University of Guelph, School of Computer Science, Prof. Pascal Matsakis

A Review of Complex Numbers

Prof. MatsakisA Review of Complex NumbersCommutativity, Associativity, Distributivity2

A **binary operation** on a set S is a function from S^2 to S.

Binary operations are often denoted by symbols like \star instead of letters like f, and we write $u \star v$ instead of $\star((u,v))$.

Let \star and \diamond be two total binary operations on a nonempty set S:

★ is *commutative* iff $\forall (u, v) \in S^2$, $u \star v = v \star u$ ★ is *associative* iff $\forall (u, v, w) \in S^3$, $u \star (v \star w) = (u \star v) \star w$ ★ is *distributive* over ***** iff $\forall (u, v, w) \in S^3$, $[u \star (v \star w) = (u \star v) \star (u \star w)$ $\land (v \star w) \star u = (v \star u) \star (w \star u)]$

+ and × (addition and multiplication on \mathbb{R}) are commutative and associative; × is distributive over +. Prof. Matsakis Neutral Element, Inverse

Let \star be a total binary operation on a nonempty set S.

 $n \in S$ is a *neutral element* for \star iff: $\forall u \in S$, $u \star n = n \star u = u$ If there is a neutral element for \star it is unique.

0 is the neutral element for + and 1 is the neutral element for \times .

Assume n is the neutral element for \star and u is an element of S. The element v of S is an *inverse* of u under \star iff: $u \star v = v \star u = n$ Assume \star is associative. If there is an inverse of u under \star it is unique.

-2 is the inverse of 2 under + and 0.5 is the inverse of 2 under \times .

Prof. Matsakis	A Review of Complex Numbers
Fields	4

A **field** is a triple (S, \star, \diamond) such that:

S is a nonempty set.

★ is a total binary operation on S.
There is a neutral element m for ★.
Every element of S has an inverse under ★.
★ is associative.
★ is commutative.

★ is a total binary operation on S.
There is a neutral element n≠m for ★.
Every element of S-{m} has an inverse under ★.
★ is associative.
★ is commutative.

 \diamond is distributive over \star .

 $(\mathbb{R},+,\times)$ is a field.

Prof. Matsakis

The Field of Complex Numbers

Consider the binary operations below:

+ : $\mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2$ ((a,b),(c,d)) \mapsto (a+c,b+d) $\begin{array}{l} \times : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2 \\ ((a,b),(c,d)) \mapsto (ac-bd,bc+ad) \end{array}$

 $(\mathbb{R}^2,+,\times)$ is a field.

It is the field of *complex numbers*. $\mathbb{C}=\mathbb{R}^2$ is the set of complex numbers.

(0,0) is the neutral element for +. The inverse under + of any element (a,b) of \mathbb{C} is (-a,-b).

This inverse is the **opposite** of (a,b).

(1,0) is the neutral element for ×. The inverse under × of any (a,b)≠(0,0) of \mathbb{C} is $\left(\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2}\right)$

This inverse is the *reciprocal* of (a,b).

Prof. Matsakis		A Review of Complex Number	5
Subtraction,	Division,	Exponentiation	5

Consider the field $(\mathbb{C},+,\times)$ of complex numbers. Let z, z_1 and z_2 be complex numbers, and let n be a positive integer.

> -z denotes the opposite of z. z_1-z_2 denotes $z_1+(-z_2)$. z^{-1} denotes the reciprocal of z. z_1z_2 denotes $z_1 \times z_2$. z_1/z_2 denotes $z_1 \times (z_2^{-1})$. n times z^n denotes $z \times (z^{-1})$. z^{-n} denotes $(z^{-1})^n$.

5

Prof. Matsakis	A Review of Complex Numbers
${\mathbb R}$ vs. ${\mathbb C}$, and j	8

Consider the field $(\mathbb{C}, +, \times)$ of complex numbers.

Since $\forall a \in \mathbb{R}, \forall c \in \mathbb{R}, (a,0)+(c,0)=(a+c,0)$ and $\forall a \in \mathbb{R}, \forall c \in \mathbb{R}, (a,0)(c,0)=(ac,0),$ any real number r can be seen as a complex number (r,0) and we can write $\mathbb{R} \subset \mathbb{C}$.

Let $\mathbf{j} = (0,1)$. j is the *imaginary unit*. We have $j^2 = -1$. Prof. Matsakis

Rectangular Form

9

 $\forall z \in \mathbb{C}, \exists^1 a \in \mathbb{R}, \exists^1 b \in \mathbb{R}, z = a + jb$

a is the **real part** of z: $a=\mathcal{R}(z)$ b is the **imaginary part** of z: $b=\mathcal{I}(z)$ If $\mathcal{R}(z)=0$ then z is an **imaginary number**. a+jb is the **rectangular form** of z.

Let z_1 and z_2 be complex numbers. $\mathcal{R}(z_1+z_2)=\mathcal{R}(z_1)+\mathcal{R}(z_2)$ $\mathcal{I}(z_1+z_2)=\mathcal{I}(z_1)+\mathcal{I}(z_2)$

Prof. Matsakis	A Review of Complex Numbers
Polar Form	10

 $\forall z \in \mathbb{C} - \{0\}, \exists^1 r \in \mathbb{R}^+, \exists^1 \theta \in] - \pi, \pi], z = r(\cos\theta + j\sin\theta)$

r is the **modulus** of z: r=|z| θ is the **argument** of z: $\theta=arg(z)$ By convention, |0|=0 and arg(0)=0. $r(\cos\theta+j\sin\theta)$ is the **polar form** of z.

Let z_1 and z_2 be complex numbers. $|z_1z_2| = |z_1| |z_2|$ $arg(z_1z_2) \equiv arg(z_1) + arg(z_2)$ [2 π]

Prof. Matsakis	A Review of Complex Numbers
Conjugate	11

Let z be a complex number.

The **conjugate** of z is the complex number z* defined by: $\mathcal{R}(z^*) = \mathcal{R}(z)$ and $\mathcal{I}(z^*) = -\mathcal{I}(z)$.

Let z, z_1 and z_2 be complex numbers.

 $\mathcal{R}(z) = (z+z^*)/2$ $|z^*| = |z|$ $arg(z^*) \equiv -arg(z) [2\pi]$ $\mathcal{I}(z) = (z - z^*)/(2j)$ $(z_1+z_2)^*=z_1^*+z_2^*$ $(z_1z_2)^*=z_1^*z_2^*$ $zz^{*} = |z|^{2}$ z**=z

Prof. Matsakis	A Review of Complex Numbers
Complex Plane	12

Let z be a complex number.

z can be seen as a point in a 2-D plane (the *complex plane*): $\mathcal{R}(z)$ and $\mathcal{I}(z)$ are its rectangular coordinates, while |z| and arg(z) are its polar coordinates.

De Moivre's and Euler's Formulas

13

De Moivre's formula For any integer n and any nonzero complex number z: $|z^n|=|z|^n$ and $\arg(z^n) \equiv n \arg(z) [2\pi]$

Euler's formula For any real number θ : $\cos\theta$ + $j\sin\theta$ = $e^{j\theta}$

Prof. Matsakis

A Review of Complex Numbers

END