $\exists u, Q(u)$.

Note

The proposition $\exists u \in [0, +\infty[, Q(u) \text{ can also be written as } \exists u \ge 0, Q(u) (and it is false).$

Reading assignment: Up to Section 3.9 of the zyBook

CIS1910	Logic
PREDICATE LOGIC: Operations on Predicates	3.16
Consider the predicates $P: U \rightarrow \mathscr{P}$ and $Q: U \rightarrow \mathscr{P}$ $u \mapsto P(u)$ $u \mapsto Q(u)$	_
$\neg P$ denotes the predicate $\neg P : U \rightarrow \mathscr{P}$ $u \mapsto \neg (P(u))$	
$P \land Q$ denotes the predicate $P \land Q : U \rightarrow \mathscr{P}$ $u \mapsto P(u) \land Q(u)$	
$\exists u, \neg P(u)$ denotes the proposition $\exists u, (\neg P)(u)$.	_
$\forall u$, (P(u) $\land Q(u)$) denotes the proposition $\forall u$, (P $\land Q$)(u).	

CIS1910

PREDICATE LOGIC: Nested Quantifiers

Consider the predicate $P : UxV \rightarrow \mathscr{P}$ $(u,v) \mapsto P(u,v)$

Consider the predicate $Q: U \rightarrow \mathscr{P}$ $u \mapsto \forall v, P(u,v)$ $\forall u, Q(u) \text{ can be rewritten as } \forall u, (\forall v, P(u,v))$ $\exists u, Q(u) \text{ can be rewritten as } \exists u, (\forall v, P(u,v))$

Consider the predicate $R : U \rightarrow \mathcal{P}$ $u \mapsto \exists v, P(u,v)$

 $\begin{array}{ll} \forall u, R(u) \text{ can be rewritten as} & \forall u, (\exists v, P(u,v)) \\ \exists u, R(u) \text{ can be rewritten as} & \exists u, (\exists v, P(u,v)) \end{array}$

Reading assignment: Up to Section 3.10 of the zyBook

CIS1910	Logic
PREDICATE LOGIC: Expressions	3.18

A *predicate expression* is a finite sequence of symbols. The accepted symbols are symbols that denote:

quantifiers (e.g., \forall , \exists), predicates (e.g., P, Q, R), variables (e.g., u, v, w), values (e.g., "John", 2, {1}) operations (e.g., \neg , \land , \lor , \rightarrow , \leftrightarrow), commas and brackets.

The sequence should make sense, i.e., it should become a proposition once specific predicates are considered.

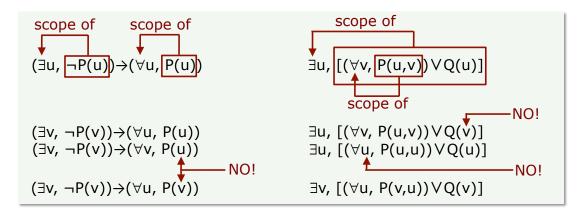
∃u, P(u)	∃u, (∀v, P(u,v))
∀u, (P(u)∧¬Q(u))	∃u, [(∀v, P(u,v))∨Q(u)]
(∃u, ¬P(u))→(∀u, P(u))	[∃u, (∀v, P(u,v))]∧(∀u, Q(u))

Logic 3.17

CIS1910	Logic
PREDICATE LOGIC: Scope and Binding	3.19

The part of a predicate expression to which a quantifier is applied is the **scope** of the quantifier.

When a quantifier is used on a variable, it **binds** the variable in the scope of the quantifier.



Reading assignment: Up to Section 4.1 of the zyBook

_CIS1910	Logic
PREDICATE LOGIC: Equivalences	3.20

Two predicate expressions are **equivalent** iff they always yield the same truth value. We then use the symbol \equiv

 $\neg (\forall u, P(u)) \equiv \exists u, \neg P(u)$ $\neg (\exists u, P(u)) \equiv \forall u, \neg P(u)$ $\forall u, (P(u) \land Q(u)) \equiv (\forall u, P(u)) \land (\forall u, Q(u))$ $\exists u, (P(u) \lor Q(u)) \equiv (\exists u, P(u)) \lor (\exists u, Q(u))$ $\forall u, (\forall v, P(u,v)) \equiv \forall v, (\forall u, P(u,v)) \equiv \forall (u,v), P(u,v)$ $\exists u, (\exists v, P(u,v)) \equiv \exists v, (\exists u, P(u,v)) \equiv \exists (u,v), P(u,v)$

Logic
3.21

propositional logic predicate logic END