UNIVERSITY SGUELPH

CIS1910, Midterm Exam, W19

There are 55 questions, including 5 BONUS questions. 23 of the questions are multiple-choice questions, and 32 are short answer questions. Each question is worth 1 point.

Part A: MULTIPLE-CHOICE QUESTIONS

Your answers must be recorded on the Scantron sheet.

Consider the following four sentences:

- (i) Can I say that 7×3+1=15?
- (ii) $7 \times 3 + 1 = 15$ might be true; I'm not sure.
- (iii) It is true to say that it is false to say that $7 \times 3 + 1 = 15$.
- (iv) Consider a real number z."

How many of these sentences can you safely write in your assignment paper?

- **A.** 0
- **B.** 1
- **C.** 2
- **D.** 3
- **E.** 4

CIS1910

MIDTERM W19 – Part A

QUESTION 2

Consider the following four statements:

- (i) 1 is the first term of the tuple.
- (ii) 1 is the first element of the tuple.
- (iii) 1 is the first term of the set.
- (iv) 1 is the first element of the set.

How many of these statements may be correct, depending on the tuple or set?

- **A.** 0
- **B.** 1
- **C.** 2
- **D.** 3
- **E.** 4

Consider the following four statements:

- (i) $\forall u, \forall v, P(u,v) \equiv \forall v, \forall u, P(u,v)$
- (ii) $\forall u, \exists v, P(u,v) \equiv \exists v, \forall u, P(u,v)$
- (iii) $\exists u, \forall v, P(u,v) \equiv \forall v, \exists u, P(u,v)$
- (iv) $\exists u, \exists v, P(u,v) \equiv \exists v, \exists u, P(u,v)$

How many of these statements are correct?

A. 0 **B.** 1

- **C.** 2
- **D.** 3
- **E.** 4

CIS1910

MIDTERM W19 - Part A

QUESTION 4

Let P(u,v) be the statement: "u+v=u-v''Assume the universe of both variables is \mathbb{Z} . Now, consider the following four statements:

(i)	∀u,	∀v,	P(u,v)
/::\	Ψu	$\exists v$	D(11,1)

- (ii) $\forall u, \exists v, P(u,v)$
- (iii) $\exists u, \forall v, P(u,v)$
- (iv) ∃u, ∃v, P(u,v)

How many of these statements are correct?

- **A.** 0
- **B.** 1
- **C.** 2 **D.** 3
- **E.** 4

Consider the following four statements:

- (i) The length of the string zzyzx is 3.
- (ii) The lengths of the strings $zzyzx\lambda$ and zzyzx are the same.
- (iii) The string zzyzx is an element of $\{x,y,z\}^5$.
- (iv) The string zzyzx is the concatenation of the strings zz and yzx.

How many of these statements are correct?

- **A.** 0
- **B.** 1
- **C.** 2 **D.** 3
- **E.** 4

CIS1910

MIDTERM W19 - Part A

QUESTION 6

Let x, y and z be three integers. Consider the following four statements:

- (i) x divides y iff:
 - ∃m∈ℤ, y=mx
- (ii) y is a multiple of x iff: $\exists m \in \mathbb{Z}, y=mx$
- (iii) x is a factor of y iff: $\exists m \in \mathbb{Z}, y = mx$
- (iv) z is a linear combination of x and y iff: $\exists m \in \mathbb{Z}, \exists n \in \mathbb{Z}, z=mx+ny$

How many of these statements are correct?

- **A.** 0
- **B.** 1
- **C.** 2
- **D.** 3
- **E.** 4

QUESTION 7

Consider the following four statements:

(i)	There is a set S such that
(ii)	the set of all the subsets of S is {}. There is a set S such that
(iii)	There is a set S such that the set of all the subsets of S is $\{\emptyset\}$.
(iv)	There is a set S such that the set of all the subsets of S contains exactly 64 elements.
How m	any of these statements are correct?
A. 0	

- **B.** 1 **C.** 2 **D.** 3
- **E.** 4

CIS1910

MIDTERM W19 – Part A

QUESTION 8

Consider the function $f: \ensuremath{\mathbb{Z}}^+ \! \rightarrow \! \begin{bmatrix} 0,5 [\\ x \mapsto x^2 \! + \! 1 \end{bmatrix}$

- (i) 0 has a preimage under f.
- (ii) 1 has a preimage under f.
- (iii) 2 has a preimage under f.
- (iv) 5 has a preimage under f.

How many of the four statements above are correct?

- **A.** 0
- **B.** 1
- **C.** 2
- **D.** 3
- **E.** 4

CIS1910 MIDTERM W19 – Part A

Let S be the solution set of some equation. Assume that x is a solution of that equation iff x=1 or x=2. Consider the four statements below:

(i) $S = \{\}$ (ii) $S = \{1\}$ (iii) $S = \{1,2\}$ (iv) $S = \{1,2,3\}$

How many of these statements may be correct, depending on the equation?

A. 0 **B.** 1 **C.** 2 **D.** 3 **E.** 4

CIS1910

MIDTERM W19 - Part A

QUESTION 10

Consider the subtraction, -, of real numbers.

- (i) It is idempotent.
- (ii) It is commutative.
- (iii) It is associative.
- (iv) There is a neutral element for it.
- (v) There is an absorbing element for it.

How many of these five statements are correct?

- **A.** 0
- **B.** 1
- **C.** 2
- **D.** 3
- **E.** 4

QUESTION 11

Let S be a set, let – be a unary operation on S, and let + and x be two binary operations on S. For any elements u, v and w of S, we have:

- (i) (u+v)+w = u+(v+w)
- (ii) $(u+v)xw \neq u+(vxw)$
- (iii) -(u+v) = (-u)+(-v)

How many of the three statements above are necessarily correct?

A. 0 **B.** 1 **C.** 2 **D.** 3

CIS1910

MIDTERM W19 – Part A

QUESTION 12

In this question, $(B, +, \cdot, -)$ is a Boolean algebra. The zero element is denoted by 0.

Consider the following statements:,

(i)	$\forall (u,v,w) \in B^3, v=w \rightarrow u+v=u+w$
(ii)	$\forall (u,v,w) \in B^3, u+v=u+w \rightarrow v=w$
(iii)	$\forall (u,v,w) \in B^3, u+v=w \rightarrow u=w-v$
(iv)	$\forall (u, v) \in \mathbb{R}^2$ $u \neq v = u \rightarrow v = 0$

(iv) $\forall (u,v) \in B^2, u+v=u \Rightarrow v=0$

How many of these four statements are correct?

- **A.** 0
- **B.** 1
- **C.** 2
- **D.** 3
- **E.** 4

QUESTION 13

In this question, $(B, +, \cdot, -)$ is a Boolean algebra.

Consider the following Boolean expressions:

(i)	$x + \overline{x} + y$
(ii)	$\overline{X}+\overline{Y}+\overline{Z}$
(iii)	$x\cdot\overline{x}\cdot y$
(iv)	$\overline{x}\cdot\overline{y}\cdot\overline{z}$

How many of these expressions are minterms of degree 3?

- **A.** 0
- **B.** 1
- C. 2D. 3
- **E.** 4

CIS1910 MIDTERM W19 – Part A

QUESTION 14

Consider the following statements:

- (i) \neg has higher precedence than V
- (ii) V has higher precedence than \wedge
- (iii) \land has higher precedence than \leftrightarrow
- (iv) \leftrightarrow has higher precedence than \rightarrow

How many of these four statements are correct?

- **A.** 0
- **B.** 1
- **C.** 2
- **D.** 3
- **E.** 4

QUESTION 15

Consider $P : \mathbb{R} \rightarrow \mathscr{D}$ $u \mapsto P(u)$ where P(u) is the statement "|u| > u''.

Consider the propositions below:

(i) $\exists u \in \mathbb{R}, P(u)$

- (ii) $\exists u \in \mathbb{R}^+, P(u)$
- (iii) $\exists u \in \{\}, P(u)$

How many of these three propositions are true?

- **A.** 0
- **B.** 1
- **C.** 2
- **D.** 3

Consider the following statements:

(i)	∃u,	(P(u)V)	Q(u)) ≡	(∃u,	P(u))	V(∃u,	Q(u))
/::)	D 11	$(D(u)) \wedge$	$\cap(u)) =$	(⊐	D(1)	∧ /⊐	$\Omega(11)$

- (ii) $\exists u, (P(u) \land Q(u)) \equiv (\exists u, P(u)) \land (\exists u, Q(u))$
- **A.** The only correct statement is (i)
- **B.** The only correct statement is (ii)
- **C.** Both statements are correct
- **D.** None of these statements is correct

QUESTION 17

Consider the following expressions:

- (i) $\exists u, [(\forall v, P(u,v)) \lor Q(v)]$ (ii) $\exists u, [(\forall u, P(u,u)) \lor Q(u)]$
- **A.** The only correct predicate expression is (i)
- **B.** The only correct predicate expression is (ii)
- **C.** Both expressions are correct predicate expressions
- **D.** None of them are correct predicate expressions

CIS1910

MIDTERM W19 - Part A

QUESTION 18

Consider the Boolean algebra $(\{0,1\},+,\cdot,-)$. Let | be the Boolean operation defined by the following table:

X	у	x y
0	0	1
0	1	1
1	0	1
1	1	0

Now, consider the four statements below:

- (i) | is idempotent
- (ii) | is commutative
- (iii) There is a neutral element for |
- (iv) There is an absorbing element for |

How many of these statements are correct?

A. 0 **B.** 1 **C.** 2 **D.** 3 **E.** 4

QUESTION 19

Consider a Boolean algebra $(B,+,\cdot,-)$. John has come up with a two-page proof for PROPOSITION 1.

> PROPOSITION 1 For any elements x and y of B we have: <some equality>

Then, using the duality principle, he has derived PROPOSITION 2 from PROPOSITION 1:

PROPOSITION 2 For any elements x and y of B we have: <some other equality>

Which one of the statements below is the most appropriate?

- **A.** PROPOSITION 1 is an axiom
- B. PROPOSITION 2 is a theorem
- **C.** PROPOSITION 1 is a lemma for PROPOSITION 2
- **D.** PROPOSITION 2 is a corollary of PROPOSITION 1

CIS1910

MIDTERM W19 – Part A

QUESTION 20

Consider a function f. Let A be its domain and B its codomain. Consider the following four statements:

- (i) An element of A may have no image under f.
- (ii) An element of A may have exactly two images under f.
- (iii) An element of B may have no preimage under f.
- (iv) An element of B may have exactly two preimages under f.

How many of these statements are true?

- **A.** 0
- **B.** 1
- **C.** 2
- **D.** 3
- **E.** 4

QUESTION 21

If the rightmost digit in the base b expansion of $(2417)_b \times (95)_b$ is 5 then b might be:

- (i) 10 (ii) 20 (iii) 30
- **(iv)** 40

How many of these statements are true?

- **A.** 0
- **B.** 1
- **C.** 2
- **D.** 3
- **E.** 4

CIS1910 MIDTERM W19 – Part A

QUESTION 22

Consider the following four propositions:

- (i) $\forall x \in \mathbb{R}, \quad \sqrt{x^2} = x$
- (ii) $\forall x \in \mathbb{R}^+, \ \sqrt{x^2} = x$
- (iii) $\exists x \in \mathbb{R}, \quad \sqrt{x^2} = x$
- (iv) $\exists x \in \mathbb{R}^+, \ \sqrt{x}^2 = x$

How many of these propositions are true?

A. 0

- **B.** 1
- **C.** 2
- **D.** 3
- **E.** 4

QUESTION 23

Which one of these statements is correct?

- There exists a set S such that $S^2xS = S^3$, Α. and there exists a set S such that $S^2xS \neq S^3$.
- В.
- Whatever the set S, we have $S^2xS = S^3$. Whatever the set S, we have $S^2xS \neq S^3$. С.

Part B: SHORT-ANSWER QUESTIONS

Your answers must be recorded on this exam booklet.

Consider the four statements below. Which ones are true? Which ones are false? Circle the appropriate responses (T or F).

(a)	00 = (0,0)	Т	F
(b)	$00 = \{0,0\}$	т	F
(c)	00 = [0,0]	т	F
(d)	00 = [0,0[Т	F

Consider the four statements below. Which ones are true? Which ones are false? Circle the appropriate responses (T or F).

(a)	$-\infty+\infty = \mathbb{R}$	Т	F
(b)	1+∞ = ℕ	Т	F
(c)	$1+\infty = \mathbb{Z}^+$	т	F
(d)	12 = 21	Т	F

Consider the four propositions below. Which ones are true? Which ones are false? Circle the appropriate responses (T or F).

- $\forall (x,y) \in \mathbb{R}^2, \ 1/x = y \leftrightarrow x = 1/y$ (a) Т F F
- Т $\forall (x,y) \in \mathbb{R}^2, \ \sqrt{x} = y \leftrightarrow x = y^2$ (b)
- $\forall (x,y) \in \mathbb{R}^2, |x| = |y| \leftrightarrow x = y$ Т F (c) F
- Т $\forall (x,y,z) \in \mathbb{R}^3, xz = yz \leftrightarrow x = y$ (d)

CIS1910 MIDTERM W19 - Part B 44

Consider the four propositions below. Which ones are true? Which ones are false? Circle the appropriate responses (T or F).

(a)	$13 = 3x2^2 + 0x2^1 + 1x2^0$	т	F
(b)	$13 = (301)_2$	Т	F
(c)	$13 = 1x3^2 + 1x3^1 + 1x3^0$	т	F
(d)	$13 = (111)_3$	т	F

Let + and x be two binary operations on a set S. We say that + is **distributive** over x iff:

 $\forall (u,v,w) \in S^3, u+(vxw)=(u+v)x(u+w) \land (vxw)+u=(v+u)x(w+u)$

Let + be a binary operation on a set S, and let n be an element of S. We say that n a **neutral element** for + iff:

 $\forall u \in S, u+n=n+u=u$

CIS1910

MIDTERM W19 – Part B

Consider the Boolean algebra $(\{0,1\},+,\cdot,-)$. Consider the Boolean function *G* defined by the table below:

x	y	Z	G(x,y,z)
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

What is the product-of-sums expansion of *G*?

 $(x+\overline{y}+z)\cdot(\overline{x}+\overline{y}+z)$

CIS1910

MIDTERM W19 - Part B

Consider a Boolean algebra $(B, +, \cdot, -)$. Let \downarrow be the Boolean operation defined by: $x \downarrow y = \overline{x+y}$ Show that for any elements x and y of B we have: $x+y=(x \downarrow y) \downarrow (x \downarrow y)$ Justify each step.

ition of ↓
organ's laws
e complement laws
potent laws

47

Consider a Boolean algebra $(B, +, \cdot, -)$. Prove that for any elements x and y of B we have: $x+x\cdot y = x$ Justify each step.

identity laws	
distributive laws	
domination laws	
identity laws	
	identity laws distributive laws domination laws identity laws

Consider a Boolean algebra $(B,+,\cdot,-)$. We can show that for any elements x and y of B we have:

 $x + x \cdot y = x$

Therefore, according to the duality principle, we also have:

 $x \cdot (x+y) = x$

Complete and make these propositions true.

- (1) $\forall (a,b) \in \mathbb{R}^2$, $(a=b \land a \neq 0) \rightarrow 1/a = 1/b$
- (2) $\forall (a,b,c) \in \mathbb{R}^3, ac=bc \rightarrow (a=b \vee c=0)$

Complete and make these propositions true.

- (1) $\forall (a,b) \in \mathbb{R}^2, a^2 = b^2 \leftrightarrow (a = b \vee a = -b)$
- (2) $\forall (a,b) \in \mathbb{R}^2, \sqrt{a} = \sqrt{b} \leftrightarrow (a = b \land a \ge 0)$

Complete and make this proposition true.

 $\forall (a,b) \in \mathbb{R}^2, \ \sqrt{a} \ge b \leftrightarrow (a \ge b^2 \land \underline{b} \ge \underline{0}) \lor (a \ge 0 \land \underline{b} < \underline{0})$

CIS1910 MIDTERM W19 – Part B

Consider the function $({x,y},{0,1},{(x,0)})$.

Its domain is ______

Its codomain is ______

Its domain of definition is ______

Its range is **{0}**

Consider the relation $({x,y}, {0,1}, {(x,0), (x,1)})$.

(a) Draw its arrow diagram:

(b) Is it a function (yes/no)? _____

Find the base 10 expansion of $(21331)_4$.

×4+				
2	1	3	3	1
	9	39	159	637

 $(21331)_4 = 637$

Find the base 5 expansion of 534.

			+		
0	4	21	106	534	div 5
	4	1	1	4	mod 5

 $534 = (4114)_5$

Find the base 4 expansion of $(1A7)_{16}$.

 $(1A7)_{16} = (1 \ 22 \ 13)_4 = (12213)_4$

Find the base 16 expansion of $(11110)_2$.

 $(11110)_2 = (1\ 1110)_2 = (1E)_{16}$

Here is how to calculate the base 8 expansion of the sum: $(751)_8 + (743)_8$

What is the output to the circuit below?

 $x \cdot y + \overline{x} \cdot y$

Consider the Boolean algebra $(\{0,1\},+,\cdot,-)$ and a Boolean function F whose sum-of-products expansion is:

 $x \cdot \overline{y} \cdot z + x \cdot y \cdot z$

Construct the circuit that produces the output F(x,y,z).

CIS1910 MIDTERM W19 – Part B

Consider the Boolean algebra $(\{0,1\},+,\cdot,-)$ and a Boolean function F whose sum-of-products expansion is:

 $x \cdot \overline{y} \cdot z + x \cdot y \cdot z$

Minimize F. Justify each step.

F(x,y,z) =	$x \cdot \overline{y} \cdot z + x \cdot y \cdot z$	definition of F	
	$= (x \cdot \overline{y} + x \cdot y) \cdot z$	distributive laws	
_	$= \mathbf{x} \cdot (\mathbf{\overline{y}} + \mathbf{y}) \cdot \mathbf{z}$	distributive laws	
_	= x·1·z	complement laws	
	= x-z	identity laws	

61

Assume E(x,y) is the statement: "x has sent an email to y." Translate each of the following into English. The sentences should sound as natural as possible.

 $\forall x, \forall y, E(x,y)$

Everybody has sent an email to everybody.
Everybody has sent an email to somebody.
Somebody has sent an email to everybody.
Somebody has sent an email to somebody.

CIS1910

MIDTERM W19 - Part B

Assume E(x,y) is the statement: "x has sent an email to y" Translate each of the following into English. The sentences should sound as natural as possible.

 $\forall x, \forall y, x=y \rightarrow E(x,y)$

Everybody has sent an email to themselves.

 $\forall x, \forall y, E(x,y) \rightarrow x=y$

Nobody has sent any email, except maybe to themselves.

Assume E(x,y) is the statement: "x has sent an email to y" Translate each of the following into English. The sentences should sound as natural as possible.

 $\forall x, \forall y, x \neq y \rightarrow E(x,y)$

Everybody has sent an email to everybody,

except, maybe, to themselves.

 $\forall x, \forall y, E(x,y) \rightarrow x \neq y$

Nobody has sent an email to themselves.

CIS1910

MIDTERM W19 - Part B

Assume P(x) is the statement: "x got an A+"Write a predicate expression that translates into the following sentence: "At most one student got an A+."

 $\forall x, \forall y, P(x) \land P(y) \rightarrow x=y$

Assume P(x) is the statement: "x got an A+" Translate the following into English. The sentence should sound as natural as possible.

 $\exists x, (P(x) \land \forall y, (P(y) \rightarrow y=x))$

Only one student got an A+

CIS1910

MIDTERM W19 – Part B

Translate each of the following statements into a propositional expression involving exactly two propositions, p and q. In each case, specify what p and q are.

"It is necessary to wash the boss' car to get promoted."

 $p \rightarrow q$ with p="you get promoted" and q="you wash the boss' car"

"A sufficient condition for the warranty to be good is that you bought the computer less than a year ago."

 $p \rightarrow q$ with p="you bought the computer less than a year ago"

and q="the warranty is good"

Show that the following propositional expression is a rule of inference: $[(p \lor q) \land \neg p] \mathrel{\Rightarrow} q$

What is the standard notation for this rule of inference?

	p∨q ¬p
<i>.</i>	q

{1,2}

is a pair set that does not contain 0 and does not contain $\{0\}$ either.

{0,1}

is a pair set that contains 0 but does not contain $\{0\}$.

{{0},{1}**}**

is a pair set that does not contain 0 but contains $\{0\}$.

{0,{0}}

is a pair set that contains both 0 and $\{0\}$.

Let $A = \{0\}$ and $B = \{1,2\}$.

AxB = **{(0,1),(0,2)}**

BxA = {(1,0),(2,0)}

This shows that the Cartesian product is

not commutative

CIS1910

MIDTERM W19 – Part B

To answer this question, please refer to the next two pages.

Complete each line with the name of the appropriate rule of inference:

1. ∀x, (r(x)→t(x))	Premise	
2. r(Linda)→t(Linda)	universal instantiation	_using 1.
3. r(Linda)	Premise	
4. t(Linda)	modus ponens	using 2. and 3.
5. c(Linda)	Premise	
6. c(Linda)∧t(Linda)	conjunction	_using 4. and 5.
7. ∃x, (c(x)∧t(x))	existential generalization	<mark>n</mark> using 6.

71