University of Guelph, School of Computer Science, Prof. Pascal Matsakis

A Review of Vectors

Prof. MatsakisA Review of VectorsCommutativity and Associativity2

A **binary operation** on a set S is a function from S^2 to S.

Let \star be a total binary operation on a nonempty set S:

★ is **commutative** iff $\forall (u, v) \in S^2$, $u \star v = v \star u$ ★ is **associative** iff $\forall (u, v, w) \in S^3$, $u \star (v \star w) = (u \star v) \star w$

+ and × (addition and multiplication on \mathbb{R}) are commutative and associative.

Prof. Matsakis Neutral Element and Inverse

Let \star be a total binary operation on a nonempty set S.

 $n \in S$ is a *neutral element* for \star iff: $\forall u \in S$, $u \star n = n \star u = u$ If there is a neutral element for \star it is unique.

0 is the neutral element for + and 1 is the neutral element for \times .

Assume n is the neutral element for \star and u is an element of S. The element v of S is an *inverse* of u under \star iff: $u \star v = v \star u = n$ Assume \star is associative. If there is an inverse of u under \star it is unique.

-2 is the inverse of 2 under + and 0.5 is the inverse of 2 under \times .

Prof. Matsakis	A Review of Vectors
Vector Space: Definition	4
A vector space is a triple (V,+, .) such that:	
\Box V is a nonempty set	
 + is a total binary operation on V + is commutative and associative there is a neutral element for + for any v of V, there is an inverse of v under + 	
□ . is a total function from $\mathbb{R} \times V$ to V $\forall v \in V$, 1.v=v $\forall (a,b) \in \mathbb{R}^2$, $\forall v \in V$, (ab).v=a.(b.v) $\forall (a,b) \in \mathbb{R}^2$, $\forall (u,v) \in V^2$, [(a+b).v=a.v+b.v \land a.(b)	u+v)=a.u+a.v]

CAREFUL

The same symbol + is used here to denote two different binary operations. The symbol + in (a+b).v denotes the addition on \mathbb{R} , i.e., a binary operation on \mathbb{R} . The symbol + in a.(u+v) denotes a binary operation on V; moreover, it is assumed that . has precedence over +.

Prof. Matsakis

Vector Space: Example

Let + be the binary operation on \mathbb{R}^3 defined by: (x,y,z)+(x',y',z')=(x+x',y+y',z+z') Let . be the function from $\mathbb{R} \times \mathbb{R}^3$ to \mathbb{R}^3 defined by: a.(x,y,z)=(ax,ay,az) (\mathbb{R}^3 ,+, .) is a vector space.

Prof. Matsakis	A Review of Vectors
Basic Terminology	6

Let (V, +, .) be a vector space.

 $\Box \quad \text{Elements of V are } \boldsymbol{vectors} \\ \text{Elements of } \mathbb{R} \text{ are } \boldsymbol{scalars} \\ \end{array}$

- is the scalar multiplication
 a.v reads "the scalar multiplication of v by a"

Prof. Matsakis

Basic Properties

Let (V, +, .) be a vector space.

 $\begin{array}{l} \forall v \in V, \ 0.v = 0 \\ \forall a \in \mathbb{R}, \ a.0 = 0 \\ \forall a \in \mathbb{R}, \ \forall v \in V, \ [a.v = 0 \rightarrow (a = 0 \ \lor v = 0)] \\ \forall v \in V, \ (-1).v = -v \end{array}$

Prof. Matsakis	A Review of Vectors
Bases and Subspaces	8

Let (V,+, ...) be a vector space, let n be a positive integer and let $w=(v_1,v_2,...,v_n)$ be an element of V^n .

- □ w is *linearly independent* iff: $\forall (a_1, a_2, ..., a_n) \in \mathbb{R}^n$, $[a_1 \cdot v_1 + a_2 \cdot v_2 + ... + a_n \cdot v_n = 0 \rightarrow a_1 = a_2 = ... = a_n = 0]$. Note that $a_1 \cdot v_1 + a_2 \cdot v_2 + ... + a_n \cdot v_n$ is a *linear combination* of w.
- □ w **generates** { $v \in V | \exists (a_1, a_2, ..., a_n) \in \mathbb{R}^n$, $v = a_1 \cdot v_1 + a_2 \cdot v_2 + ... + a_n \cdot v_n$ }. This set is a vector space*. It is the **subspace** generated by w.
- w is a *basis* iff:
 w is linearly independent and generates V.

Consider the vector space $(\mathbb{R}^3, +, .)$ as in slide 5.

((2,0,2),(-1,3,5),(1,3,7)) is linearly dependent. ((2,0,2),(-1,3,5)) is linearly independent but is not a basis. ((2,0,2),(-1,3,5),(1,4,-1)) is a basis. ((1,0,0),(0,1,0),(0,0,1)) is another basis. 7

Space Dimension and Vector Coordinates

Let (V,+, ...) be a vector space and let $w=(v_1,v_2,...,v_n)$ be a basis.

Prof. Matsakis

All bases of V are n-tuples. n is the *dimension* of the vector space.

 $\forall v \in V, \exists ! (a_1, a_2, ..., a_n) \in \mathbb{R}^n, v = a_1 \cdot v_1 + a_2 \cdot v_2 + ... + a_n \cdot v_n$ $(a_1, a_2, ..., a_n)$ is the tuple of *coordinates* of v relative to w.

Consider the vector space $(\mathbb{R}^3, +, .)$ as in slide 5. It is of dimension 3. Consider the vectors i=(1,0,0), j=(0,1,0), k=(0,0,1),and $v_1=(2,0,2), v_2=(-1,3,5), v_3=(1,4,-1).$

(0,1,0) is the tuple of coordinates of v_2 relative to the basis (v_1 , v_2 , v_3). (-1,3,5) is the tuple of coordinates of v_2 relative to the basis (i,j,k).

Prof. Matsakis	A Review of Vectors
Coordinates of Sums and Products	10

Let (V,+, ...) be a vector space and let $w=(v_1,v_2,...,v_n)$ be a basis.

Consider a vector v. Assume $(a_1, a_2, ..., a_n)$ is the tuple of coordinates of v relative to w. We may then write $v(a_1, a_2, ..., a_n)$.

Consider a real number λ , two vectors $u(a_1, a_2, ..., a_n)$ and $v(b_1, b_2, ..., b_n)$. We have $(u+v)(a_1+b_1, a_2+b_2, ..., a_n+b_n)$ and $(\lambda \cdot u)(\lambda a_1, \lambda a_2, ..., \lambda a_n)$

9

11

Consider a vector space (V,+, .). A total function <.,.> from V² to \mathbb{R} is an *inner product* iff:

 $\Box \forall v \in V, [(v=0 \rightarrow \langle v, v \rangle = 0) \land (v \neq 0 \rightarrow \langle v, v \rangle > 0)]$

 $\Box \quad \forall (u,v) \in V^2, \langle u,v \rangle = \langle v,u \rangle$

 $\Box \quad \forall a \in \mathbb{R}, \forall (u,v,w) \in V^3, [\langle a.u,w \rangle = a \langle u,w \rangle \land \langle u+v,w \rangle = \langle u,w \rangle + \langle v,w \rangle]$

Consider a vector space (V,+, \cdot) and an inner product <.,.>. (V,+, \cdot , <.,.>) is a *Euclidean vector space*.

Consider the vector space (\mathbb{R}^3 ,+, .) as in slide 5 and the function <.,.> from $\mathbb{R}^3 \times \mathbb{R}^3$ to \mathbb{R} defined by: <(x,y,z),(x',y',z')>=xx'+yy'+zz' (\mathbb{R}^3 ,+, ., <.,.>) is a Euclidean vector space.

Prof. MatsakisA Review of VectorsOrthogonal Vectors12

Consider a Euclidean vector space (V,+, ., <.,.>). Two vectors u and v are **orthogonal vectors** iff $\langle u,v \rangle = 0$. A basis $(v_1, v_2, ..., v_n)$ is an **orthogonal basis** iff it is a basis whose vectors are pairwise orthogonal.

Consider the Euclidean vector space $(\mathbb{R}^3, +, .., <.,.>)$ as in slide 11. Consider the vectors i=(1,0,0), j=(0,1,0), k=(0,0,1), and $v_1=(2,0,2)$, $v_2=(-1,3,5)$, $v_3=(1,4,-1)$.

(i,j,k) is an orthogonal basis, (v_1,v_2,v_3) is not.

Consider a vector space (V,+, \cdot). A total function |.| from V to \mathbb{R} is a **norm** iff:

 $\label{eq:velocity} \begin{array}{ll} \square & \forall v \in V, \ [(v=0 \rightarrow |v|=0) \land (v \neq 0 \rightarrow |v|>0)] \\ \square & \forall (u,v) \in V^2, \ |u+v| \leq |u|+|v| \end{array}$

 $\Box \forall a \in \mathbb{R}, \forall v \in V, |a.v| = |a||v|$

Consider a vector space (V,+, .) and a norm |.|. (V,+, ., |.|) is a **normed vector space**.

Prof. Matsakis	A Review of Vectors
Euclidean Norm	14

Let (V, +, ., <.,.>) be a Euclidean vector space and let |.| be the function from V to \mathbb{R} defined by: $\forall v \in V, |v| = \sqrt{\langle v, v \rangle}$.

|.| is a norm.It is the *Euclidean norm*.

A vector v is a **unit vector** iff |v|=1. A basis $(v_1, v_2, ..., v_n)$ is an **orthonormal basis** iff it is an orthogonal basis whose vectors are unit vectors.

Consider an orthonormal basis $(v_1, v_2, ..., v_n)$.

```
\langle u(a_1, a_2, ..., a_n), v(b_1, b_2, ..., b_n) \rangle = a_1 b_1 + a_2 b_2 + ... + a_n b_n
|u(a_1, a_2, ..., a_n)| = \sqrt{(a_1^2 + a_2^2 + ... + a_n^2)}
```

Consider two nonzero vectors u and v. The element θ of $[0,\pi]$ such that $\cos(\theta) = \langle u, v \rangle / (|u||v|)$ is the **angle** between u and v.

Consider a set S. A total function d from S² to \mathbb{R} is a **distance** on S iff:

$$\Box \quad \forall (u,v) \in S^2, [(u=v \rightarrow d(u,v)=0) \land (u \neq v \rightarrow d(u,v)>0)] \\ \Box \quad \forall (u,v,w) \in S^3, d(u,w) \le d(u,v) + d(v,w)$$

 $\Box \quad \forall (u,v) \in S^2, \ d(u,v) = d(v,u)$

Consider a set S and a distance d on S. (S,d) is a *metric space*.

Prof. Matsakis	A Review of Vectors
Euclidean Distance	16

Let (V,+, .., <.,.>) be a Euclidean vector space and let d be the function from V² to \mathbb{R} defined by: $\forall (u,v) \in V^2$, d(u,v) = |u-v|

d is a distance on V. It is the **Euclidean distance**.

Consider an orthonormal basis $(v_1, v_2, ..., v_n)$. $d(u(a_1, a_2, ..., a_n), v(b_1, b_2, ..., b_n)) = \sqrt{[(a_1 - b_1)^2 + (a_2 - b_2)^2 + ... + (a_n - b_n)^2]}$

Prof. Matsakis

A Review of Vectors

END