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Abstract 
 

A directional spatial relationship to a reference 

object (e.g., “east of the post office”) can be represented 

by a spatial template. The template partitions the space 

into regions where the relationship holds (to various 

extents) and regions where it does not hold. The objects 

for which the relationship holds can then be located. A 

template can be easily modeled. Computationally, 

however, exact calculation of the model in case of 2D 

raster data is prohibitively expensive, and a tractable 

approximation algorithm was proposed. Here, we 

introduce a new concept: the concept of the F-template. 

It leads to a new approximation algorithm, which is 

faster, gives better results, and is more flexible.  

 

1. Introduction 
 

Space plays a fundamental role in human cognition. 

In everyday situations, it is often viewed as a construct 

induced by spatial relationships, rather than as a 

container that exists independently of the objects 

located in it. Spatial relationships, therefore, have been 

thoroughly investigated in many disciplines, including 

cognitive science, psychology, linguistics, geography 

and artificial intelligence. They act as a connecting link 

between visually perceived data and natural language, 

and an important part of research naturally deals with 

two types of tasks: those related to the translation of 

visual information into linguistic expressions (e.g., 

automatic digital image analysis and description), and 

those related to the translation of linguistic expressions 

into visual information (e.g., query processing in 

spatial database systems). In this paper, we consider 

only directional (also called projective) relationships 

(e.g., front, south, above). The past ten to fifteen years 

have seen significant advancements in the development 

of mathematical and computational models of these 

relationships [1] [2] [3] [4] [5]. Tasks of the first type 

require from such models the capability to identify 

which relationships hold best between any two objects. 

Tasks of the second type require different capabilities. 

Given a directional relationship to a reference object 

(e.g., “east of the post office”), the models should be 

able to identify the objects for which the relationship 

holds best, and also to distinguish regions where it holds 

from regions where it does not hold. These regions, of 

course, blend into one another. They form what Bloch 

calls a “fuzzy landscape” [6], Logan and Sadler a 

“spatial template” [7], Gapp an “applicability struc-

ture” [8], Olivier and Tsuji a “potential field” [9]. Here, 

we will use the term “directional spatial template” (or 

“template”, for short). There exists a simple and yet 

cognitively plausible way to model a template. Compu-

tationally, however, exact calculation of the model in 

case of 2D raster data is prohibitively expensive, and a 

tractable approximation algorithm was proposed in [6]. 

In Section 3, we present a new approximation algorithm. 

A comparative experimental study, summarized in Sec-

tion 4, shows that it is faster, gives better results, and is 

more flexible. Conclusions and directions of future 

work are given in Section 5. First, in Section 2, we 

introduce the concept this new algorithm is based on. 

 

2. Basic templates and F-templates 
 

In the following,  denotes the set of real numbers 

and P the Cartesian plane. μ is a mapping from  into 

[0,1], periodic with period 2 , even, decreasing on 

[0, ], and such that μ(0)=1 and μ( /2)=0 (Fig. 1). An 

object is a non-empty subset of P. For any two points q 

and p in P, with q p, the expression (q,p) represents 

the direction of the vector qp. It is a value that belongs 

to the interval ( , ]. Directional spatial relationships 

defy precise definitions, and Freeman proposed that 

fuzzy set theory should be applied [10]. The idea has 

been widely accepted. For any direction  and any two 

objects A and B, the expression d( ,A,B) represents the 

degree of truth of the proposition “A is in direction  of 

B”. It is a value that belongs to [0,1]. For instance, 

d(0,A,B)=1 might express the fact that the object A is 

perfectly to the right of B, the equality d( /2,A,B)=0.5 

that A is somewhat behind B, and d( /2,A,B)=0 that A 

is not at all to the north of B (Fig. 2).  



 

Fig. 1. Two possible functions μ. 
 

  

Fig. 2. Points, objects and directions. Is A in direction  of B? 
 

2.1. Basic templates 
 

If you were told that some unknown object A was 

perfectly (or somewhat, or not at all) in direction  

(e.g., west, above-right) of some reference object B, 

where in space would you look for A? Cognitive experi-

ments suggest that you would mentally build a spatial 

template [7] [11] [12]. Using essentially angular 

deviation, you would partition the space into regions 

where “in direction  of B” holds to various degrees. It 

therefore makes sense to model this template by the 

mapping S
B
 from P into  defined as follows: 

 

 p  P,  [ p  B  S
B
(p) = 1 ] (1) 

 p  P,  [ p  B  S
B
(p) = supq B μ( (q,p) ) ] (2) 

 

We say that S
B
 is the basic directional spatial template 

induced by B in direction . As an example, Fig. 3b 

shows the basic template induced by some reference 

building in direction north. The brighter the area, the 

higher S
B
(p), i.e., the more it is considered that the area 

is north of the reference building. Equation (1) is rather 

arbitrary. It is, however, consistent with Eq. (2), since 

most points p of a surface B are such that  supq B {p} 

μ( (q,p) ) = 1. Equation (2) can be compared to the 

aggregation method described in [1], where d( ,A,B) is 

set to a combination of the μ( (q,p) ) values, for all 

p in A and q in B. The authors, who consider finite 

sets, suggest using the min, max, or mean operator. In 

Eq. (2), sup is a logical choice. Other operators would 

make it impossible for S
B
 to reach 1 outside of B (a 

restriction which would not be cognitively plausible).   

Note that S
B
 allows the proposition “A is in 

direction  of B” to be readily assessed for any object 

A. For instance, d( ,A,B) can be set to supp A S
B
(p), or 

to infp A S
B
(p). These two values correspond to the 

most optimistic and most pessimistic points of view 

(Fig. 3c). They can also be interpreted as a possibility 

degree and a necessity degree [6].  

 

   

Fig. 3. (a) Campus map. (b) Basic spatial template: show 

me where the north is (relative to the reference building). 
(c) Are the buildings 1 to 9 north of the reference one? 

The white bars represent all possible points of view. 

 

2.2. F-templates 
 

The concept of the F-template is a new concept, 

dual to that of the F-histogram. Let us briefly describe 

F-histograms [13] [4]. Consider two objects A and B. 

An F-histogram associated with the pair (A,B) is a 

mapping F
AB

 from  into . It is one possible quan-

titative representation of the position of A with respect 

to B. In “F
AB

”, the letter “F” actually denotes a function. 

For any  in  and any p in P, let A (p) and B (p) be 

the intersections of A and B with the line in the 

direction  that passes through p. These intersections 

are longitudinal sections of A and B (Fig. 4a). The 

function F is from L L into , where L denotes the 

set of all possible longitudinal sections. The histogram 

value F
AB

( ) is a combination of the F( ,A (p),B (p)) 

values, for all p (Fig. 4b). Different functions F and 

combination operators lead to different families of F-

histograms, like Allen F-histograms [14] and force 

histograms [4], with applications in many areas (e.g., 

pattern recognition [15], scene description [16], human-

robot communication [17]). The fundamental property 

of a force histogram F
AB

 is that it allows the 

propositions “A is in direction  of B” to be readily 

assessed, for any . There are many ways, of course, to 

define the degree of truth d( ,A,B) and extract it from 

F
AB

. See, e.g., [16].  

 

(a)      (b)  

Fig. 4. (a) Longitudinal sections. The value F( ,A (p),B (p)) 

is associated with each line. (b) F-histogram. F
AB

( ) is a 

combination of the F( ,A (p),B (p)) values, for all p. 

 

(a) (b) 
(a) (b) 

(c) 



Now, consider the description of F-histograms that 

we have just provided, “replace” the set A of points 

with directions, and directions with points. You then 

get a description of F-templates. Let  be a direction 

and B an object. An F-template associated with the pair 

( ,B) (or induced by B in direction ) is a mapping F
B
 

from P into . In “F
B
”, the letter “F” denotes a 

function from P L into . Consider an element p 

of P. The value F
B
(p) is a combination of the 

F(p, ,Bp( )) values, for all  (here, to be true to the 

duality mechanism, longitudinal sections of B are de-

noted by Bp( ) instead of B (p)). Compare Figs. 5a and 

5b. In the rest of this paper, we assume that for any p 
 

 F
B
(p) = sup ( , ] F(p, ,Bp( )),  

 

with F(p, ,Bp( )) defined as follows. If Bp( )=  then 

F(p, ,Bp( ))=0. If p Bp( ) then F(p, ,Bp( ))=1. Assume 

Bp( )  and p Bp( ). If (q,p)= , for all q Bp( ), 

then F(p, ,Bp( ))=μ( ). If (q,p)= +  (or ), for 

all q Bp( ) (and this is the case shown in Fig. 5b), then 

F(p, ,Bp( ))=μ(( + ) ). Otherwise (imagine, in Fig. 

5b, that p is between the two segments whose union is 

Bp( )), then F(p, ,Bp( ))=max{μ( ),μ(( + ) )}. It 

is easy to show that the F-template F
B
 so defined is 

equal to the basic directional spatial template S
B
 (Sec-

tion 2.1). Its fundamental property, therefore, is that it 

allows the propositions “A is in direction  of B” to be 

readily assessed, for any A. Compare Figs. 6a and 6b. 

 

(a) (b) 

 

Fig. 5. (a) F-histograms. p varies,  does not. 
         (b) F-templates.  varies, p does not. 

 

3. Case of raster objects in 2D space 
 

In this section, objects are non-empty subsets of the 

set I = (0..m 1) (0..n 1)  P, with m and n two posi-

tive integers (image width and height). For any direction 

 and object B, the basic directional spatial template S
B
 

is the mapping from I into  defined as in Section 2.1: 
 

     p  I,  [ p  B  S
B
(p) = 1 ] 

 p  I,  [ p  B  S
B
(p) = maxq B μ( (q,p) ) ] 

 

The algorithm that corresponds to these equations is 

straightforward but computationally expensive, since it 

is in O(m
2
n

2
) time. In 1999, Bloch proposed an approxi-

mation algorithm based on a mathematical morphology 

approach [6]. Here, we introduce a new approximation 
algorithm based on F-templates. Let  be a positive 

integer divisible by 4. The set {2 i/ }i 0..( 1) is the set 

of reference directions. They are evenly distributed in 

the Cartesian plane (Fig. 7a). The F-template F
B
 

defined as in Section 2.2 is computed very much like 

F-histograms, using the duality between the two 

concepts. The algorithm is presented next page and 

illustrated by Fig. 7b. Its complexity is linear in the 

number of pixels in the image (like the complexity of 

the algorithm described in [6]) and also linear in the 

number  of reference directions. The initialization 

step F
B
  S

{q
0
}
 is preferred to F

B
  0 because it 

enables efficient handling of the pixels that are far from 

B. This way,  (and processing time) can be kept low 

even when the reference object is small compared to 

the image. S
{q

0
}
 is computed in O(mn) time.  

 
 

 
 
 

 

 

Is A in direction 1 of B? 

Is A in direction 2 of B? 

Is A in direction 3 of B? 

Is A in direction 4 of B? 

Is A in direction 5 of B? 
 

 

 

 

Is A1 in direction  of B? 

Is A2 in direction  of B? 

Is A3 in direction  of B? 

Is A4 in direction  of B? 

Is A5 in direction  of B? 

Fig. 6. (a) F-histograms. Tell me where object A is 

(relative to B). (b) F-templates. Show me 
where direction  is (relative to B). 

 

(a)  (b)  

Fig. 7. (a) Reference directions. Example. (b) Algorithm. 

For the pixels in white (they belong to B):  F
B
(qi)  1.  

For the pixels in grey:  F
B
(qi)  max  ( F

B
(qi) , μ( ) ). 

 

(a) 

(b) 



Algorithm for F-template computation. 
 
 

Calculate R, the minimum-bounding rectangle of B. 

Pick any pixel q0 B and initialize: F
B
  S

{q
0
}
. 

 

FOR each reference direction  such that μ( ) 0 DO  
 

  IF [ /4,3 /4) THEN project R along  on the X1-axis 

  ELSE IF [3 /4,5 /4) THEN project it on the Y2-axis 

  ELSE IF [5 /4,7 /4) THEN project it on the X2-axis 

  ELSE project R on the Y1-axis. 
  /* Let P ,R be the segment (i.e., set of pixels) 

  that results from this projection. */ 
 

  FOR each pixel p in P ,R DO 
 

    From p, grow a rasterized line L ,p along direction . 
    /* (Use Bresenham’s algorithm [18].) */ 

    /* When growing the line, the pixels q1, q2, …qk  

    are successively encountered in I. Let qj be the  

    first pixel encountered in B. */ 
 

    FOR all i in j..k DO 
 

      IF qi belongs to B THEN F
B
(qi)  1 

      ELSE F
B
(qi)  max ( F

B
(qi) , μ( ) ). 

 

4. Comparative experimental study 
 

In this section, the basic template S
B
 is compared 

with its approximations F
B
 (computed as in Section 3) 

and M
B
 (computed as in [6], using a morphological 

approach). Experiments were conducted on a 2.4GHz 

P4 with 1024MB memory, running Windows 2000. 
 
 

 

 
 

   
 

 
Fig. 8. Efficiency analysis. (a) Processing time depends on 

n and, for F
B
, on . Processing time for S

B
 (not shown) 

is about 75 seconds when n=256 and 1200 seconds when 
n=512. (b) F-templates induced by the same reference 

object in different directions can be batch-processed. 

 
The implementation language was C++. The function μ 

was as in Fig. 1a. The images were 8-bit m n images, 

with n=m. Figures 8 and 9 illustrate well our findings, 

which are summarized below. 

F
B

S
B
, and the error F

B
(p) S

B
(p) is maximum 

(up to 0.5) for 8-neighbors of B (Fig. 9d). This error, 

however, decreases rapidly when getting only a few 

pixels further from B. When the number  of reference 

directions increases, the average error drops, then 

increases a bit and stabilizes (Fig. 9h). By simply 

adjusting , users can finely control the balance between 

quality and processing time (Fig. 8a). When more than 

a hundred reference directions are considered, it 

becomes difficult to visually distinguish F
B
 (Fig. 9f) 

from S
B
 (Fig. 9b). On the other hand, M

B
 shows flaws 

(Fig. 9g). M
B

S
B
. The error S

B
(p) M

B
(p) does not 

get higher than F
B
(p) S

B
(p) (up to 0.4), but it gets 

high for way more pixels. Moreover, these pixels tend 

to form noticeable patterns (Figs. 9eg). 
 

 

 
 

 

 

     
 

        

Fig. 9. Quality analysis. (b) S
B
 is approximated by (f) F

B
 

and (g) M
B
, which are divided into (c) Error-Likely areas 

(in grey) and Error-Free areas. (d)(e) Contrast-enhanced 

error images. The darker, the higher the error. (h) The 
average error of M

B
 (around 0.02 in the error-likely 

areas) is about three times the average error of F
B
. 

(f) (g) 

(b) 
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In the end, basic directional spatial templates can be 

approximated faster and better by F-templates. Also 

note that F-templates induced by the same reference 

object B in different directions 1, 2, 3, … can be 

batch-processed (Fig. 8b). The algorithm described in 

Section 3 requires little modification. Only the four 

statements in bold are affected.  

 

5. Conclusions and Future Work 
 

Directional spatial templates (which are given 

different names in the literature) play an important role 

in object localization tasks. A template can be easily 

modeled through some mapping called basic template. 

Computationally, however, exact calculation of this 

model in case of 2D raster data is prohibitively expen-

sive, and an approximation algorithm was proposed. In 

this paper, we have introduced a new concept, the 

concept of the F-template. We have shown that basic 

directional spatial templates can be seen as F-templates 

and we have presented a new approximation algorithm, 

which is faster, more flexible, and gives better results. 

The concept of the F-template is dual to that of the F-

histogram. F-histograms can embed not only angular 

information, but also metric information. They can 

handle not only 2D crisp objects in raster form, but also 

3D objects, fuzzy objects, and vector objects [13] [4] 

[19] [17]. We will show, in future publication, that F-

templates have the same capabilities.  
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