QUIZ 3

CIS1910 QUIZ 3

Let x, y and z be real numbers. Consider the four statements below:

(i) 1/x = y iff x = 1/y(ii) $\sqrt{x} = y \text{ iff } x = y^2$ (iii) |x| = |y| iff x = y(iv) xz = yz iff x = y

How many of these statements are correct?

A. 0 **B.** 1 **C.** 2 **D.** 3

E. 4

Consider the four statements below:

(i) $13 = 3x2^2 + 0x2^1 + 1x2^0$ (ii) $13 = (301)_2$ (iii) $13 = 1x3^2 + 1x3^1 + 1x3^0$ (iv) $13 = (111)_3$

How many of these statements are correct?

A. 0 **B.** 1 **C.** 2 **D.** 3 **E.** 4

CIS1910 QUIZ 3

Consider two positive integers m and n.

(i)	Knowing the base 3 expansion of m, it is "easy" to calculate its base 6 expansion (i.e., no need to calculate its base 10 expansion)
(ii)	Knowing the base 3 expansion of m, it is easy to calculate its base 9 expansion
(iii)	Knowing the base 3 expansions of m and n, it is easy to calculate the base 3 expansion of m+n
(iv)	Knowing the base 3 expansions of m and n, it is easy to calculate the base 3 expansion of mn
How n	nany of the four statements above are correct?

A. 0 **B.** 1 **C.** 2 **D.** 3 **E.** 4

Consider the addition + of real numbers.

(i) It is idempotent.
(ii) It is commutative.
(iii) It is associative.
(iv) There is a neutral element for it.
(v) There is an absorbing element for it.

How many of these five statements are correct?

A. 0 **B.** 1 **C.** 2 **D.** 3 **E.** 4

CIS1910 QUIZ 3

Consider the multiplication x of real numbers.

(i) It is idempotent.

(ii) It is commutative.

(iii) It is associative.

(iv) There is a neutral element for it.

(v) There is an absorbing element for it.

How many of these five statements are correct?

- **A.** 0
- **B.** 1
- **C.** 2
- **D.** 3
- **E.** 4

Consider the subtraction – of real numbers.

(i) It is idempotent.

(ii) It is commutative.

(iii) It is associative.

(iv) There is a neutral element for it.

(v) There is an absorbing element for it.

How many of these five statements are correct?

A. 0 **B.** 1 **C.** 2 **D.** 3 **E.** 4

CIS1910 QUIZ 3

Consider *min* (as in "minimum"). It is a binary operation on the set of real numbers.

(i) It is idempotent.
(ii) It is commutative.
(iii) It is associative.
(iv) There is a neutral element for it.
(v) There is an absorbing element for it.

How many of these five statements are correct?

- **A.** 0
- **B.** 1
- **C.** 2
- **D.** 3
- **E.** 4

QUIZ 3	

- (i) + is distributive over x
 (ii) x is distributive over +
 (iii) min is distributive over max
- (iv) *max* is distributive over *min*

How many of the four statements above are correct?

A. 0 **B.** 1 **C.** 2 **D.** 3

E. 4

CIS1910 QUIZ 3

Let \star and \diamond be two binary operations on a set S. \star is **distributive** over \diamond iff for any (u,v,w) in S³ we have:

(i) u★(v&w)=(u★v)&(u★w)
 (ii) u&(v★w)=(u&v)★(u&w)
 (iii) u★(v&w)=(u★v)&(u★w) and u&(v★w)=(u&v)★(u&w)

How many of the three statements above are correct?

- **A.** 0
- **B.** 1
- **C.** 2
- **D.** 3

CIS1910	
OUIZ 3	

Let \star be a binary operation on a set S. An element u of S is a **neutral element** for \star iff:

- (i) for any element v of S we have $u \star v = u$
- (ii) for any element v of S we have $u \star v = v$
- (iii) for any element v of S we have $u \star v = 0$

How many of the three statements above are correct?

A. 0 **B.** 1 **C.** 2 **D.** 3

CIS1910 QUIZ 3

Let \star be a binary operation on a set S.

(i)	There may be no neutral element for \star
(ii)	There may be one and exactly one neutral element for \star
(iii)	There may be two and exactly two neutral elements for \star

How many of the three statements above are correct?

- **A.** 0**B.** 1
- **C.** 2
- **D.** 3

Let S be a set (not necessarily a set of real numbers), let – be a unary operation on S, and let + and x be two binary operations on S. For any elements u, v and w of S, we have:

- (i) (u+v)+w = u+(v+w)
- (ii) $(u+v)xw \neq u+(vxw)$
- (iii) -(u+v) = (-u)+(-v)

How many of the three statements above are correct?

A. 0 **B.** 1 **C.** 2 **D.** 3