

where n is a nonnegative integer, then S is a *finite set*. n is the *cardinality* of S. We write |S|=n.

A set which is not finite is an *infinite set*.

 $\begin{array}{l} \mathsf{A}{=}\{0,1\}, \ \mathsf{B}{=}\{0,1,2,3,...,99\}, \\ \mathsf{C}{=}\{1,1/2,1/3,1/4,...\}, \ \mathsf{D}{=}\{\mathsf{Pascal},\mathsf{Guelph},3.1,\mathsf{B}\} \\ \mathsf{A}, \ \mathsf{B}, \ \mathsf{D}, \ \{\}, \ \{\}\} \ \text{are finite:} \ |\mathsf{A}|{=}2, \ |\mathsf{B}|{=}100, \ |\mathsf{D}|{=}4, \ |\{\}|{=}0, \ |\{\}\}|{=}1 \\ \mathsf{C} \ \text{is infinite.} \end{array}$

CIS1910	Set Theory
POWER SET OF A SET	5.3

The **power set** of a set S is the set **2**^s of all subsets of S.

 $2^{\{0,1\}} = \{\emptyset, \{0\}, \{1\}, \{0,1\}\}, 2^{\emptyset} = \{\emptyset\}, 2^{\{\emptyset\}} = \{\emptyset, \{\emptyset\}\}.$ Let S be a set: we have $\emptyset \in 2^{S}$ and $S \in 2^{S}$.

Assume S is a finite set: we have $|2^{S}|=2^{|S|}$.

Reading assignment: Up to Section 5.2 of the zyBook

CIS1910	Set Theory
TRUTH SET OF A UNARY PREDICATE	5.4

{u∈ U | P(u)}, where P is a unary predicate P : U→ 𝒫 u → P(u), denotes the set of elements of U such that P(u) is true. It is defined using set builder notation. It is called the truth set of P. It is a subset of U, and U is called the universal set.

P : $\mathbb{Z} \rightarrow \mathscr{P}$ n → "n is even" The truth set of P is

 $\{n \in \mathbb{Z} \mid "n \text{ is even}"\} = \{n \in \mathbb{Z} \mid \exists k \in \mathbb{Z}, n = 2k\} = \{..., -2, 0, 2, 4, ...\}$

CIS1910Set TheoryTRUTH SET OF A BINARY PREDICATE5.5

 $\begin{aligned} \{(\mathbf{u},\mathbf{v}) \in \mathcal{U} \times \mathcal{V} \mid \mathbf{Q}(\mathbf{u},\mathbf{v}) \}, \text{ where } \mathbf{Q} \text{ is a binary predicate } \mathbf{Q} : \mathcal{U} \times \mathcal{V} \rightarrow \boldsymbol{\mathscr{D}} \\ & (\mathbf{u},\mathbf{v}) \mapsto \mathbf{Q}(\mathbf{u},\mathbf{v}), \end{aligned}$

denotes the set of elements of $\mathcal{U} \times \mathcal{V}$ such that Q(u,v) is true. It is defined using **set builder notation**. It is called the **truth set** of Q. It is a subset of $\mathcal{U} \times \mathcal{V}$, and $\mathcal{U} \times \mathcal{V}$ is called the **universal set**.

$$\begin{array}{c} \mathbf{Q} : \mathbb{Z}^2 \to \boldsymbol{\mathscr{P}} \\ (\mathbf{m}, \mathbf{n}) \to ``\mathbf{mn} = 1'' \end{array}$$

The truth set of Q is $\{(m,n) \in \mathbb{Z}^2 \mid mn=1\} = \{(-1,-1),(1,1)\}$

Reading assignment: Up to Section 5.3 of the zyBook

CIS1910	Set Theory
COMMON NUMBER SETS	5.6

$$\begin{split} \mathbb{Z}^{+} &= \{n \in \mathbb{Z} \mid n > 0\} \\ 2\mathbb{Z} &= \{n \in \mathbb{Z} \mid \exists k \in \mathbb{Z}, n = 2k\} = \{2k\}_{k \in \mathbb{Z}} \\ \mathbb{R}^{*} &= \{x \in \mathbb{R} \mid x \neq 0\} \\ \mathbb{Q} &= \{x \in \mathbb{R} \mid \exists p \in \mathbb{Z}, \exists q \in \mathbb{Z}^{+}, x = p/q\} = \{p/q\}_{(p,q) \in \mathbb{Z} \times \mathbb{Z}^{+}} \\ \mathbb{Q}^{-} &= \{x \in \mathbb{Q} \mid x < 0\} \end{split}$$

CIS1910 NUMBER INTERVALS

Examples of Integer Intervals Let m and n be two integers.

$\mathbf{mn} = \{ \mathbf{x} \in \mathbb{Z} \mid \mathbf{m} \le \mathbf{x} \land \mathbf{x} \le \mathbf{n} \}$	bounded
m+∞ = {x∈ℤ m≤x}	half-bounded
-∞n = {x∈ℤ x≤n}	left-unbounded

Examples of Real Intervals Let u and v be two real numbers.

$[\mathbf{u},\mathbf{v}] = \{\mathbf{x} \in \mathbb{R} \mid \mathbf{u} \le \mathbf{x} \land \mathbf{x} \le \mathbf{v}\}$	closed, bounded
$]u,v[= {x \in \mathbb{R} u < x \land x < v}$	open, bounded
$[\mathbf{u},\mathbf{v}] = \{\mathbf{x} \in \mathbb{R} \mid \mathbf{u} \leq \mathbf{x} \land \mathbf{x} < \mathbf{v}\}$	half-closed, right-open, bounded
$[u, +\infty) = \{x \in \mathbb{R} \mid u \le x\}$	closed, left-bounded
]−∞,v[= {x∈ℝ x <v}< th=""><th>open, half-unbounded</th></v}<>	open, half-unbounded

Reading assignment: Up to Section 5.4 of the zyBook

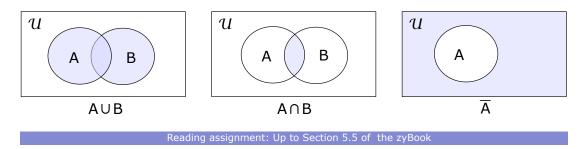
CIS1910	Set Theory
UNION, INTERSECTION, COMPLEMENT	5.8

Let \mathcal{U} be the universal set (any nonempty set), and let A and B be two sets (i.e., two subsets of \mathcal{U}).

The set $\{x \in \mathcal{U} \mid x \in A \lor x \in B\}$ is called the **union** of the sets A and B. It is denoted by AUB. The symbol U defines a binary operation on $2^{\mathcal{U}}$.

The set $\{x \in \mathcal{U} \mid x \in A \land x \in B\}$ is called the *intersection* of A and B. It is denoted by A∩B. The symbol ∩ defines a binary operation on $2^{\mathcal{U}}$. (Note that if A∩B={}, then we say that A and B are *disjoint*.)

The set $\{x \in \mathcal{U} \mid x \notin A\}$ is called the **complement** of the set A. It is denoted by \overline{A} . The symbol $\overline{}$ defines a unary operation on $2^{\mathcal{U}}$.



CIS1910 THE LINK TO BOOLEAN ALGEBRA

Theorem

 $(2^{u}, \cup, \cap, \overline{})$ is a Boolean algebra: we have, for all A, B and C in 2^{u} ,

 $A \cup \{\} = A \qquad A \cup \overline{A} = \mathcal{U} \\ A \cap \mathcal{U} = A \qquad A \cap \overline{A} = \{\}$ $A \cup B = B \cup A \qquad (A \cup B) \cup C = A \cup (B \cup C) \\ A \cap B = B \cap A \qquad (A \cap B) \cap C = A \cap (B \cap C) \\ A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \\ A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Therefore, the idempotent laws, the De Morgan's laws, etc., apply.

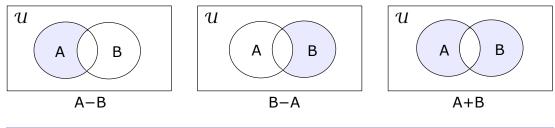
Reading assignment: Up to Section 5.5 of the zyBook

CIS1910	Set Theory
DIFFERENCE AND SYMMETRIC DIFFERENCE	5.10

Let \mathcal{U} be the universal set (any nonempty set), and let A and B be two sets (i.e., two subsets of \mathcal{U}).

The set $\{x \in \mathcal{U} \mid x \in A \land x \notin B\}$ is called the **difference** of A and B. It is denoted by A–B. Note that A–B=A $\cap \overline{B}$ and, usually, A–B \neq B–A.

The set $\{x \in \mathcal{U} \mid (x \in A \land x \notin B) \lor (x \notin A \land x \in B) \}$ is the **symmetric difference** of the sets A and B. It is denoted by A+B. Note that A+B = (A-B) \cup (B-A), and A+B=B+A.



Reading assignment: Up to Section 6.1 of the zyBook

CIS1910

MEMBERSHIP TABLES

Set	Theory			
	5.11			

	Α	В	A∪B	
	0	0	0	
_	0	1	1	
	1	0	1	
	1	1	1	

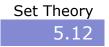
Consider any element x of the universal set \mathcal{U} :

If x does not belong to A but belongs to B then x belongs to A∪B. If x belongs to A and belongs to B then x belongs to A∪B.

Α	В	A∩B	А	Ā
0	0	0	0	1
0	1	0	1	0
1	0	0		
1	1	1		

Reading assignment: Up to Section 6.1 of the zyBook

CIS1910



END