University	of	Guelph
------------	----	--------

Prof. Pascal Matsakis

CIS1910

6. Binary Relations

Reading assignment: Up to Section 6.1 of the zyBook

CIS1910

Binary Relations

OVER TWO SETS

on a set equivalence relations order relations

CIS1910

6.3

OVER TWO SETS: Definition

Let U and V be two sets. A **binary relation over** U **and** V is a triple R=(U,V,G) where G is a subset of UxV.

U is the *domain*, V is the *codomain*, G is the *graph*. When $(u,v) \in G$ we write **uRv** (read "u is related to v by R").

U={bad,pink,elephant}, V={a,b,c,d}, G={(bad,a),(bad,b),(bad,d),(elephant,a)}, R=(U,V,G)

The relation R can be read "is a word that contains the letter". We have, e.g., *bad* R *d*, *elephant* R *a*, *elephant* \not *b*, *pink* \not *a*

R	а	b	с	d	
bad	1	1	0	1	
pink	0	0	0	0	
elephant	1	0	0	0	

Reading assignment: Up to Section 6.2 of the zyBook

CIS1910	E	Bina	ry I	Relations
OVER TWO SETS: Representation				6.4
Let U and V be two sets. A binary relation over U a is a triple $R=(U,V,G)$ where G is a subset of UxV. U is the domain , V is the codomain , G is the graph When $(u,v) \in G$ we write uRv (read "u is related to v	nd by F	∨ ₹″).		
U={bad,pink,elephant}, V={a,b,c,d}, G={(bad,a),(bad,b),(bad,d),(elephant,a)}, R=(U,V,G)			
digraph representation				
mat	rix I	repi	ese	entation
bad pink elephant d	1 0 1	1 0 0	0 0 0	1 0 0
Peading assignment: Up to Section 6.2 of the TVRC	ok			
	JUK			

Consider a binary relation R=(U,V,G). The *inverse* of R is $R^{-1}=(V,U,G^{-1})$ with $G^{-1}=\{(v,u)\in VxU \mid uRv\}$.

CIS1910	Binary Relations
OVER TWO SETS: Composition	6.6

Consider two binary relations $R_1 = (U,V,G_1)$ and $R_2 = (V,W,G_2)$. The *composition* of R_1 and R_2 is $R_2 \circ R_1 = (U,W,G)$ (read " R_2 compose R_1 ") with $G = \{(u,w) \in UxW \mid \exists v \in V, (uR_1v \land vR_2w)\}$.

Reading assignment: Up to Section 6.4 of the zyBook

over two sets

ON A SET

equivalence relations order relations

CIS1910	Binary Relations
ON A SET: Definition	6.8

A relation over U and U is a *binary relation on* U.

Reading assignment: Up to Section 6.4 of the zyBook

Let R be a binary relation on some set U.

R is reflexive iff:	∀u, (uRu)
R is symmetric iff:	$\forall u, \forall v, (uRv \rightarrow vRu)$
R is antisymmetric iff:	$\forall u, \forall v, ((uRv \land vRu) \rightarrow u=v)$
R is transitive iff:	$\forall u, \forall v, \forall w, ((uRv \land vRw) \rightarrow uRw)$

Reading assignment: Up to Section 6.4 of the zyBook

Reading assignment: Up to Section 6.4 of the zyBook

CIS1910

Binary Relations

over two sets on a set EQUIVALENCE RELATIONS order relations

CIS1910	Binary Relations
EQUIVALENCE RELATIONS: Definition	6.13
Let R be a binary relation on some set U. We say that R is an <i>equivalence relation</i> on U iff R is reflexive , symmetric and transitive i.e. $\forall u, (uRu)$ $\forall u, \forall v, (uRv \rightarrow vRu)$ $\forall u, \forall v, \forall w, ((uRv \land vRw) \rightarrow uRw)$	1 2 3 4 1 1 0 1 0 2 0 1 0 1 3 1 0 1 0 4 0 1 0 1 equivalence relation
Reading assignment: 11n to Section 6.5 of the z	vBook

CIS1910	Binary Relations
EQUIVALENCE RELATIONS: Notation	6.14

An equivalence relation is often denoted by a symbol that resembles = (which is an equivalence relation on the set of real numbers)

u ~ v reads "u *is equivalent to* v" or "u *and* v *are equivalent"*

CIS1910	Binary	Relations
EQUIVALENCE RELATIONS:	Equivalence Classes	6.15

Let \sim be an equivalence relation on a set U and let u be an element of U.

The **equivalence class** of u (with respect to ~) is $[\mathbf{u}] = \{v \in U \mid u \sim v\}$. Any element v of [u] is called a *representative* of [u], and [u]=[v].

Consider the binary relation on \mathbb{Z} defined by: for any x and y in \mathbb{Z} , x is related to y iff x and y have the same parity. This relation is an equivalence relation. There are two equivalence classes:

Reading assignment: Up to Section 6.5 of the zyBook

CIS1910	Binary Relations
EQUIVALENCE RELATIONS: Partitions	6.16

Let \sim be an equivalence relation on a set U and let u be an element of U.

Any equivalence class is a nonempty set. Any two distinct equivalence classes are disjoint. Any element of U belongs to some equivalence class.

the equivalence classes form a partition of U

 (\mathbb{Z})

• 5

-27

011

∕ –6∙

4 0

Consider the binary relation on \mathbb{Z} defined by: for any x and y in \mathbb{Z} , x is related to y iff x and y have the same parity. This relation is an equivalence relation. There are two equivalence classes:

$$\begin{bmatrix} 0 \end{bmatrix} = \begin{bmatrix} 2 \end{bmatrix} = \begin{bmatrix} -2 \end{bmatrix} = 2\mathbb{Z} = \{\dots, -4, -2, 0, 2, 4, \dots \} \\ \begin{bmatrix} 1 \end{bmatrix} = \begin{bmatrix} 3 \end{bmatrix} = \begin{bmatrix} -1 \end{bmatrix} = \mathbb{Z} - 2\mathbb{Z} = \{\dots, -3, -1, 1, 3, 5, \dots \}$$
We have: $\begin{bmatrix} 0 \end{bmatrix} \neq \{\}$ and $\begin{bmatrix} 1 \end{bmatrix} \neq \{\}$

$$\begin{bmatrix} 0 \end{bmatrix} \cap \begin{bmatrix} 1 \end{bmatrix} = \{\} \\ \begin{bmatrix} 0 \end{bmatrix} \cup \begin{bmatrix} 1 \end{bmatrix} = \{\} \\ \begin{bmatrix} 0 \end{bmatrix} \cup \begin{bmatrix} 1 \end{bmatrix} = \mathbb{Z} \end{bmatrix}$$

$$\begin{bmatrix} \begin{bmatrix} 0 \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix} = \begin{bmatrix} 2 \end{bmatrix}$$

EQUIVALENCE RELATIONS: Example

The digraph above represents an equivalence relation on $\{a,b,c,d,e,f\}$. There are three equivalence classes: [a], [d] and [f].

 $\begin{array}{c} [a] \neq \{\} \text{ and } [d] \neq \{\} \text{ and } [f] \neq \{\} \\ [a] \cap [d] = \{\} \text{ and } [a] \cap [f] = \{\} \text{ and } [d] \cap [f] = \{\} \end{array} \right\} \begin{array}{c} \{[a], [d], [f]\} \\ is \ a \ 3-partition \\ of \ \{a,b,c,d,e,f\} \end{array} \right\}$

Reading assignment: Up to Section 6.5 of the zyBook

CIS1910

CIS1910

Binary Relations

over two sets on a set equivalence relations ORDER RELATIONS

CIS1910	Binary Relations
ORDER RELATIONS: Total	6.20

Let R be an order relation on some set U.

Two elements u and v of U are *comparable* iff uRv or vRu. Two elements of U are *incomparable* iff they are not comparable.

If any two elements are comparable, then R is a **total order relation** on U and (U,R) is a **totally ordered set**.

An order relation is often denoted by a symbol that resembles \leq (which is an order relation on the set of real numbers)

 $u \preceq v$ reads "u is less than or equal to v" or "v is greater than or equal to u"

Reading assignment: Up to Section 7.1 of the zyBook

CIS1910	Binary Relations
ORDER RELATIONS: Hasse Diagram (1/5)	6.22

An order relation can be represented by a *Hasse diagram* **1**/ represent the relation by a digraph

CIS1910	Binary Relations
ORDER RELATIONS: Hasse Diagram (2/5)	6.23

An order relation can be represented by a *Hasse diagram* **2/** remove the loops

Reading assignment: Up to Section 7.1 of the zyBook

CIS1910	Binary Relations
ORDER RELATIONS: Hasse Diagram (3/5)	6.24
An order relation can be represented by a Hasse di 3/ remove the edges that can be retrieved from tra	a gram nsitivity

Reading assignment: Up to Section 7.2 of the zyBook

Consider an ordered set (U, \preceq).

Reading assignment: Up to Section 7.2 of the zyBook

Let V be a subset of U and let e be an element of U. <u>e is an **upper bound** of V iff: $\forall v \in V, (v \leq e)$ </u> <u>e is a **lower bound** of V iff: $\forall v \in V, (e \leq v)$ </u>

- e is the* **supremum** of V iff e is an upper bound of V and e \leq u for any upper bound u of V.
- e is the* **infimum** of V iff

e is a lower bound of V and $u \leq e$ for any lower bound u of V.

over two sets on a set equivalence relations order relations END