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Abstract—In ear lier  work, we introduced a method for  gener-
ating linguistic descr iptions of the topological relationships 
between two-dimensional objects. The input to the system is a 
pair  of raster ized objects and the output is a set of propositions 
about their  spatial relationships expressed in natural language. 
The method relies on finding one or  two Allen relations that best 
descr ibe the relationships along a direction of major  object 
interaction. In this paper, we address some of the issues related 
to the use of Allen relations for  descr ibing two-dimensional 
object configurations, and we propose two extensions in order  to 
solve problems encountered in the or iginal algor ithm. Global 
subsethood-based information is used to suppress counter- 
intuitive descr iptions and an ancillary method for  generating 
alternative descr iptions is introduced. 

I. INTRODUCTION 

The modeling of spatial relationships has received a lot of 
attention in recent years due to rapid developments in the GIS 
community. Numerous methods have been proposed to 
represent the relationships between two-dimensional objects. 
The region connection calculus [11,12], for instance, or the n-
intersection models of Egenhofer et al. [2,3,4], are simple and 
powerful representation models that have gained a wide 
following. Work in the modeling of topological relationships 
is often based on the extension of Allen’s temporal relations 
[1] into the spatial domain. Allen relations form a set ��= 
{ <,m,o,s,fi,d,=,di,si,f,oi,mi,>}  of thirteen mutually exclusive 
and collectively exhaustive relations that can hold between 
two segments on an oriented line (Fig. 1). Allen relations are 
of interest to the GIS community because they can be used to 
model human temporal and spatial reasoning more 
adequately than models based strictly on numerical 
specifications. In a recent publication [8], Matsakis and 
Nikitenko introduced the concept of Allen F-histograms. 
These histograms, which contain a wealth of information, 
were used in  [9]  to capture the essence of the topological 

relationships between 2D objects using natural language 
descriptions. Each linguistic description relies on the 
computation of the thirteen Allen F-histograms and attempts 
to extract the essential characteristics of the object 
configuration while leaving out superfluous and possibly 
overwhelming detail. It consists of three components: a 
topological component that summarizes the primary Allen 
relations existing along a direction of major object 
interaction, a self-assessment component which reflects the 
complexity of the configuration, and, whenever relevant, one 
or more directional estimate(s) of where the primary Allen 
relations are most prominent. 

Relying on the thirteen Allen relations only, the system 
presented in [9] is usually able to synthetically describe the 
scene in a very reasonable way (Fig. 2). Occasionally, 
however, it produces counter-intuitive descriptions (Fig. 3). 
In Section III.A, we propose a method to suppress these 
counter-intuitive descriptions. When the system is unable to 
describe the scene at all, it simply acknowledges it. In Section 
III.B, however, we propose an ancillary method for producing 
alternative descriptions based on subsethood information. 
Results are discussed in Section IV, and some final thoughts 
are given as conclusion in Section V. We begin with a brief 
presentation of the original method used to select the most 
appropriate Allen relations for the linguistic description. 

II. ORIGINAL METHOD 

A. Allen F-Histograms 

The notion of the F-histogram was introduced in [6]. F-
histograms include force histograms and Allen histograms 
[8]. We focus here on Allen histograms. Consider two objects 
A and B, and an Allen relation r. The histogram Fr

AB is one 
possible representation of the position of A (the argument) 
with regard to B (the referent). It is a numeric function. For 
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Fig. 1.   Allen relations [1] between two segments on an oriented line. The black segment is the referent, the gray segment 
    is the argument. Two relations r1 and r2 are linked if and only if they are conceptual neighbors [5], i.e., r1 can be obtained 

directly from r2 by moving or deforming the segments in a continuous way. 
 



 
Fig. 2.   The system presented in [9] usually produces reasonable 
descriptions.  Left: “A perfectly meets B. The description is satisf-
actory. A meets B in multiple directions.”   Middle: “A starts and 
slightly overlaps B. The description is satisfactory. A starts B to the 
East-Northeast and overlaps B to the East.”   Right: “A is before and 
somewhat meets B. The description is rather satisfactory. A is 
before B to the Southwest and meets B to the South-Southwest.”  
 
 

 
Fig. 3.   The system presented in [9] occasionally produces counter-
intuitive descriptions.  Left: “A starts and is marginally equal to B. 
The description is rather satisfactory. A starts B to the South.”   
Middle: “A contains and marginally starts B. The description is 
satisfactory. A starts B loosely to the South.”   Right: “A contains 
and marginally starts B. The description is rather satisfactory. A 
starts B in multiple directions.”  
 
 
any direction θ, the value Fr

AB(θ) is a weight attached to the 
proposition “A r B in direction θ.”  This weight is computed 
by subdividing A and B into pairs of longitudinal sections 
(Fig. 4). The handling of the pair (A,B) comes down to the 
handling of pairs of longitudinal sections, and the handling of 
each pair of longitudinal sections comes down to the handling 
of pairs of segments for which the Allen relation r can be 
assessed. Three aspects of the computation of Fr-histograms 
are of interest here.  

First, the Allen relations are fuzzified. The idea is that if 
an object is moved slightly then the Allen F-histograms should 
change equally slightly. Let � be the set of all thirteen fuzzy 
Allen relations. Fuzzification is achieved such that any r in �� 
is a continuous function onto [0,1]. Moreover, for any pair (I,J) 
of segments on an oriented line, Σr∈� r(I,J) = 1. For any pair 
(I,J) and any r1 and r2 in ��, if r1(I,J)≠0 and r2(I,J)≠0 then r1 
and r2 are direct neighbors in the graph of Fig. 1. An 
illustrative example is presented in Fig. 5.  

Second, the longitudinal sections are also fuzzified. The 
idea here is that if an object is deformed slightly then the 
Allen F-histograms should change equally slightly. 
Fuzzification is achieved such that the closer two segments of 
a crisp longitudinal section are, the more the space in 
between belongs to the fuzzified section. When sufficiently 
close, the two segments are almost seen as a single segment. 
An illustrative example is presented in Fig. 6.  

Finally, the processing of a pair of longitudinal sections is 
achieved by processing their α-cuts and blending the r(I,J) 
values appropriately. Moreover, the overall contribution r(I,J) 
of each pair of segments is weighed such that Σr∈� Fr

AB(θ) 
measures the object interaction in direction θ. Put simply, 
Σr∈�  Fr

AB(θ) is the total area of the regions of A and B that 
are facing each other in direction θ (Fig. 7). Again, a slight 
change in the object configuration results in a correspond-
ingly slight change in the histograms. Continuity is satisfied 
and, hence, robustness is achieved.  

All details pertaining to the computation of Fr-histograms 
are presented in [8]. A comprehensive summary appears in 
[13]. In order to describe, in natural language, the topological 
relationships between A and B, the system in [9] analyzes the 
thirteen histograms Fr

AB and selects a set of at most two Allen 
relations. The two relations do not semantically contradict 
each other and are the most representative along some 
direction of major object interaction. At this point, we turn our 
attention to the selection process. 

B. Coherent Sets of Allen Relations 

The description “A meets and slightly overlaps B”  sounds 
coherent since it is easy to picture two such objects A and B. 
We say that { m,o}  is a coherent set of Allen relations. On the 
other hand, “A contains and is before B”  goes against 
intuition. The relations involved in this description seem 
somewhat contradictory. { di,<}  is not a coherent set. The 
concept of coherent set was initially explored in [13] and a 
more detailed account appears in [9]. In this paper, the 
coherent sets are all the singletons (e.g., { <} , { m} , { o} ) and 
all the pairs of direct neighbors in the graph of Fig. 1 (e.g., 
{ <,m} , { m,o} , { o,s} ). Any one of these coherent sets can be 
used to generate a linguistic description. In order to select the 
“best”  set, we introduce the notion of satisfactory indices.  

C. Local Satisfactory Indices 

A local satisfactory index, σc(θ), measures the degree to which 
the Allen relations in the coherent set c satisfactorily represent 
the spatial relationships between A and B along direction θ. The 
term “local” reflects the fact that only direction θ is considered. 
σc(θ) belongs to the interval [0,1] and is 1 if and only if the 
relations in c are the only Allen relations present along θ. The 
simplest way to define σc(θ) is as follows: 

 

σc(θ) = Σ r∈c vr (θ), 
                     where     vr (θ) = F  r  

A      B(θ) / Σρ∈� F ρ
A   

 
B(θ). 



 

Fig. 4.   For each direction, the plane is partitioned into a set of 
parallel lines. The intersection of a line and an object is a longitudinal 
section of the object. J1, for instance, is a longitudinal section of B. 
It consists of one segment. I1 is a longitudinal section of A and 
consists of two disjoint segments I11 and I12. 

 

 

Fig. 5.   Fuzzy Allen relations. Here, >(I1,J1) is 1 and mi(I1,J1) is 0; 
>(I2,J2) and mi(I2,J2) are greater than 0 and less than 1; >(I3,J3) is 0 
and mi(I3,J3) is 1. 
 

 

Fig. 6.   Fuzzy longitudinal sections. Before fuzzification, the point M 
does not belong at all to I1=I11∪I12 and N does not belong at all to 
I2= I21∪I22. After fuzzification of I1 and I2, the point M belongs to I1 
to some extent, and N belongs to I2 more than M belongs to I1. 
 

 

Fig. 7. The value Σr∈� F r  
AB(θ) measures the object interaction in 

direction θ. In this example, it is the total area of the two dark gray 
regions. 
 
 
A somewhat more sophisticated definition might be: 

σ'c(θ) = max {0 , σc(θ) − Σr∈�−c (δrc /6) vr (θ)}, 
 

where δrc denotes a weighted average conceptual distance 
between the Allen relation r and the relations in c. The value δrc 

belongs to [0,6]. It is 0 when, e.g., r is < and c is {<}. It is 6 
when, e.g., r is > and c is {<} (in the graph of Fig. 1, the length 
of the shortest path between > and < is 6). Every relation r∈�−c 
that coexists with c along θ makes σ'c(θ) decrease, and the 
higher its distance to c, the bigger the decrease. However, one 
might also want to take into account the degree of interaction 
between the objects along direction θ. Here is a third possible 
definition: 

σ"c(θ) = min {σ'c(θ) , i(θ)} , 
where          i(θ) = Σr∈� F  r  

A      B(θ) / max ϕ Σr∈� F  r  
A      B(ϕ) . 

σ"c(θ) measures to what extent the relations in c dominate the 
topological relationships along θ and whether object inter-
action along θ is high. The differences between σ, σ' and σ" 
are illustrated in Fig. 8. More about local satisfactory indices 
can be found in [9,13]. In particular, these papers discuss 
some issues related to directional inverses (like m and mi). 

D. Global Satisfactory Indices 

In [9], the global satisfactory index of a coherent set c is 
defined as: 

sc = max θ σ"c(θ) . 

It measures the degree to which the relations in c satisfact-
orily represent the spatial relationships along some direction. 
Here, the operator max can be interpreted as a fuzzy 
existential quantifier. The winning set of Allen relations for 
the linguistic description is a coherent set c0 such that: 

sc0
 = max c (sc) . 

The self-assessment component of the linguistic description is 
based on the global satisfactory index of the winning 
coherent set. If sc0

 is low, none of the coherent sets can be 
used to satisfactorily describe the spatial relationships. This 
typically occurs when there is a lot of ambiguity along the 
directions with high object interaction. The presence of 
contradictory relations along these directions drives sc0

 
towards zero. If, on the other hand, there exists a coherent set 
whose relations satisfactorily represent the relationships 
along some direction with high object interaction, sc0

 tends 
towards 1 (its maximum possible value). 
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Fig. 8.   Plots of different satisfactory indices associated with the  
coherent set {=} and the pair of overlapping objects shown in the 
inset on the left. 
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III. PROPOSED EXTENSIONS 

A. Global Subsethood Information 

In most cases, the system presented in [9] produces intuitive 
descriptions which satisfactorily capture the essence of the 
object configurations. In some cases, however, the system 
fails. The problem with the global satisfactory index as 
defined in Section II.D lies in the fact that, in the end, the 
focus is given to a single direction. Certainly, the algorithm 
could benefit from a more global view of the scene. Consider 
the objects in Fig. 3b. The argument object A contains the 
referent object B along the horizontal direction. To say that 
“A contains B,” however, does not accurately describe the 
topological relationships in the 2D space. In this sense, the 
description generated by the system in [9] is counter-intuitive. 
In this section, we propose a method to suppress such invalid 
descriptions. 

The idea is to make use of some ancillary information 
about the spatial relationships between the objects. We utilize 
here the notion of subsethood. The degrees of subsethood 
between the objects are calculated and incorporated in the 
computation of the satisfactory indices. For instance, the 
degree of subsethood of B in A can be seen as the maximum 
possible degree of truth of the proposition “A contains B” 
(i.e., “A di B”). Clearly, if B is not a subset of A, it cannot be 
contained by A and any description including the relation 
contains should be suppressed. Let us take a closer look at 
this idea. The degree of subsethood of B in A is often defined 
by |B∩A|/|B|, i.e., the proportion of B which coincides with 
A. Intuitively, however, this definition is somewhat 
unsatisfying. For the objects in Fig. 3a, for instance, the 
degree of subsethood of B in A would be 0.5, while a human 
observer would likely say that B is not a subset of A at all. In 
this paper, we therefore prefer to define the subsethood of B 
in A as µsub(B,A), where µsub is the membership function 
shown in Fig. 9. In the end, and in the light of global 
subsethood information, the maximum degree of truth that 
can reasonably be attached to the proposition “A r B” is the 
value Vr as defined in Table I.  

V= deserves a few words of explanation. In Table I, it is 
defined as max {µsub(A,B) , µsub(B,A)}. This may, at first, 
seem to go against the grain of reason. A common way to 
think of equality is to say that it occurs whenever A is a 
subset of B and B is a subset of A. In this light, V= would 
have been better defined as min {µsub(A,B) , µsub(B,A)}, 
where the min operator can be interpreted as the standard 
fuzzy conjunction. In this context, however, it is more 
convenient to treat equality as a special case of subsethood, in 
the sense that whenever subsethood exists, there may also be 
partial equality, regardless of whether A is a subset of B, B is 
a subset of A, or both.  

The simplest way to incorporate global subsethood-based 
information into the existing algorithm is to modify the local 
satisfactory index: 

 

σ'''c (θ)  =  min {σ"c (θ) , Σr∈c min (vr(θ) , Vr)} . 
 

 

Fig. 9.   Membership functions defining subsethood, 
overlap and disjointness. 

 
 

TABLE I 
CLIPPING VALUES USED IN THE COMPUTATION OF SATISFACTORY INDICES 

Relation r Clipping Value Vr 

<,>,m,mi min {µdis(A,B) , µdis(B,A)} 

o,oi min {µove(A,B) , µove(B,A)} 

d,s,f µsub (A,B) 

di,si,fi µsub(B,A) 

= max {µsub(A,B) , µsub(B,A)} 

 
 
The local satisfactory index was upper bounded by  Σr∈c vr(θ) , 
it is now upper bounded by  Σr∈c Vr  also. If vr(θ) exceeds Vr, 
its contribution to the satisfactory index is “clipped” to the 
maximum reasonable level defined by Vr. The value 
Σr∈c  min (vr(θ),Vr) can be interpreted as a measure of 
agreement between the relations in the coherent set c along 
direction θ and the subsethood information. If the agreement 
is high, we can be sure that the relations in c not only 
represent well the topological relationships along θ, but also 
reflect the spatial relationships in the 2D space. The modified 
system then produces the same linguistic description as the 
original system. If the agreement is low, however, the local 
satisfactory index of c is quickly driven below the threshold 
required for an acceptable linguistic description [9]. Instead 
of generating counter-intuitive and potentially misleading 
statements, the modified system acknowledges its inability to 
describe the scene and outputs the following message: “The 
spatial relationships cannot be assessed.” This is illustrated in 
Section IV.  

B.  Description by Parts 

When the system is unable to describe the scene using only 
Allen relations, it informs the user and gives up (see Section 
III.A). We propose here an ancillary method for producing 
alternative descriptions based on subsethood information.  

It can be shown that situations where no coherent set of 
Allen relations is good enough for a description occur only if 
there exists partial coincidence between the objects A and B. 
Consider the configurations (a), (b) and (c) in Fig. 3. In all of 
these examples, there is a conflict related to partial 
coincidence (partial mutual containment). In each case, part 
of the referent contains part of the argument and, inversely, 

|E ∩ G|/|E| 

1   0.5   0   

1   
µ ove (E,G) µ dis (E,G) µ sub (E,G) 



part of the argument contains part of the referent. A is a 
partial subset of B and B is a partial subset of A. Even though 
the topological relationships in the 2D space are fairly 
straightforward, no coherent set of Allen relations can be 
used to satisfactorily describe these relationships. 

Appealing once again to some basic elements of set theory, 
alternative descriptions can be generated for such config-
urations. The descriptions will tell the user which parts of the 
objects coincide, as in, for instance, “The southern part of B 
coincides with the central part of A” (Fig. 3b). More 
formally, they will take the following form: 

“The <whichB> part of B coincides 
               with the <whichA> part of A.” 

To obtain whichB, we partition B into two disjoint sub-
regions B1 = B−A   and   B2 = B∩A.  The symbol B1 denotes 
the part of B which is disjoint from A, and the symbol B2 
denotes the part of B which coincides with A. In order to 
obtain whichB, we assess the relative position of B2 with 
respect to B1. In our experiments, we have utilized 
histograms of constant forces [8,10] for this purpose. Force 
histograms are particular F-histograms which have been 
successfully applied in generating linguistic descriptions 
using the primitive directional relations “to the right of,” “to 
the left of,” “above,” and “below” [7]. Whether harnessing 
such power for the task at hand is justified is a matter 
deserving further investigation. Perhaps simpler (and 
computationally cheaper) methods would suffice here, like 
the centroid or MBR-based methods. 

Once the histogram of constant forces associated with the 
object pair (A,B) is computed, a primary direction is 
extracted from it, using the technique proposed in [7]. The 
primary direction is then converted to a linguistic value. If no 
satisfactory direction can be found, whichB is set to “central,” 
since this case occurs when the argument object lies in two 
(or more) opposing directions of the referent. whichA is 
obtained using the same technique. 

The “Description by Parts” module is activated whenever 
the system is unable to describe the scene using only Allen 
relations. This approach is still in early stages of development. 
It is presented here as a potential novel method of assessing 
the topological relationships between two objects, based strictly 
on the directional relationships of their sub-components. It is 
also one more interesting application of force histograms. 

IV. RESULTS 

Relying on the Allen relations only, the system presented in 
[9] is usually able to synthetically describe the scene in a very 
reasonable way. This is illustrated by the configurations in 
Fig. 2. For these configurations, the original system [9] and 
the modified systems (Sections III.A and III.B) produce the 
exact same linguistic descriptions. Occasionally, however, 
the system in [9] produces counter-intuitive descriptions. 
Figure 3 shows three typical examples of problematic config-
urations. The original descriptions seem rather counter-
intuitive, as they fail to fully capture the topological 
relationships in the 2D space. Figure 3a depicts an L-shaped 

configuration, but the system determines that the dominant 
relation is s (i.e., A starts B). This is true along the vertical 
direction θ=π/2 (from South to North), but what of the 
horizontal direction θ=0 (from West to East)? A is started by 
B. This fact is completely omitted from the description.  

After applying the global subsethood-based information 
(Section III.A), it turns out that no pertinent Allen relation(s) 
can be selected for the description. In the light of subsethood 
information, the maximum degree of truth that can 
reasonably be attached to the proposition “A r B” is 1 if r is o 
or oi (i.e., Vo=Voi=1) and 0 otherwise. This indicates that the 
only possible way to describe the scene would be to use the 
overlaps and overlapped by relations. These relations, 
however, do not occur to any significant degree along any 
direction. Hence, no set of Allen relations can be selected for 
the description. The system modified as in Section III.A 
acknowledges its inability to describe the scene and outputs 
the message “The spatial relationships cannot be assessed” 
(Table II). Going one step further and activating the 
Description by Parts module (Section III.B), we are able to 
obtain a reasonable linguistic description. Here, no attempt is 
made to use Allen relations. We merely try to describe which 
parts of the two objects coincide. Figures 3b and 3c depict 
similar configurations, but with T-shaped and X-shaped 
objects, respectively. Again, the original, counter-intuitive 
statements are suppressed and replaced by very reasonable 
alternative descriptions. 

 
TABLE II 

LINGUISTIC DESCRIPTIONS PRODUCED BY THE MODIFIED SYSTEMS 

 System as in III.A System as in III.B 
Fig. 3a The spatial relationships 

cannot be assessed. 
The southern part of B coincides 
with the western part of A. 

Fig. 3b The spatial relationships 
cannot be assessed. 

The southern part of B coincides 
with the central part of A. 

Fig. 3c The spatial relationships 
cannot be assessed. 

The central part of B coincides 
with the central part of A. 

 

V. CONCLUSIONS 

The thirteen Allen F-histograms associated with a pair of 2D 
objects encapsulate a wealth of topological, directional, and 
metric information. The system presented in [9] makes this 
information more accessible. It uses the Allen F-histograms 
to capture, through natural language descriptions, the 
essence of the topological relationships between the objects. 
Although often successful, the system occasionally produces 
counter-intuitive descriptions. In this paper, we have 
presented a simple extension to the system in order to 
suppress these descriptions. As a result, the descriptive 
process may fail, but such failures are preferable to 
generating misleading descriptions. Moreover, we have 
shown that it is possible to produce very reasonable 
alternative descriptions by taking advantage of some global 
subsethood information. The results demonstrate the 
effectiveness of these extensions. In future work, we intend to 
develop a unified framework for generating linguistic 
descriptions of the spatial relationships between 2D objects. 
Furthermore, we intend to investigate some validation 
algorithms to assess the accuracy of the descriptions. 
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