
Abstract
In this paper, we show how linguistic expressions

can be generated to describe the spatial relations between
a mobile robot and its environment, using readings from a
ring of sonar sensors. Our work is motivated by the study
of human-robot communication for non-expert users. The
eventual goal is to use these linguistic expressions for
navigation of the mobile robot in an unknown
environment, where the expressions represent the
qualitative state of the robot with respect to its
environment, in terms that are easily understood by
human users. In the paper, we describe the histogram of
forces and its application to sonar sensors on a mobile
robot. Several environment examples are also included
with the generated linguistic descriptions.

1. Introduction
Our work is motivated by the study of human-robot

interaction and, in particular, the investigation of human-
robot communication.  The ultimate goal is to provide
easy and intuiti ve interaction by naïve users, so that they
can guide, control, and/or program a robot to perform
some purposeful task. We consider the communication
between the human user and the robot to be crucial to
intuiti ve interaction by users that are not robotics experts.
We further argue that good communications is essential
both from the human to the robot (to command the robot
to perform purposeful tasks) and also from the robot to
the human (so that the user can monitor the robot’s
current state or condition). See also [1] and [2] for
examples and further motivation on task-oriented
dialogues between a robot and a human user.

In this paper, we show how linguistic expressions
can be generated to describe the spatial relations between
a mobile robot and its environment, using readings from a
ring of sonar sensors. The eventual goal is to use these
linguistic descriptions for navigation of the mobile robot
in an unstructured, unknown, and possibly dynamic
environment.  We are not attempting to build an exact
model of the environment, nor to generate a quantitative
map. However, we do want to generate linguistic
descriptions that represent the qualitative state of the
robot with respect to its environment, in terms that are
easily understood by human users.

The linguistic spatial descriptions provide a
symbolic link between the robot and a human user, thus

comprising a navigation language for human-robot
interaction. The linguistic expressions can be used for
two-way communications with the robot. First, in robot-
to-human communication, they provide a qualitative
description of the robot’s current state (e.g., there is an
object to the left, or there is an object to the right front).

Second, in human-to-robot communication, the
human can command the robot to perform navigation
behaviors based on the spatial relations (e.g., while there
is an object on the left, move forward, or if there is an
object on the right front, turn left, or even a high-level
and very human-like directive such as turn left at the
second intersection). A task can be represented and
described as a sequence of qualitative “states” based on
spatial relations, each state with a corresponding
navigation behavior.  We assume the robot has pre-
programmed or pre-learned, low-level navigation
behaviors that allow it to move safely around its
unstructured and dynamic environment without hitting
objects.

To accomplish both cases of communication, the
robot must be able to recognize its state in terms of
egocentric spatial relations between itself and objects in
its environment, and it must be able to generate a
linguistic description of the spatial relations. The main
focus of this paper is the creation of these linguistic
spatial descriptions from a ring of sonar sensors.

The idea of using linguistic spatial expressions to
communicate with a semi-autonomous robot has been
proposed previously. Gribble et al use the framework of
the Spatial Semantic Hierarchy for an intelligent
wheelchair [3]. Perzanowski et al use a combination of
gestures and linguistic directives such as “go over there”
[4]. Shibata et al use positional relations to overcome
ambiguities in recognition of landmarks [5]. In [6], Stopp
et al use spatial expressions to communicate with a 2-arm
mobile robot performing assembly tasks. Spatial relations
are used as a means of identifying an object in a
geometric model. That is, the robot has a model of its
environment, and the user selects an object from the
model using relational spatial expressions.

The work presented here is an extension of spatial
analysis previously applied to image analysis.
Background material on the spatial analysis algorithms is
included in Section 2. In Section 3, we show how the
robot’s sonar readings can be used to generate inputs for
the spatial analysis algorithms. Specific test cases are
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shown in Section 4 along with a discussion of future
work. Concluding remarks are found in Section 5. The
interested reader is also referred to a companion paper on
using spatial analysis to extract navigation states from a
hand-drawn map [7].

2. Background on Spatial Relations
Freeman [8] proposed that the relative position of

two objects be described in terms of spatial relationships
(such as “above” , “surrounds” , “ includes”, etc.). He also
proposed that fuzzy relations be used, because “all -or-
nothing” standard mathematical relations are clearly not
suited to models of spatial relationships. Moreover,
“although the human way of reasoning can deal with
qualitative information, computational approaches of
spatial reasoning and object recognition can benefit from
more quantitative measures” [9]. By introducing the
notion of the histogram of angles, Miyajima and Ralescu
[10] developed the idea that the relative position between
two objects can have a representation of its own and can
thus be described in terms other than spatial relationships.
However, the representation proposed shows several
weaknesses (e.g., requirement for raster data, long
processing times, anisotropy).

In [11][12], Matsakis and Wendling introduced the
histogram of forces. Contrary to the angle histogram, it
ensures processing of raster data as well as of vector data.
Moreover, it offers solid theoretical guarantees, allows
explicit and variable accounting of metric information,
and lends itself, with great flexibilit y, to the definition of
fuzzy directional spatial relations (such as “ to the right
of” , “ in front of” , etc.). For our purposes, the histogram of
forces also allows for a low-computational handling of
heading changes in the robot’s orientation and also makes
it easy to switch between a world view and an egocentric
robot view.

2.1. The Histogram of Forces
The relative position of a 2D object A with regard to

another object B is represented by a function FAB from IR
into IR  +. For any direction θ, the value FAB(θ) is the total
weight of the arguments that can be found in order to
support the proposition “A is in direction θ of B” . More
precisely, it is the scalar resultant of elementary forces.
These forces are exerted by the points of A on those of B,
and each tends to move B in direction θ (Fig. 1). FAB is
called the histogram of forces associated with (A,B) via
F, or the F−histogram associated with (A,B). The object
A is the argument, and the object B the referent. Note that
throughout this paper, the referent is always the robot.
Actuall y, the letter F denotes a numerical function. Let r
be a real. If the elementary forces are in inverse ratio to
dr, where d represents the distance between the points

considered, then F is denoted by Fr . The F0  –histogram
(histogram of constant forces) and F2 –histogram
(histogram of gravitational forces) have very different and
very interesting characteristics. The former coincides with
the angle histogram—without its weaknesses—and
provides a global view of the situation. It considers the
closest parts and the farthest parts of the objects equally,
whereas the F2 –histogram focuses on the closest parts.
Detail s can be found in [11][12].
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Figure 1.   Computation of  FAB(θθ). It is the scalar
resultant of forces (black arrows). Each one tends
to move B in direction θθ.

2.2. Handling of Vector Data
In previous work, we generated the F0   and F2 

histograms using raster image data. In this paper, we
present the first application of histograms that uses vector
data, i.e., a boundary representation based on the objects’
vertices.

In practice, the F-histogram associated with a pair
(A,B) of objects is represented by a limited number of
values (i.e., the set of directions θ is made discrete). For
any θ considered, the objects are partitioned by sorting
both A and B vertices, following direction θ+π/2. The
computation of FAB is of complexity O(n log(n)), where n
denotes the total number of vertices. It is translated into a
set of assessments of predetermined algebraic
expressions. Each assessment corresponds to the process
of a pair of trapezoids. In the case il lustrated by Figure 2,
the scalar resultant of the forces represented by black
arrows is Γ0 for constant forces and is Γ2 for gravitational
forces:

Γ0 = ε[(x1+x2)(z1+z2)+x1z1+x2z2]
 / [6 cos2(θ)]

Γ2 = ε[f(x1+y1,x2+y2)−f(y1,y2)+f(y1+z1,y2+z2)
  −f(x1+y1+z1,x2+y2+z2)]

where f denotes the function defined by:

    ∀(r,s)∈ IR  +
*  × IR  +

*  ,  r≠s ⇒ f(r,s) = [s ln(s) − r ln(r)]   / (s−r)
    and   ∀r∈ IR  +

*  , f(r,r) = lim s→r f(r,s) = 1+ ln(r)
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Figure 2.   The evaluation of FAB(θθ) is
based on the partitioning of the objects.

2.3. Linguistic Description of Relative Positions
In [13][14], Matsakis et al. present a system that

produces linguistic spatial descriptions. The description of
the relative position between any 2D objects A and B
relies on the sole primitive directional relationships: “ to
the right of” , “above” , “ to the left of” and “below”
(imagine that the objects are drawn on a vertical surface).
It is generated from F0

AB (the histogram of constant forces
associated with (A,B)) and F2

AB (the histogram of
gravitational forces). First, eight values are extracted from
the analysis of each histogram: ar (RIGHT), br (RIGHT),
ar (ABOVE), br (ABOVE), ar (LEFT), br (LEFT),
ar (BELOW) and br (BELOW). They represent the
“opinion” given by the considered histogram (i.e., F0

AB if
r is 0, and F2

AB if it is 2). For instance, according to F0
AB

the degree of truth of the proposition “A is to the right of
B” is a0(RIGHT). This value is a real number greater than
or equal to 0 (proposition completely false) and less than
or equal to 1 (proposition completely true). Moreover,
according to F0

AB the maximum degree of truth that can
reasonably be attached to the proposition (say, by another
source of information) is b0(RIGHT) (which belongs to
the interval [a0(RIGHT),1]). F0

AB and F2
AB’ s opinions

(i.e., the sixteen values) are then combined. Four numeric
and two symbolic features result from this combination.
They feed a system of 27 fuzzy rules and meta-rules that
outputs the expected linguistic description. The system
handles a set of 16 adverbs (like “mostly” , “perfectly” ,
etc.) which are stored in a dictionary, with other terms,
and can be tailored to individual users. A description is
generally composed of three parts. The first part involves
the primary direction (e.g., “A is mostly to the right of

B” ). The second part supplements the description and
involves a secondary direction (e.g., “but somewhat
above” ). The third part indicates to what extent the four
primitive directional relationships are suited to describing
the relative position of the objects (e.g., “ the description is
satisfactory” ). In other words, it indicates to what extent it
is necessary to turn or not to other spatial relations (e.g.,
“surrounds” ).

3. Egocentric Spatial Relations
    from Sonar Readings

In this section, we describe the application of the F0  

and F2  histograms for extracting spatial relations from the
sonar ring of a mobile robot. In our work, we have used a
Nomad 200 robot with 16 sonar sensors evenly distributed
along its circumference. The sensors’ readings are used to
build an approximate representation of the objects
surrounding the robot. The vertices of each object are
extracted and used to build the F0   and F2  histograms, as
described in Section 2.2, which are then used to generate
linguistic descriptions of relative positions between the
robot and the environment objects (see Figure 3).

The first step in recognizing spatial relations from
sonar readings is to build objects around the robot from
the sonar readings. Let us consider a simple case of the
robot and a single obstacle, shown in Figure 4. The sonar
sensor S returns a range value (which is less than the
maximum), indicating that an obstacle has been detected.
In the case of Figure 4, all sonar sensors except S return
the maximum value, which means that no other obstacle
was detected. In this case, a single object is plotted as a
trapezoid in the center of cone S. The depth of the
obstacle cannot be determined from the sonar reading;
thus, we use a constant arbitrary depth when building
objects. We also represent the cylindrical robot as a
rectangular object, because it is easier to process using
vector data, since there are only 4 vertices in a rectangle.
The bounding rectangle we build around the robot is also
shown in Figure 4.

In the case of multiple sonar returns, we examine the
sonar readings that are adjacent to each other. There is a
question on whether adjacent sonar readings are from a
single obstacle or multiple obstacles. Our solution to this
issue is to determine if the robot can fit between the
points of two adjacent sonar returns. If the robot cannot fit
between two returns, then we consider these returns to be
from the same object. Even if there are actually two
objects, they may be considered as one for robot
navigation purposes. In the case that the distance between
the two points of the sonar returns is big enough to allow
the robot to travel through, we consider separate objects.
To form objects from multiple sonar returns we join the
centers of the corresponding sonar cones.
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Figure 3.  Synoptic diagram. (a) Sonar readings. (b) Construction of
the polygonal objects. (c) Computation of the histograms of forces.
(d) Extraction of numeric features. (e) Fusion of information.
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Figure 4. A single object is formed
from a single sonar reading.

The distance we compute to determine if two
adjacent sonar returns are “close” or not can be expressed
by the following formula (distance between two points in
polar coordinates):

s1
2 + s2

2 − 2s1s2 cos(2π / c )

where:   s1 is the return of sonar sensor S1,
              s2 is the return of sonar S2, adjacent to S1,
              c is a constant that determines the angle
              between the two sonar sensors S1 and S2.

For c = 16, the angle between the two sonar sensors
is set to the real angle between them (2π/16), and the
formula returns the exact distance between the points of
the two sonar returns. However, for our application we
used c = 24, for which the distance computed between the
points of the adjacent sonar readings is shorter than the
actual one.

This way, when the robot diameter is compared to
the distance between two obstacles, the distance wil l be
big enough for the robot to easil y travel between the
obstacles. Thus, we allow extra clearance to make sure
that the robot can easily fit between two obstacles.

For example, consider the obstacle in Figure 5.
Since the obstacle is relatively far from the robot, the
distance between the sonar returns is rather big, and we
cannot determine whether the obstacle continues between
the three sonar readings, or we have three different
obstacles. In this case, we plot three different objects until
the robot gets closer to the obstacle and we have a better
resolution of the obstacle, since more sensors would
detect its presence. In the same figure we show the
distance computed for c = 16, which is the distance
between A and B, and for c = 24, which is the distance
between C and D.

In Figure 6, we show the same obstacle at a closer
distance to the robot. There are five adjacent sonar

sensors that have returns from the obstacle in this case.
The distance measure determines that all sonar returns are
close together, for the object to be considered as one.

After building the objects around the robot based on
the sonar sensor readings, we represent the relative
position between each object and the robot by the
histograms of constant and gravitational forces associated
with the robot/object pair, as described in Section 2. We
then generate an egocentric linguistic description, i.e.,
from the robot’s point of view. Thus, the descriptions also
depend on the robot’s orientation or heading. A change in
robot heading is easily accomplished by shifting the
histogram along its horizontal axis. In the next section we
show some test cases that ill ustrate the function of the
approach.
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Figure 5.  Three different objects are formed from 3
different sonar readings, if the readings are not “ close”
enough, according to the distance measure.

Figure 6. A single object is formed from 5 different
sonar readings, if the readings are “ close” enough.



4. Experiments and Discussion
The experiments included in this section were

generated using the Nomad simulator. The program ran
on the simulator at real-time speed. Processing of all
obstacles, plotting of objects, processing of histograms
and linguistic description generation is done faster than
the robot can move, so there are no "delayed" results.

A simple case that demonstrates the functionalit y is
shown in Figure 7. The sonar sensor readings are
displayed on the right, the robot is shown as a circular
model and an obstacle is drawn as a solid rectangle. For
ill ustration, the software plots a hollow trapezoid based
on the sonar readings, which should roughly coincide
with the real obstacle, and it also plots the bounding
rectangle that represents the robot. The software outputs
the linguistic description, after executing the spatial
analysis algorithm for all generated objects with respect to
the robot. As described in Section 2, the linguistic
expressions are generated in a three-part form: (1) “Object
1 is mostly to the left of the robot” (the primary
direction), (2) “but somewhat forward” (the secondary
direction), and (3) “ the description is satisfactory” (the
assessment indicating an adequate description).

Object 1

“ Object 1 is mostly to the left of the robot
but somewhat forward (the description is satisfactory)”

Figure 7.   The robot detects one obstacle. The sonar
sensor readings are shown on the right. The generated
linguistic expression is shown in italics.

In Figure 8, we show a more complex case. Object 1
from Figure 7 remains at the same position. A new
obstacle is introduced behind the robot, which is
recognized as a single object (Object 2). The obstacle to
the right of the robot however, is plotted as three different
objects. Since there are only three sonar readings from the
right obstacle, and they are far apart according to the
distance measure, the readings may not be from a single
obstacle. Hence, three different obstacles are plotted. If
more detail is needed, the robot may approach these three
plotted objects to the right, to get a better resolution from
more sonar sensors. This action may indeed reveal a
passage through two of the three plotted objects or, if all
sensors get returns that are close according to the distance
measure, the three objects will prove to be the same one.
Figure 8 shows the linguistic description generated for
each object detected; in all cases, the assessment shows an
adequate description.

Figure 9 shows the detection of two objects. The two
obstacles to the left of the robot are so close together, that

the robot cannot travel through them. Therefore, for
navigation purposes these two obstacles are considered to
be one object. Figure 9 shows the description generated,
including a satisfactory assessment.

Object 2
Object 3

Object 4

Object 5
Object 1

“ Object 1 is mostly to the left of the Robot
but somewhat forward (the description is satisfactory)”

“ Object 2 is behind the Robot but extends to the left
relative to the Robot (the description is satisfactory)”

“ Object 3 is mostly to the right of the Robot
but somewhat to the rear (the description is satisfactory)”

“ Object 4 is to the right of the Robot
(the description is satisfactory)”

“ Object 5 is mostly to the right of the Robot
but somewhat forward (the description is satisfactory)”

Figure 8. The robot detects 5 obstacles.

Object 1

Object 2

"Object 1 is to the left of the Robot
(the description is satisfactory)"

"Object 2 is loosely to the right of the Robot
and extends to the rear relative to the Robot
(the description is rather satisfactory)"

Figure 9. The robot detects 2 obstacles.

The L-shaped object behind and to the right of the
robot is an example of a rather satisfactory (i.e., less
satisfactory) linguistic description. The algorithm
determines that for such a relative position there is not a
reall y good description in terms of the four primitive
directions only. It introduces the term "loosely" together
with the classification of the whole description as "rather
satisfactory" as opposed to "satisfactory" in all previous
examples. This assessment indicates that we may need
additional spatial relations (li ke “surrounds” ).

In the future, we plan to use more spatial relations
for descriptions to include situations such as the one of
Figure 9. A higher level of processing may generate such
descriptions after considering the outputs of our current
algorithm. For example, if there is an object to the right



and an object to the left of the robot, then the robot is
between the two objects.

We are also planning to introduce descriptions that
indicate distance, in addition to relative position, such as
close or far. These descriptions may be generated after
processing the distance information that the sonar sensors
return. Information from the robot’s camera may also be
combined with the sonar data to achieve more complete
linguistic descriptions of the robot’s environment (e.g.,
recognize and label objects).

Temporal data may also be used for realization of
corridors, rooms, etc. For example, if we have many
consecutive linguistic descriptions of being between
objects, then the robot could be traveling in a corridor. If
we have consecutive descriptions of being surrounded, this
could mean that the robot is in a room of a certain size.

5. Concluding Remarks
In this paper, we have shown how the histogram of

forces can be used to generate linguistic spatial
descriptions representing the qualitative state of a mobile
robot in an unknown environment. Using the robot’s
sonar readings, a boundary approximation of the obstacles
is made, and their vertices are used as input to the
histogram of forces. The usage described in this paper
represents the first application of F0   and F2  histograms
that uses vector data instead of raster data.

Several examples have been presented which
ill ustrate the linguistic expressions automaticall y
generated. The approach is computationally efficient so
that the spatial descriptions can be generated in real time.
Note that although we have assumed an unknown
environment and therefore must build an approximation
of the environment from the sonar readings, the approach
could also be used to generate linguistic descriptions for a
robot in a known environment using a map. In either case,
the linguistic expressions can be used to facil itate natural
communication between a robot and a human user.
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