University of Guelph, School of Computer Science, Prof. Pascal Matsakis

A Review of Tuples and Sets

Prof. Matsakis	A Review of Tuples and Sets
Tuples	2

Consider a nonnegative integer n. An *n-tuple*, or *tuple* of *length* n, is a collection of n objects where order and multiplicity have significance.

(u) is a 1-tuple, (0,1) is a 2-tuple, (Pascal, \mathbb{C} , Guelph) is a 3-tuple. We have $(0,1)\neq(1,0)$ and $(0,0,1)\neq(0,1)$.

The objects in a tuple are the **terms** of the tuple.

The first term of ((x,y),z) is (x,y) and the second term is z.

The 0-tuple is the **empty tuple**; a 1-tuple is a **singleton**; a 2-tuple is a **pair**; a 3-tuple is a **triple**; etc.

() is the empty tuple, (u) is a singleton, (0,1) is a pair.

Prof. Matsakis	A Review of Tuples and Sets
Sets	3

set: a collection of objects; order and multiplicity have NO significance.

 $A = \{0,1\} = \{1,0\} = \{0,1,0,0,1\}, B = \{0,1,2,3,...,99\}, C = \{1,1/2,1/3,1/4,...\}$ $D = \{(0,1),3.1,Dumbo,B\} \neq ((0,1),3.1,Dumbo,B)$

The objects in a set are called the **elements** of the set. The notation $e \in S$ (or $S \rightarrow e$) denotes that e is an element of the set S (read "e is an element of S" or "e belongs to S" or "S contains e").

0∈A, 2∉A, A∉B, 78∈B, 0.125∈C, B∈D, 0∉D, {}∉A, {}∉{}, {}∈{{}}

The set with no elements is the **empty set**; it is denoted by $\{\}$ or \emptyset . A set with exactly one element is a **singleton** (**set**); a set with two elements is a **pair** (**set**); etc.

Prof. Matsakis	A Review of Tuples and Sets
Subsets and Supersets	4

Let A and B be two sets.

We say that A is a **subset** of B (or that A is included in B; B includes A; B is a **superset** of A) and we write $A \subseteq B$ (or $B \supseteq A$), iff every element of A is also an element of B.

```
We say that A is a proper subset of B (or that B is a proper superset of A), and we write A \subseteq B (or B \supseteq A), iff A \subseteq B and A \neq B.
```

A={0,1}, B={0,1,2,3,...,99}, D={Pascal,Dumbo,3.1,B} A \subseteq A, A \subset A, A \subseteq B, A \subseteq B, B \subset D, Ø \subseteq {}, {} \subseteq A В

А

Prof. Matsakis

Cartesian Product

Let A and B be sets. The **Cartesian product** of A and B, denoted by AxB, is the set of all pairs (a,b) where a \in A and b \in B. AxA is also denoted by A².

Let A, B, C be sets. The **Cartesian product** of A, B, C, denoted by AxBxC, is the set of all triples (a,b,c) where $a \in A$, $b \in B$, $c \in C$. AxAxA is also denoted by A³.

.....

 $\{0,1\}x\{\}=\{\}, \{0,1\}^2=\{(0,0),(0,1),(1,0),(1,1)\}, \\ \{0,1\}x\{u,v,w\}=\{(0,u),(0,v),(0,w),(1,u),(1,v),(1,w)\}$

Prof. Matsakis	A Review of Tuples and Sets
Union, Intersection, Difference	6

Let \mathcal{U} be the **universal set** (any nonempty set), and let A and B be two sets (i.e., two subsets of \mathcal{U}).

The **union** of the sets A and B is the set of the elements of U that belong to A or B. It is denoted by AUB.

The *intersection* of A and B is the set of the elements of \mathcal{U} that belong to A and B. It is denoted by A∩B. If A∩B={}, then A and B are *disjoint*; otherwise, they *overlap*.

The **difference** of A and B is the set of the elements of \mathcal{U} that belong to A but do not belong to B. It is denoted by A–B.

5

Common Number Sets

N is the set $\{0,1,2,...\}$ of natural numbers. Z is the set $\{...,-2,-1,0,1,2,...\}$ of integers. Z⁺ is the set $\{1,2,3,...\}$ of positive integers. R is the set of real numbers. R⁻ is the set of negative real numbers. R* is the set of nonzero real numbers.

Prof. Matsakis	A Review of Tuples and Sets
Integer Intervals	8

Let m and n be two integers.

m..n is the set of all the integers that are greater than or equal to m and less than or equal to n.

 $m.+\infty$ is the set of all the integers that are greater than or equal to m.

 $-\infty$..n is the set of all the integers that are less than or equal to n.

.

 $\begin{array}{l} 0..9 = \{0,1,2,3,4,5,6,7,8,9\} \\ -\infty..+\infty = \mathbb{Z} \\ 1..+\infty = \mathbb{Z}^+ \end{array}$

7

9

Let u and v be two real numbers.

[u,v] is the set of all the real numbers that are greater than or equal to u and less than or equal to v.

]u,v[is the set of all the real numbers that are greater than u and less than v.

[u,v[is the set of all the real numbers that are greater than or equal to u and less than v.

 $[u, +\infty)$ is the set of all the real numbers that are greater than or equal to u.

 $]-\infty,v[$ is the set of all the real numbers that are less than v.

 $]-\infty,0[=\mathbb{R}^{-}$ $[4,4] = \{4\}$ [4,4[=Ø

.

Prof. Matsakis

A Review of Tuples and Sets

END