QUIZ 5

CIS1910 QUIZ 5

- (i)
- $\begin{tabular}{ll} \hline \begin{tabular}{ll} \hline \begin{tabular}{ll}$ (ii)
- \leftrightarrow denotes the conditional (iii)

How many of the three statements above are correct?

- **A.** 0 **B.** 1
- **C.** 2
- **D.** 3

In the following question, $(B, +, \cdot, -)$ is a Boolean algebra. The zero element is denoted by 0 and the unit element by 1.

Consider the following statements:

- (i) + is idempotent
- (ii) + is distributive over
- (iii) there is a neutral element for +
- (iv) there is an absorbing element for +

How many of these four statements are correct?

- **A.** 0
- **B.** 1
- **C.** 2
- **D.** 3
- **E.** 4

CIS1910 QUIZ 5

The converse of $p \rightarrow q$ is:

A. q→p

- **B.** (¬p)→(¬q)
- **C.** (¬q)→(¬p)
- **D.** None of the above

The propositional expression $p \rightarrow q$ is equivalent to:

- **A.** q→p **B.** (¬p)→(¬q)
- **C.** (¬q)→(¬p)
- **D.** None of the above

CIS1910 QUIZ 5

Consider the following statements:

- (i) \neg has higher precedence than V
- (ii) V has higher precedence than Λ
- (iii) \land has higher precedence than \leftrightarrow
- (iv) \leftrightarrow has higher precedence than \rightarrow

How many of these four statements are correct?

- **A.** 0
- **B.** 1
- **C.** 2
- **D.** 3
- **E.** 4

Consider the following statements:

- (i) $\neg p \land p$ is a tautology
- (ii) $p \rightarrow p$ is a contingency
- (iii) $p \land p$ is a contradiction

How many of these three statements are correct?

- **A.** 0
- **B.** 1
- **C.** 2
- **D.** 3

CIS1910 QUIZ 5

Let P be a binary predicate. Assume P(u,v) is the statement: "u loves v."

Which one of the propositions below corresponds to: "Somebody loves everybody."

- **A.** $\forall u, \forall v, P(u,v)$
- **B.** ∃u, ∀v, P(u,v)
- **C.** $\forall u, \exists v, P(u,v)$
- **D.** ∃u, ∃v, P(u,v)
- E. None of the above

Let P be a binary predicate. Assume P(u,v) is the statement: "u loves v."

Which one of the propositions below corresponds to: "There is somebody who is loved by everybody."

A. ∀u, ∀v, P(u,v)
B. ∃u, ∀v, P(u,v)
C. ∀u, ∃v, P(u,v)
D. ∃u, ∃v, P(u,v)
E. None of the above

CIS1910 QUIZ 5

 $\begin{array}{lll} \text{Consider} \ P: \mathbb{R} \not \to \mathscr{P} \\ & u \mapsto P(u) \ \text{ where } P(u) \text{ is the statement ``}|u| {>} u''. \end{array}$

Consider the propositions below:

(i)	∃u∈ℝ, P(u)
(ii)	∃u∈ℝ+, P(u)
(iii)	∃u∈{}, P(u)

How many of these three propositions are true?

A. 0

- **B.** 1
- **C.** 2
- **D.** 3

Consider $P : \mathbb{R} \rightarrow \mathscr{D}$ $u \mapsto P(u)$ where P(u) is the statement "|u| > u''.

Consider the propositions below:

(i) $\forall u \in \mathbb{R}, P(u)$ (ii) $\forall u \in \mathbb{R}^+, P(u)$ (iii) $\forall u \in \{\}, P(u)$

How many of these three propositions are true?

- **A.** 0
- **B.** 1
- **C.** 2
- **D.** 3

CIS1910 QUIZ 5

Consider the Boolean algebra $(\{0,1\},+,\cdot,-)$ as seen in class. Consider the Boolean function F defined by the table below:

x	y	Z	F(x,y,z)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Which one of the statements below is correct?

- **A.** The sum-of-products expansion of *F* is the sum of 8 minterms.
- **B.** The sum-of-products expansion of *F* is the sum of 6 minterms.
- **C.** The sum-of-products expansion of *F* is the sum of 2 minterms.
- **D.** None of the above

Consider the Boolean algebra $(\{0,1\},+,\cdot,-)$ as seen in class. Consider the statements below:

- (i) The NOR operation is defined by: $x \downarrow y = \overline{x+y}$
- (ii) The Boolean expression \overline{x} is equivalent to a Boolean expression that involves no other Boolean operation than \downarrow
- (iii) The Boolean expression x+y is equivalent to a Boolean expression that involves no other Boolean operation than \downarrow
- (iv) The Boolean expression x y is equivalent to a Boolean expression that involves no other Boolean operation than \downarrow
- (v) $\{\downarrow\}$ is functionally complete

How many of these five statements are correct?

- **A.** 1
- **B.** 2
- **C.** 3
- **D.** 4
- **E.** 5