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Abstract—Affine invariant descriptors have been widely used for recognition of objects regardless of their position, size, and

orientation in space. Examples of color, texture, and shape descriptors abound in the literature. However, many tasks in computer

vision require looking not only at single objects or regions in images but also at their spatial relationships. In an earlier work, we showed

that the relative position of two objects can be quantitatively described by a histogram of forces. Here, we study how affine

transformations affect this descriptor. The position of an object with respect to another changes when the objects are affine

transformed. We analyze the link between 1) the applied affinity, 2) the relative position before transformation (described through a

force histogram), and 3) the relative position after transformation. We show that any two of these elements allow the third one to be

recovered. Moreover, it is possible to determine whether (or how well) two relative positions are actually related through an affine

transformation. If they are not, the affinity that best approximates the unknown transformation can be retrieved, and the quality of the

approximation assessed.

Index Terms—Affine transformations, force histograms, spatial relations, descriptors, invariants, computer vision.
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1 INTRODUCTION

COLOR, texture, and shape are fundamental concepts in
computer vision, and many descriptors have been

proposed to handle them. Typical examples are histogram-
based color descriptors [1], texture descriptors based on co-
occurrence matrices [2], and moment-based shape descrip-
tors [3]. Evaluation and comparison criteria include extrac-
tion, storage and representation complexities, effectiveness
in similarity retrieval, etc. Considerable attention has been
paid to invariance under geometric transformations, i.e., to
the design of robust descriptors, not (very) sensitive to the
position of the camera with respect to the photographed
scene [4]. As is logical, much research has been done
considering only the class of similarity transformations
(such as translations, rotations, and scalings), less has been
done with the larger class of affine transformations (which
also includes shears and stretches), and even less with the
more general class of projective transformations. The fact is
that the latter are often approximated by affinities, under
the assumption of weak perspective [5]. For instance, affine
invariant color descriptors have been used to handle
changes in the irradiance pattern due to different lighting
conditions and viewpoints [6], and affine invariant texture

descriptors to identify the same type of texture within an
image (such as brick texture on two sides of a house) [7].

Numerous affine invariant shape descriptors can be
found in the literature. Techniques include area moments
[8], [9], curve moments [10], cross-weighted moments [11],
Fourier descriptors [12], Legendre and Zernike descriptors
[13], B-splines [14], Curvature Scale Space representation
[15], etc. Most of the aforementioned descriptors rely, in a
preprocessing step, on the recovery of the object boundary
and the extraction of interest points (such as curvature
extrema, bitangents, or inflection points). Typically, the
boundary is encoded using a curvature, a centroidal
distance, or a complex coordinate function. The function
needs to be low-pass filtered and sampled. A set of
descriptors is derived from it, and a normalization
procedure is applied to remove the effects of affine
transformations and eliminate dependency on the starting
point in the parameterized boundary description. Although
there have been a few attempts to handle objects with holes
[16] or multiple connected components [17], the traditional
underlying assumption is that the object can be defined by a
single closed curve.

Relative position is another fundamental concept in
computer vision. Many tasks require looking not only at
single regions in images but also at their spatial relation-
ships. Knowing the relative position of an object’s compo-
nents often helps in recognizing the object and, by the same
token, its components. Similarly, knowing the relative
position of objects in a scene often helps in understanding
the scene and identifying the objects themselves. Moreover,
different spatial layouts may yield different conclusions
about the identity or function of the object or the scene. To
some extent, relative position is to shape what texture is to
color. Even though texture is an intuitive concept, a formal
definition has proven elusive. The same applies to relative
position. Authors usually describe the position of an object
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with respect to another in terms of a few spatial relation-
ships, such as “to the right of,” “above,” “below,” etc.
Moreover, objects are reduced to very elementary entities
such as a point (centroid) or a (bounding) rectangle. These
procedures are practical, notably for spatial reasoning (see,
e.g., [18], [19], [20], [21]), but much information is lost. The
histogram of angles [22], [23] was probably the first real
relative position descriptor proposed in the literature.
Matsakis then introduced the histogram of forces [24],
which supersedes and generalizes the angle histogram [25].
The relative position of two objects is described by a
periodic function with period 2�. The function is sensitive
to the shape of the objects, their orientation, their size, and
the distance between them. Matsakis [26] reviews and
classifies work on the use of force histograms. It touches
topics as varied as linguistic scene description [27],
classification of cranium orbits [28], human-robot commu-
nication [29], and spatial indexing mechanisms for medical
image databases [30].

In this paper, we study how affine and “nearly” affine
transformations affect relative positions described by force
histograms. Our work constitutes a first step towards the
design of affine invariant relative position descriptors.
Object and affinity terminologies and notations are intro-
duced in Section 2. The notion of the histogram of forces is
presented in Section 3. The position of an object with respect
to another changes when the two objects are affine
transformed: in Section 4, we analyze the link between the
applied affinity and the relative positions before and after
transformation. Finally, in Section 5, we experimentally
study the robustness of the theoretical tools presented in the
previous sections to departures from the assumptions on
the transformations being handled. Conclusions are given
in Section 6.

2 WHEN PAIRS MATCH

In this paper, affine transformations are continually applied
to objects in the Euclidean affine plane. We go over these
two terms in Section 2.1. Some affine transformations will
play a particularly important role among pairs of objects.
They are examined in Section 2.2.

2.1 Terminology and Notations

As shown in Fig. 1, the plane reference frame is a positively
oriented orthonormal frame ðO;~ii;~jjÞ. For any real numbers
� and v, the vectors ~ii� and ~jj� are the respective images of ~ii
and ~jj through the �-angle rotation, and ��ðvÞ is the
oriented line whose reference frame is defined by ~ii� and
the point of coordinates ð0; vÞ—relative to ðO;~ii�;~jj�Þ. The

term object denotes a nonempty bounded set of points, E,
equal to its interior closure,1 and such that, for any � and v,
the intersection E \��ðvÞ is the union of a finite number of
mutually disjoint segments. This intersection E \��ðvÞ,
denoted by E�ðvÞ, is a longitudinal section of E. Note that an
object may have holes in it and may consist of many
connected components.

Affine transformations, also called affinities, are transfor-
mations that preserve collinearity (all points lying on a line
initially still lie on a line after transformation) and ratios of
distances (e.g., the midpoint of a line segment remains the
midpoint after transformation). Translations, rotations,
scalings, and stretches are basic affine transformations. As
shown in Fig. 2, a stretch is characterized by an invariant
line and a ratio. It scales in one direction only and does not
maintain the objects’ proportions.

From now on, O denotes a set of ordered pairs of objects
such that for any ðA;BÞ in O and any affine transformation
aff, the pairs ðB;AÞ and ðaffðAÞ; affðBÞÞ also belong to O;
pairs such as ðA;BÞ, ðA0;B0Þ, ðA0;B0Þ, ðA00;B00Þ, etc., denote
elements of O; the symbols aff, aff0, aff1, etc., denote affine
transformations; tran, tran0, tran1, etc., are translations; rot
denotes a �-angle rotation, rot0 a �0-angle rotation, etc.; the
values �, �0, etc., belong to the interval � � �; ��; the symbols
sca, sca0, etc., denote scalings; the scaling factors, ‘, ‘0, etc.,
are positive values; the symbols stre, stre0, stre

0, etc., denote
X-axis stretches; the ratio of stre is k, the ratio of stre0 is k0,
etc.; all these values k, k0, k

0, etc., are also positive values.

2.2 A Particular Transformation Composition

In Section 4.3, we will focus on affine transformations that
can be written in the following form: stre0 � tran � rot �
sca � stre. As illustrated by Fig. 3, the interest of this kind of
composition lies in the interpretation that can be given to it.
A set of objects before transformation (Fig. 3c) can be seen
as a picture of a scene, the set of affine transformed objects
(Fig. 3d) as a picture of the same scene taken from another
view, and the sets of “partially” transformed objects
(Figs. 3a, 3b, 3e, 3f) as different views from above. We will
come back to this interpretation in Section 5.1. It is useful at
this point to introduce the following definitions:

Definition 1a. ðA00;B00Þmatches ðA0;B0Þ through ðstre0; tran;
rot; sca; streÞ—or through stre0 � tran � rot � sca � stre—if
and only if:

A00 ¼ stre0ðtranðrotðscaðstreðA0ÞÞÞÞÞ

and B00 ¼ stre0ðtranðrotðscaðstreðB0ÞÞÞÞÞ.
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1. In other words, it is a 2D object that does not include any “grafting,”
such as an arc or isolated point.

Fig. 1. Oriented straight lines and longitudinal sections. Here, E�ðvÞ ¼
E \��ðvÞ is the union of three disjoint segments.

Fig. 2. Two basic affine transformations. M is transformed into M0.

(a) Scaling: � is the scaling center and ‘—a positive value—the scaling

factor. (b) Stretch: � is the axis and k—a nonzero value—the ratio.



Definition 1b. ðA0;B0Þ and ðA00;B00Þ match if and only if there

exists a 5-tuple ðstre0; tran; rot; sca; streÞ such that ðA00;B00Þ
matches ðA0;B0Þ through ðstre0; tran; rot; sca; streÞ.

Definition 1c. fA0;B0g and fA00;B00g match if and only if

ðA0;B0Þ and ðA00;B00Þ, or ðB00;A00Þ, match.

In Fig. 3, for instance, ðA0;B0Þ and ðA5;B5Þ match. One

may wonder if the 5-tuple of geometric transformations in

Definition 1a is unique. Generally speaking, the transfor-

mations are not, but the parameters � (rotation angle),

‘ (scaling factor), k, and k0 (stretch ratios) are. However,

there are exceptions to the rule. For instance, the unique-

ness of �, ‘, k, and k0 is obviously not guaranteed if the set

O of all considered object pairs is ambiguous, i.e., if some

pairs do not allow three nonaligned anchor points to be

determined (Fig. 4).

Definition 2. The set O is ambiguous if and only if there exists

a pair ðA;BÞ in O, and a rotation rot different than the

identity transformation (0-angle rotation), such that:

rotðAÞ ¼ A and rotðBÞ ¼ B.

Proposition 1 is proven in Appendix A. The third case is
illustrated by Fig. 5.

Proposition 1. Assume O is not ambiguous, and assume
ðA00;B00Þ matches ðA0;B0Þ through ðstre01; tran1; rot1; sca1;
stre1Þ and through ðstre02; tran2; rot2; sca2; stre2Þ.

1. If �1 62 f��=2; 0; �=2; �g, then �1 ¼ �2, ‘1 ¼ ‘2,
k1 ¼ k2, and k01 ¼ k02.

2. If �1 2 f0; �g, then �1 ¼ �2, ‘1 ¼ ‘2, and k1k
0
1 ¼ k2k

0
2.

3. If �1 2 f��=2; �=2g, then �1 ¼ �2, ‘1k1 ¼ ‘2k2, and
k1=k

0
1 ¼ k2=k

0
2.

3 WHEN OBJECTS ATTRACT

In an earlier work [24], [25], we showed that the position of
an object with respect to another one can be described by a
histogram of forces. Here, we examine briefly this notion
and discuss data models and related complexity issues. We
will then be able, in Section 4, to study how affine
transformations affect relative positions.
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Fig. 3. A particular transformation composition. Here: A5 ¼ stre0ðtranðrotðscaðstreðA0ÞÞÞÞÞ and B5 ¼ stre0ðtranðrotðscaðstreðB0ÞÞÞÞÞ. We say that the
pairs ðA0;B0Þ and ðA5;B5Þmatch. Note that (c) can be seen as a picture of a scene, (d) as a picture of the same scene from another bird’s-eye view,
and (a), (b), (e), and (f) as different views from above.

Fig. 4. Ambiguous configurations. Look at these pairs of objects from

any bird’s-eye view. In case (a), you would be able to retrieve each of

the three points even if they were not marked. The same applies to case

(c). In case (b), however, the center is the only point that you could

retrieve without ambiguity, because a �-angle rotation about it leaves the

objects unchanged. The considered pair would make O ambiguous.

Fig. 5. Nonuniqueness of ð�; ‘; k; k0Þ. In general, if ðA00;B00Þ matches
ðA0;B0Þ through ðstre0; tran; rot; sca; streÞ, then the 4-tuple ð�; ‘; k; k0Þ is
unique. However, as stated by Proposition 1, there are exceptions to the
rule. This counter-example exhibits two 4-tuples: ð�1; ‘1; k1; k01Þ ¼
ð90�; 2; 1; 0:5Þ and ð�2; ‘2; k2; k02Þ ¼ ð90�; 1; 2; 1Þ.



3.1 The Notion of the Histogram of Forces

Consider two objects A and B, as in Fig. 6a. The position of
A with regard to B is represented by a function ’AB from IR
(the set of real numbers) into IRþ (the set of nonnegative real
numbers). For any direction �, the value ’ABð�Þ can be seen
as the scalar resultant of elementary forces. These forces are
exerted by the points of A on those of B, and each tends to
move B in direction �. If the domain of ’AB is all of IR, then
the pair ðA;BÞ is termed ’-assessable and ’AB is called the
histogram of forces associated with ðA;BÞ via ’, or the
’-histogram associated with ðA;BÞ. The object A is the
argument, and B is the referent.

Actually, ’ denotes a mapping from IR into IRþ and
defines the force fields. Two other functions, F and f, can be
introduced to conveniently describe the mathematical link
between ’, A, B, �, and ’ABð�Þ (Fig. 7). Let T be the set of
triples ð�;E�ðvÞ;G�ðvÞÞ, where � and v are any real
numbers and E and G are any objects. Remember that
E�ðvÞ ¼ E \��ðvÞ and G�ðvÞ ¼ G \��ðvÞ (Fig. 1). The
function F is from T into IRþ, and we have (Fig. 7d):

’ABð�Þ ¼
Z þ1

�1
Fð�;A�ðvÞ;B�ðvÞÞ dv: ð1Þ

Fð�;A�ðvÞ;B�ðvÞÞ corresponds to the resultant of forces
exerted by points of A�ðvÞ on points of B�ðvÞ. Simply put, F
is in charge of the longitudinal sections (Fig. 7c). It delegates

the handling of segments to f, which delegates in turn the
handling of points to ’. The function f is from IRþ � IR�
IRþ into IRþ. It is defined by:

fðx; y; zÞ ¼
Z xþyþz

yþz

Z z

0

’ðu� wÞ dw
� �

du: ð2Þ

In (2), the symbols x and z denote the lengths of two aligned
segments and y indicates the relative position of these
segments (Fig. 7b). The symbols u and w denote the
coordinates of two points on an oriented line (Fig. 7a), while
u� w indicates the relative position of these points on the
line. Note that the mapping ’ is zero on IR�: An elementary
force that tends to move B in direction �þ � will be taken
into account when computing ’ABð�þ �Þ, not when
computing ’ABð�Þ. As an example, gravitational force fields
can be represented by the mapping ’2 such that: 8d 2
IR�; ’2ðdÞ ¼ 0 and 8d 2 IR�þ; ’2ðdÞ ¼ 1=d2 (where IR�þ de-
notes the set of positive real numbers). This is according to
Newton’s law of gravity, which states that every particle
attracts every other particle with a force inversely propor-
tional to the square of the distance between them. The
objects A and B can then be seen as two flat metal plates of
uniform density and constant and negligible thickness—a
kind of objects commonly considered in physics [31]. We
are not bound, however, to physical laws. The choice of ’
only depends on the properties we want the force
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Fig. 6. Force histograms. Physical interpretation and examples. (a) ’ABð�Þ is the scalar resultant of elementary forces (black arrows). Each one

tends to move B in direction �. (b) The histogram of constant forces associated with ðA;BÞ is one possible representation of the position of A relative

to B. (c) The histogram of gravitational forces associated with ðA;BÞ is another possible representation.

Fig. 7. Force histograms. Mathematical link between ’, A, B, �, and ’ABð�Þ. (a) Handling of points: ’ðu� wÞ. (b) Handling of segments:

fðx; y; zÞ ¼
R xþyþz
yþz ð

R z
0 ’ðu� wÞ dwÞ du. (c) Handling of longitudinal sections: Fð�;A \��ðvÞ;B \��ðvÞÞ ¼ fðx1; y1; zÞ þ fðx2; y2; zÞ. (d) Handling of

directions: ’ABð�Þ ¼
Rþ1
�1 Fð�;A \��ðvÞ;B \��ðvÞÞ dv.



histograms to have. For instance, ’ can be any of the ’r

functions defined from IR into IRþ by:

8d 2 IR�; ’rðdÞ ¼ 0 and 8d 2 IR�þ; ’rðdÞ ¼ 1=dr: ð3Þ

In the rest of the paper, only ’r-histograms are considered.
As shown in Section 4.1, these histograms have nice
geometric properties. For any r, any pair of disjoint objects
is ’r-assessable. Moreover, if r is lower than 1, any pair of
intersecting objects is ’r-assessable too. As a matter of fact,
’r-histograms can also handle unbounded objects (if r is
greater than 1), and fuzzy (i.e., gray-level) objects [24], [25]. In
theory, they can handle neither 0D objects, nor 1D objects.
In practice, this is usually not a limitation since points and
lines can easily be treated as 2D objects. The ’0-histogram

(histogram of constant forces) and ’2-histogram (histogram
of gravitational forces) have very different and interesting
characteristics. The former provides a global view of the
relative position between the objects. It considers the closest
parts and the farthest parts of the objects equally,whereas the
’2-histogram focuses on the closest parts. Examples are
presented in Fig. 6.

3.2 Data Models and Complexity Issues

Not only the constraints on the objects are few, but the
histogram of forces also allows data to be stored and
efficiently processed in raster as well as in vector form [24],
[25], [29]. In the case of raster data, the computation of a
histogram value, ’AB

r ð�Þ, is achieved by partitioning the
objects A and B into segments (more precisely, into sets of
adjacent pixels). The generation of these segments is based
on the rasterization of a pencil of parallel lines (see Fig. 7d)
by means of Bresenham’s algorithm in integer arithmetic
(which is commonly circuit coded in visualization systems).
The handling of the pair ðA;BÞ then comes down to the
handling of segment pairs. Computation of forces between
two aligned segments translates into the instantiation of
variables in a predetermined, hard-coded symbolic expres-
sion. This expression does not depend on A nor B. It is
obtained beforehand through symbolic computation of a
double integral ((2), Fig. 7b). The computation of ’AB

r ð�Þ is
of complexity OðnpnÞ, where n denotes the number of
pixels of the processed image. The complexity drops to OðnÞ
for convex objects. In practice, of course, only a finite set of
directions � is considered. An angle increment of 2 to
3 degrees is usually appropriate [25]. Note that all pairs of
image objects can be processed simultaneously. Moreover,
force histogram computation is highly parallelizable.

In the case of vector data, each object is represented by a
set of polygonal contours—the number of which depends
on the number of holes and connected components. Each
polygon, in turn, is represented by a list of vertex
coordinates. The objects are partitioned into trapezoids by
drawing parallel lines through both A and B vertices,
following direction �. The handling of ðA;BÞ comes down to
the handling of trapezoid pairs. Computation of forces
between two trapezoids with aligned bases translates into
the instantiation of variables in a predetermined, hard-
coded symbolic expression. This time, the expression is
obtained through symbolic computation of a triple integral.

The computation of ’AB
r ð�Þ is of complexity Oðn logðnÞÞ,

where n denotes the total number of object vertices.
The algorithms above are particularly fast. In [29], for

instance, a robot equipped with sonar sensors describes, in
natural language, its position with respect to the sensed
environment objects. The generation of linguistic descrip-
tions is based on the computation of force histograms. The
program runs at real-time speed. Processing of all detected
obstacles is done faster than the robot can move.

4 FORCE HISTOGRAMS REACT WELL TO

AFFINE TRANSFORMATIONS

The position of an object with respect to another one
changes when the two objects are affine transformed. In this
section, we study the link between the applied affinity and
the relative positions before and after transformation. For
instance, how will the position of A with respect to B be
affected by a �=4-angle rotation? Or, knowing the relative
positions before and after transformation, is it possible to
retrieve that transformation? Relative positions will, of
course, be described by ’r-histograms. Let us formalize the
aim of the study. We are interested in the following
expression: ’A0B0

r ¼ ’affðAÞaffðBÞ
r . First, we would like to be

able to retrieve ’affðAÞaffðBÞ
r , knowing ’AB

r and aff. This is
covered in Section 4.1. Then, we would like to solve the
three equations below: (4) for the unknown variables A0 and
B0, (5) for the unknown variables A and B, and (6) for the
unknown variable aff. As will be seen, these equations are
related to important issues. Equations (4) and (5) are dealt
with in Section 4.2, whereas (6) is examined in Section 4.3.

’A0B0

r ¼ ’aff0ðA0Þaff0ðB0Þ
r ; ð4Þ

’
A00B

0
0

r ¼ ’aff0ðAÞaff0ðBÞ
r ; ð5Þ

’
A00B

0
0

r ¼ ’affðA0ÞaffðB0Þ
r : ð6Þ

4.1 Fundamental Properties

Assume ðA;BÞ is ’r-assessable. We state here that ðB;AÞ and
ðaffðAÞ; affðBÞÞ are ’r-assessable too. Moreover, ’BA

r can
easily be deduced from ’AB

r , even if the objects A and B
themselves are not known. It is also possible to deduce
’affðAÞaffðBÞ
r from aff and ’AB

r without, again, knowing either
A or B. In other words, the relative position of two affine
transformed objects can be deduced from the considered
affinity and the relative position—known through a
’r-histogram—of the objects before transformation. There
are two basic reasons for that: First, any affine transforma-
tion preserves collinearity and the computation of force
histogram values is precisely based on the partitioning of
objects into longitudinal sections (Fig. 7); then, any affine
transformation preserves ratios of distances and the scaling
of longitudinal sections conveniently results in the multi-
plication of resultant forces by a constant factor (Property 8,
Appendix B). The following properties illustrate the state-
ments above. Notations are as introduced in Section 2.1.
Properties 1 and 4 are depicted by Fig. 8. Proofs of
Properties 1 to 4 are in [24, chapter 2, Appendix A].
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Property 5 is new and its proof is given in Appendix C. All
proofs naturally rely on (1), (2), and (3).

Assume ðA;BÞ is ’r-assessable:

Property 1. The pair ðB;AÞ is also ’r-assessable and: 8� 2 IR,
’BA
r ð�Þ ¼ ’AB

r ð�þ �Þ.
Property 2. ðtranðAÞ; tranðBÞÞ is ’r-assessable and: 8� 2 IR,

’tranðAÞtranðBÞ
r ð�Þ ¼ ’AB

r ð�Þ.
Property 3. ðrotðAÞ; rotðBÞÞ is ’r-assessable and: 8� 2 IR,

’rotðAÞrotðBÞ
r ð�Þ ¼ ’AB

r ð’� �Þ.
Property 4. ðscaðAÞ; scaðBÞÞ is ’r-assessable and: 8� 2 IR,

’scaðAÞscaðBÞ
r ð�Þ ¼ ‘3�r’AB

r ð�Þ.
Property 5. For any � and positive value x, let �½x� denote the

value atanðx�1tan�Þ if cos� is positive, the value � if cos� is
zero, and the value atanðx�1tan�Þ þ � otherwise. The pair
ðstreðAÞ; streðBÞÞ is ’r-assessable and:

8� 2 IR;

’streðAÞstreðBÞ
r ð�Þ ¼ k2�r½1þ ðk2 � 1Þcos2��ðr�1Þ=2’AB

r ð�½k�Þ:

Note that Properties 2 to 4 show a way to achieve

invariance under translations, rotations and scalings (i.e.,

similarity transformations). Let m and c be the mean and

centroid2 of ’AB
r . The value m is a force on the Y-axis of the

histogram, whereas c is an angle on the X-axis. Now, let

’AB
r be the normalized histogram defined by: 8� 2 IR,

’AB
r ð�Þ ¼ m�1’AB

r ð�þ cÞ. The mean and centroid of ’AB
r do

not depend on A nor on B (they are 1 and 0). Therefore,

’
tranðAÞtranðBÞ
r ¼ ’

rotðAÞrotðBÞ
r ¼ ’

scaðAÞscaðBÞ
r ¼ ’AB

r :

Invariance under stretches seems much harder to achieve.
Property 5 can, however, be exploited, as will be seen in
Section 4.3.

4.2 About Completeness

We are interested here in (4) and (5). Assume all elements
in the set O of all considered object pairs are ’r-assessable.
Obviously, the presence of aff0 in (4) does not bring
much: aff0ðA0Þ and aff0ðB0Þ could be renamed A1 and B1.
It does not bring much in (5) either: We could solve (5)
for the unknown variables A0 ¼ aff0ðAÞ and B0 ¼ aff0ðBÞ,

and then retrieve A and B using the inverse affine

transformation aff�10 . Solving (4) and (5) therefore comes

down to solving (7).

’A0B0

r ¼ ’A0B0
r : ð7Þ

Basically, (7) brings out the fundamental issue of

completeness. May a given histogram be associated with

more than one pair of objects? If so, how are these pairs

related?What is the discriminative power of the histogramof

forces? Let OA0B0 be the set of solutions of (7), i.e., the set of

pairs ðA0;B0Þ such that ’A0B0
r ¼ ’A0B0

r . Obviously, we can

expect ðA0;B0Þ not to be the only element of OA0B0 because a

’r-histogram represents the relative position of two objects

and different objects may be exactly in the same relative

position.3 Consider any translation tran1, any �-angle

rotation rot1, and any scaling sca1. According to Properties 1

to 4, the pairs ðtran1ðA0Þ; tran1ðB0ÞÞ and ðtran1ðrot1ðB0ÞÞ;
tran1ðrot1ðA0ÞÞÞ also belong toOA0B0 ;moreover, if r is equal to

3, the pairs ðtran1ðsca1ðA0ÞÞ; tran1ðsca1ðB0ÞÞÞ and ðtran1ðrot1
ðsca1ðB0ÞÞ; tran1ðrot1ðsca1ðA0ÞÞÞ belong to OA0B0 too. One

may wonder if OA0B0 contains other elements than the

previous ones. As suggested by Fig. 9b, it might well be.

Determining these other elements is an intricate problem that

has not been solved yet.4 In practical situations, however, it is

most reasonable to assume that if ðA0;B0Þ is such that

’A0B0

r ¼ ’A0B0
r , then ðA0;B0Þ is necessarily one of the pairs

listed above. In other words, it is reasonable to assume that

the set O of all considered object pairs is r-regular.

Definition 3. The set O is r-regular if and only if its elements

are ’r-assessable and, for any pairs ðA;BÞ and ðA0;B0Þ, the
following is true: If ’A0B0

r ¼ ’AB
r , then there exist a translation

tran1, a �-angle rotation rot1, and a scaling sca1 such that

ðA0;B0Þ ¼ ðtran1ðAÞ; tran1ðBÞÞ
or ðA0;B0Þ ¼ ðtran1ðrot1ðBÞÞ; tran1ðrot1ðAÞÞÞ
or r ¼ 3 and ðA0;B0Þ ¼ ðtran1ðsca1ðAÞÞ; tran1ðsca1ðBÞÞÞ
or r ¼ 3 and

ðA0; B0Þ ¼ ðtran1ðrot1ðsca1ðBÞÞÞ; tran1ðrot1ðsca1ðAÞÞÞÞ:
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Fig. 8. Properties 1 and 4. Knowing ’AB
r , it is easy to retrieve ’BA

r and ’scaðAÞscaðBÞ
r .

2. Obviously, the “centroid” of ’AB
r has to be computed over an

appropriate 2�-length interval (since ’AB
r is a periodic function with

period 2�). In some cases, selecting such an interval might not be easy.
Imagine, for instance, that A surrounds B and all histogram values are
nonzero values.

3. In fact, OA0B0 itself can be seen as a relative position. Consider the
relation � defined by: ðA0;B0Þ � ðA;BÞ iff ’A0B0

r ¼ ’AB
r . It is an equivalence

relation between elements of O (the set of all considered object pairs). A
relative position can therefore be defined as any equivalence class of � .
Under this definition, OA0B0 , i.e., the equivalence class of ðA0;B0Þ, is a
relative position.

4. We refer here to the inverse problem: Given a force histogram, construct
all pairs of objects this histogram is associated with.



4.3 Matching Pairs and Force Histograms

Given two pairs ðA0;B0Þ and ðA00;B00Þ, we would like now

to solve (6), i.e., ’
A00;B

0
0

r ¼ ’affðA0ÞaffðB0Þ
r , for the unknown

variable aff. To simplify the problem in hand, however, we

reformulate it as follows: Given two pairs ðA0;B0Þ and

ðA00;B00Þ, solve (6) for the unknown variable ðstre0; tran; rot;
sca; streÞ.

’
A00;B

0
0

r ¼ ’stre0ðtranðrotðscaðstreðA0ÞÞÞÞÞstre0ðtranðrotðscaðstreðB0ÞÞÞÞÞ
r : ð8Þ

Roughly, we show here that: 1) Equation (8) has
solutions if and only if the object pairs ðA0;B0Þ and
ðA00;B00Þmatch (see Definition 1, Section 2.2), 2) any solution
of (8) allows the affinity the two pairs match through to be
recovered, and 3) ðA0;B0Þ and ðA00;B00Þ need to be known
only through the histograms ’A0B0

r and ’
A00B

0
0

r . In other
words, given two force histograms, it is possible to check
whether the pairs of objects they are associated with match
and, if so, recover the affine transformation. Points 1) and 2)
are handled by Proposition 2 below, and point 3) by
Proposition 3. The proofs are given in Appendices D and E.

Proposition 2. Assume the set O of all considered object pairs is
r-regular (Definition 3). If ðA00;B00Þ matches ðA0;B0Þ through
ðstre0; tran; rot; sca; streÞ, then ðstre0; tran; rot; sca; streÞ is a
solution of (8). Moreover, if ðstre0; tran; rot; sca; streÞ is a
solution of (8), then there exist a translation tran2, a rotation
rot2 and a scaling sca2 such that ðA00;B00Þ matches either
ðA0;B0Þ or ðB0;A0Þ through ðstre0; tran2; rot2; sca2; streÞ. In
the first case, rot2 is a �-angle rotation (like rot). In the second
case, rot2 is a ð�þ �Þ-angle rotation. In both cases, sca2 can be
chosen equal to sca if r is different than 3.

Proposition 3. ðstre0; tran; rot; sca; streÞ is a solution to (8) if
and only if the 4-tuple ð�; ‘; k; k0Þ of associated parameters is a
solution to (9):

8� 2 IR; k0
r�2½1þ ðk0�2 � 1Þcos2��ðr�1Þ=2’A00B

0
0

r ð�½k0�1�Þ

¼ ‘3�rk2�r½1þ ðk2 � 1Þcos2ð�� �Þ�ðr�1Þ=2’A0B0
r ðð�� �Þ½k�Þ:

ð9Þ

Remember that �½x� denotes the value atanðx�1tan�Þ if
cos� is positive, the value � if cos� is zero, and the value
atanðx�1tan�Þ þ � otherwise. Equation (9) is much nicer to
work with than (8) because it is a numerical equation, and
various methods can be used to solve it. We will come back
to this issue in Section 4.4. Note that (9) is found by
computing the same histogram in two different ways and

then equating the obtained expressions (Appendix E). These
expressions are shown below. ðA4;B4Þ and ðA04;B04Þ actually
refer to the same pair of objects, as in Fig. 3a.

8� 2 IR;

’
A04;B

0
4

r ð�Þ ¼ k0
r�2½1þ ðk0�2 � 1Þcos2��ðr�1Þ=2’A00;B

0
0

r ð�½k0�1�Þ:
ð10Þ

8� 2 IR;

’A4B4
r ð�Þ¼‘3�rk2�r½1þðk2�1Þcos2ð���Þ�ðr�1Þ=2’A0B0

r ðð���Þ½k�Þ:
ð11Þ

4.4 The Matching Algorithm

Assume O, the set of all considered pairs of objects, is not
ambiguous and r-regular (Definition 2 and Definition 3).
Then, according to Propositions 1 and 2, knowing one
solution of (9) allows us to retrieve all solutions of (9). The
simplest way to solve this equation is to implement the
algorithm below, which we will later refer to as the matching
algorithm:

0. MATCH false;

1. Compute ’
A00B

0
0

r ;

2. Compute ’A0B0
r ;

3. For each k0

3.1. Compute ’
A04B

0
4

r as in (10);

3.2. For each k

3.2.1. For each ‘

3.2.1.1. For each �

3.2.1.1.1. Compute ’A4B4
r as in (11);

3.2.1.1.2. If ’
A04B

0
4

r ¼ ’A4B4
r

then R �;L ‘;K k;K0  k0 and

MATCH  true;

At the end of the run, the Boolean MATCH is true if a
solution has been found and stored in the floating-point
variables R, L, K, and K0, and false otherwise. Let us go
over and briefly comment on the different steps.

4.4.1 Histogram Computation

(Steps 1, 2, 3.1, and 3.2.1.1.1)

In practice, of course, only a finite set of evenly distributed

directions � is considered. The calculation of each ’
A00B

0
0

r ð�Þ
and each ’A0B0

r ð�Þ is done once and for all at Steps 1 and 2.

It is based on the partitioning of the objects, as seen in

Section 3.2. Computation of the ’
A04B

0
4

r ð�Þ and ’A4B4
r ð�Þ

values, at Steps 3.1 and 3.2.1.1.1, is very different in nature

and can also be done using interpolation—which is much

more efficient. To preserve precision, however, more

directions should be considered when computing ’
A00B

0
0

r

and ’A0B0
r than when computing ’

A04B
0
4

r and ’A4B4
r . We will

not go into details here.

4.4.2 Histogram Comparison (Step 3.2.1.1.2)

In practice, the strict equality condition would never be
satisfied. Instead of checking whether or not the two
histograms are equal, we should check whether or not they
are “almost” equal. However, one might want to know how
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Fig. 9. Force histograms and completeness issue. (a) ’A0B0

r ¼ ’AB
r

because ðA0;B0Þ is the image of ðB;AÞ through a �-angle rotation. (b) By
decreasing the diameter of B and the inner diameter of A, it is possible
to find a pair ðA0;B0Þ such that ’A0B0

r ¼ ’AB
r . Note that in (a) as in (b),

there is no affine transformation that maps ðA;BÞ into ðA0;B0Þ.



well the object pairs ðA0;B0Þ and ðA00;B00Þ match, rather than
whether they match or not. Hence, at Step 3.2.1.1.2, we
decide to evaluate the similarity between the two histo-
grams, using a similarity measure �. We therefore replace
Steps 0 and 3.2.1.1.2 by:

0. � 0;

3.2.1.1.2. If � < �ð’A04B
0
4

r ; ’A4B4
r Þ

then R �;L ‘;K k;K0  k0

and � �ð’A04B
0
4

r ; ’A4B4
r Þ;

At the end of the run, � is the matching degree between
fA0; B0g and fA00;B00g, i.e., between ðA0;B0Þ and ðA00;B00Þ, or
between ðB0;A0Þ and ðA00;B00Þ. The higher �, the better the
match. There is an extensive literature on similarity
measures [32], [33], [34], [35]. For our experiments in
Section 5, we have examined over 20 measures and retained
three: a Tversky index (�T), a Pappis’ measure (�P), and
normalized cross-correlation (�C). More about these can be
found in Appendix F.1.

4.4.3 Loops

The range of each loop variable needs to be discretized into
a finite number of values. Different techniques, like the
classical gradient descent, can be considered to reach the
highest possible matching degree in a more efficient
manner. Moreover, for given stretch ratios k and k0, the
“best” ‘ and � values, ‘k;k0 , and �k;k0 , can be computed
directly, as shown in Appendix F.2. In other words, we can
get rid of the two inmost loops and replace lines 3.2.1 and
3.2.1.1 by ‘ ‘k;k0 ; and � �k;k0 ; . In practice, however, one
might want to keep some flexibility and take ‘ and � from
small intervals centered on ‘k;k0 and �k;k0 . Note that the value
of ‘ is of no matter when using the similarity measure �C

(see Appendix F.2).

5 FORCE HISTOGRAMS ALSO REACT WELL TO

“NEARLY” AFFINE TRANSFORMATIONS

In this section, we experimentally study the robustness of
the theoretical tools presented in this paper to departures
from the assumptions on the transformations being
handled. In Section 4.3, we focused on affine transforma-
tions that can be decomposed into five basic transforma-
tions as follows:

aff ¼ stre0 � tran � rot � sca � stre:

An interpretation of such a decomposition was given and
illustrated in Fig. 3. Here, we rely on this interpretation to
create appropriate test data sets and ensure that departures
from assumptions are well controlled. The idea is presented
in Section 5.1, and the data and tested implementations of
the matching algorithm in Section 5.2. We then introduce
the evaluation tools (Section 5.3) and discuss the results
(Section 5.4).

5.1 From Obscure Stretch Ratios to Daylight
Photography

Consider Fig. 3. As mentioned in its caption, Figs. 3c and 3d
can be seen as two different pictures of the same scene. If
such was actually the case, the rotation angle � and the
stretch ratios k and k0 would be related to the orientation of
the cameras during the shots. Camera orientation is usually
defined by three angles: azimuth, tilt, and swing (Fig. 10).
Let a and t be the azimuth and tilt of the camera platform
during the first shot (Fig. 3c), and let a0 and t0 be the
azimuth and tilt during the second shot (Fig. 3d). As can be
understood from Fig. 11, the ratio of the stretch that
transforms ðA4;B4Þ into ðA5;B5Þ is cosðt0Þ. In other words:
k0 ¼ cosðt0Þ. Similarly: k ¼ 1=cosðtÞ (since the stretch that
transforms ðA1;B1Þ into ðA0;B0Þ is stre�1, and not stre).
Moreover, � is the azimuth difference: � ¼ a0 � a. Note that
this interpretation of a decomposition like aff ¼ stre0 � tran �
rot � sca � stre holds only if: 1) k is greater than or equal to 1
(logically, in a view from above like Fig. 3f, the objects
cannot appear smaller than in another view like Fig. 3c), 2) k0

is lower than or equal to 1 (same reason) and greater than 0
(unless the picture is taken from under the ground!), 3) the
swing of each platform is þ180 degrees, i.e., a plumb line
that intersects the principal ray is mapped to the Y-axis in
the image plane (which is the case in most imaging
situations).

Now, consider the algorithm described in Section 4.4.
Assume the pairs fA0;B0g and fA00;B00g actually match, i.e.,
the output matching degree � is 1 (or very close to 1).
Assume they come from two different pictures of the same
scene. Then, according to what we just said, R, K, and K0

give us information about the orientation of the cameras.
According to Proposition 2, the difference between the
azimuths of the two camera platforms is either R—in that
case, the actual matching pairs are ðA0;B0Þ and ðA00;B00Þ—
or �þ R—the matching pairs are ðB0;A0Þ and ðA00;B00Þ.
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Fig. 10. The orientation of the camera is defined by three angles. The

azimuth corresponds to a rotation about the vertical direction. The swing

corresponds to a rotation about the principal ray. The tilt is the angle

between the vertical and the principal ray.

Fig. 11. Tilt and stretch. In the image plane, the photographed surface

appears transformed under the X-axis orthogonal stretch with ratio

cosðt0Þ, where t0 denotes the tilt of the camera platform. The X-axis is

perpendicular to the drawing and intersects the principal ray in O.



According to Proposition 1, if R is close to 0 or �, the
product KK0 is an estimate of cosðt0Þ=cosðtÞ, where t denotes
the tilt of the camera platform during the first shot and t0

the tilt of the platform during the second shot; if R is
close to ��=2 or �=2, the ratio K=K0 is an estimate of
1=½cosðt0ÞcosðtÞ�; otherwise (general case), K is an estimate of
1=cosðtÞ and K0 an estimate of cosðt0Þ.

In real photography, however, the image formation
process includes perspective projection and not ortho-
graphic projection as implicitly assumed above; the photo-
graphed objects are usually 3D objects; digital imaging
implies data digitization; even manual or interactive
semiautomatic segmentation of image objects is not always
accurate. Based on these observations, we propose to test
the robustness of the theoretical tools described in the
present paper using five data sets. The first set is composed
of “perfect,” synthesized data: There is no departure from
assumptions. Then, digitization, perspective projection,
addition of a third dimension to the “photographed”
objects, and, finally, image object segmentation are pro-
gressively included in a well-controlled data generation
process. The question, of course, is how well the matching
algorithm performs on the different data sets.

5.2 Data and Methods

The characteristics of the five test data sets are given in
Table 1. Each set involves different bird’s-eye views of one
of three scenes and each scene presents five objects: one
tower, one pipe, one storehouse, and two stack buildings.
Scene 3 is “real.” It corresponds to one part of the power
plant at China Lake, California. The images 5.1, 5.2, and 5.3
shown in Fig. 12 represent three views of it. They were
created from a set of data acquired from a surveillance

plane and provided by the Naval Air Warfare Center
(NAWC). The original remote sensed images have been
used for various purposes in different publications (see,
e.g., [27]). Since the focus of our work is not on segmenta-
tion algorithms, we decided to segment them manually. The
result, however, is not perfect. In image 5.2, for instance,
part of the pipe is missing, and the bottom edge of the
rightmost building is irregular. Moreover, some objects are
clipped and small occlusions can be noticed. Scene 2 is a
synthetic scene inspired by Scene 3. The objects in Scene 1
are the same as in Scene 2, except that the third dimension
(height) has been “reset” to 0, i.e., they are 2D objects.

The data sets 1, 2, and 3 are composed each of six pairs of
Scene 1 views, while Sets 4 and 5 gather respectively six
pairs of Scene 2 views and two of Scene 3 views. Most views
are shown in Fig. 12. The second data set is described by
Table 2. Sets 1, 3, and 4 are composed of equivalent pairs
(e.g., {3.1, 3.3}, {3.2, 3.5}, etc.), while Set 5 is composed of
{5.1, 5.2} and {5.2, 5.3} only. Now, consider the two views in
Figs. 13a and 13b. Each one defines three nonordered object
pairs—hence, three force histograms—and any object pair
in Fig. 13a corresponds to some object pair in Fig. 13b.
Therefore, Figs. 13a and 13b lead to 3� 3 histogram
comparisons. There is an actual match in three cases (dark
continuous arrows) and there is no match in six cases (light
dotted arrows; only three are shown). In fact, since the
scenes considered in our experiments present five objects
and not three as in Fig. 13, each pair of views (like {3.1, 3.3},
{5.1, 5.2}, etc.) leads to 10� 10 histogram comparisons.
There is an actual match in 10 cases, and there is no match
in 90 cases.

Twenty independent experiments were performed on
each data set, using two types of histogram and 10 matching
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TABLE 1
The Five Data Sets



methods. The histograms are ’0 and ’2-histograms. Other
histograms could have been considered. However, as
observed in [25], [27]: 1) ’0-histograms coincide with angle
histograms, which have been extensively used in the
literature, 2) gravitational forces (’2) are a reality of our
physical world, 3) the ’0 and ’0-histograms have very
different and interesting characteristics which complement
one another and allow for geometric interpretation. The
10 matching methods correspond to different implementa-
tions of the matching algorithm presented in Section 4.4.
Their main characteristics are summarized by Table 3.
Step 3.2.1.1.2: Methods 1, 2, 3, and 4 use the similarity
measure �T,Methods 5, 6, 7, and 8 use �P, andMethods 9 and

10 use �C. Loops 3 and 3.2: For all matching methods, the

stretch ratios k and k0 take their values in f1=cos tgt2f0�;5�;...;60�g
and fcos t0gt02f0�;5�;...;60�g, i.e., the tilts t and t0 take their values

in the interval ½0�; 60��, with 5 degree increments. Remember

that k ¼ 1=cos t and k0 ¼ cos t0 (Section 5.1). Loop 3.2.1: For

Methods 1 and 2, and 5 and 6, For each ‘ is replaced by

‘ ‘k;k0; , as explained in Section 4.4.3. For Methods 3 and 4,

and 7 and 8, the loop is kept, and ‘ belongs to a small interval

centered on ‘k;k0 (more precisely, it takes its values in

f0:90‘k;k0 ; 0:91‘k;k0 ; . . . ; 0:99‘k;k0 ; ‘k;k0 ; ‘k;k0=0:99; ‘k;k0=0:98;
. . . ; ‘k;k0=0:90gÞ:
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Fig. 12. The views considered in our study. All images are 256� 256, except images 5.1 (399� 142), 5.2 and 5.3 (470� 148). Note that in some

images, like 2.2 and 4.6, the tower and the pipe are accidentally clipped. The views in data sets 1 and 3 are similar to the views in data set 2, except

that in set 1 vector data replace raster data (and the tower is never clipped), and in set 3 perspective projection replaces orthographic projection.



For Methods 9 and 10, For each ‘ is replaced by ‘ 1;

because the value of ‘ is of no matter when using �C

(Section 4.4.3). Loop 3.2.1.1: For Methods 1, 3, 5, 7, and 9, For

each � is replaced by � �k;k0; (except that the angle in

degrees is rounded to the closest even integer). For the other

methods, the loop is kept and � belongs to an interval

centered on �k;k0 (in fact, it takes its values in the whole set

f0�; 2�; . . . ; 358�g). Steps 1, 2, 3.1, and 3.2.1.1.1: The histo-

grams ’A4B4
r and ’

A04B
0
4

r are represented by 180 values each

(an appropriate choice, according to the experiments in

[25]), while ’
A00B

0
0

r and ’A0B0
r are represented by 360 values to

preserve precision when the values ’A4B4
r ð�Þ and ’

A04B
0
4

r ð�Þ
are computed using interpolation (Section 4.4.1).

5.3 Evaluation Tools

Consider an experiment over a given data set, using a given
matching method and a given type of histogram, say, Set 1,
Method 1, and ’0-histograms. Since the data set is composed
of six pairs of Scene 1 views, the algorithm described in
Section 4.4 has to be run 600 times (6� 100 histogram
comparisons have to be performed). There is an actual
match in 60 cases (6� 10) and no match in 540 cases
(6� 90). Four values are computed to evaluate the results:

the area under the ROC curve and the error rates �R, �T,
and �L.

5.3.1 ROC Curve

Let fA;Bg and fA0;B0g be two object pairs. We may decide
that the two pairs match if and only if the matching degree
� output by the matching algorithm is greater than or equal
to some threshold � . There are four cases:

1. fA;Bg and fA0;B0g actually match and � � � : The
right decision is taken; we have a true positive.

2. fA;Bg and fA0;B0g actually match and � < � : The
wrong decision is taken; we have a false negative.

3. fA;Bg and fA0;B0g do not match and � � � : The
wrong decision is taken; we have a false positive.

4. fA;Bg and fA0;B0g do not match and � < � : The
right decision is taken; we have a true negative.

Let TPð�Þ be the number of True Positives and FPð�Þ be the
number of False Positives. The Receiver Operating Character-
istic curve—or ROC curve—is a plot of the true positive rate
against the false positive rate for the different possible
thresholds. In other words, its points are the points of
coordinates ðTPð�Þ=60;FPð�Þ=540Þ, where � belongs to the
interval [0,1]. The closer the curve follows the left-hand
border and then the top border of the ROC space, the better.
The area under the curve is a measure of accuracy. If the
area is 1, some threshold separates the 60 object pairs that
match from the 540 pairs that do not match, i.e., the result is
perfect. If the area is 0.5, the result is worthless. A rough
guide for classifying the accuracy is the traditional
academic point system:

A. “excellent” if the area is greater than 0.9,
B. “good” if it is greater than 0.8,
C. “fair” if greater than 0.7,
D. “poor” if greater than 0.6, and
E. “fail” otherwise.

5.3.2 �R, �T , and �L

Consider again two object pairs fA;Bg and fA0;B0g, and
assume that they actually match. Let ða; t; sÞ be the set of
parameters that defines the view from which A and B
come: a is the azimuth of the camera platform, t is the tilt,
and s is the image scaling factor. Similarly, let ða0; t0; s0Þ be
the set of parameters that defines the second view. Now,
let R be the rotation angle, L the scaling ratio, and K and
K0 the stretch ratios output by the matching algorithm. As
seen in Section 5.1, R is an approximation of a0 � a
(modulo �), acosðK�1Þ is an approximation of t, acosðK0Þ
an approximation of t0, and L an approximation of s0=s.
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Fig. 13. In this example, each view defines a set of three force
histograms. The two views lead to 3� 3 ¼ 9 histogram comparisons.
There is an actual match in three cases (as shown by the continuous
lines that join the histograms), and there is no match in six cases (the
dotted lines indicate three of them). Each comparison gives a 5-tuple
ð�i;Ri;Li;Ki;K

0
iÞ. Three 5-tuples are shown here. Note that there exist

3! ¼ 6 one-to-one mappings between the two sets of histograms. The
three continuous lines constitute one of these mappings, and the three
dotted lines another one.

TABLE 2
The Six View Pairs in Data Set 2 and Their Main Numerical Features



Let ffA;Bg; fA0;B0gg be alternately each of the 60 pairs of
object pairs that actually match. The value �R is the
average absolute difference (modulo �) between R and
a0 � a. It indicates to which extent the matching algorithm
allows the azimuth difference to be retrieved. �T is the
average value of ðjacosðK�1Þ � tj þ jacosðK0Þ � t0jÞ=2. It
indicates to which extent the tilts can be retrieved. Finally,
�L is the average value of jlog10ðL=ðs0=sÞÞj. It indicates to
which extent the scaling factor ratio can be retrieved.
Assume for instance that s0=s is 1 (i.e., the actual scales of
the images are the same). A value L of 2 means that the
scaling factor of one image has been mistakenly found
twice the scaling factor of the other image. A value L of
0.5 means the same (up to a permutation of the two
images) and the error should therefore be quantified the
same. This explains the presence of the absolute value of
the logarithm in the above formula. The lower �R, �T,
and �L, the better. Zero represents a perfect result.

5.4 Results

In the experiments over the first data set, each one of the
180 values that represent ’A4B4

r (Step 3.2.1.1.1) is calculated
exactly, i.e., without using interpolation (Section 4.4.1). The
same applies to ’

A04B
0
4

r . Therefore, these experiments over
“perfect” data are performed under “ideal” conditions. The
results, shown in Table 4 and Fig. 14, beautifully validate
the theoretical work. One might point out that some ROC
areas are lower than 1.0000. However, this should not be
misinterpreted. Consider, forinstance, the experiment with
’0-histograms and matching method 10. The lowest simi-
larity obtained from the 60 matching cases is 0.999991,
whereas the highest similarity obtained from the 540 non-
matching cases is 0.999356. Consequently, the object pairs
that match can be separated from the pairs that do not
match, but the separation is really thin and the threshold
increment used for constructing the ROC curves (0.001) did

not allow it to be correctly detected. This illustrates a
problematic feature of �C, the similarity measure on which
Methods 9 and 10 rely: It tends to produce extremely high
values, very close to each other.

In the experiments over the data sets 2 to 5, the
histograms ’A4B4

r and ’
A04B

0
4

r are computed by using
interpolation (Section 4.4.1). The results on Set 2 (Table 5,
Fig. 15) show how data rasterization and histogram
interpolation contribute to the decline in matching perfor-
mances. Perfection is replaced by excellence. There is only a
few thousandths drop in accuracy, the �T values are about
the 5 degree increment used to search for the best tilts, and
the �R values are less than the 2 degree rotation angle
increment. As explained in Section 5.2, the error rates �T,
�R, and �L are computed considering the 60 matching
cases only. It is interesting to note that the same computa-
tions considering “only” the 540 nonmatching cases give
values about 25 degrees (tilts), 40 degrees (rotation angle),
and 0:6 or higher (scaling factor ratio). The differences with
the error rates shown in Table 5 are significant. With the
other data sets, values similar to the three above (25�, 40�,
0:6) are obtained. The differences with the error rates come
down (since �T, �R, and �L naturally increase when the
data get less and less perfect), but remain nonnegligible (see
Tables 6 and 7).

Replacing orthographic projection with perspective
projection results in a decrease of 1 to 2 percent in accuracy
(Table 6, Fig. 16). The error rates �T and �R more than
double and become higher than the 5 and 2 degree angle
increments. The adding of a third dimension to the objects
translates into more noticeable drops in ROC areas (Table 7,
Fig. 17): 4 to 8 percent for experiments using ’0-histograms,
and 8 to 10 percent for experiments using ’2-histograms.
Overall, the accuracy is still excellent. However, the error
rates �T and �R double again, more or less. Now, the tilts
are poorly retrieved and, when using histograms of
gravitational forces, the scaling factor ratio is not well
recovered either (note that 0:3 � logð2=1ÞÞ. Naturally, with

12 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 1, JANUARY 2004

TABLE 3
The 10 Matching Methods

TABLE 4
Results for Data Set 1

Fig. 14. Perfect ROC curves for data set 1.



the real data set (Set 5), further decrease in performance is
expected. However, despite, at this point, a drastic
departure from theoretical assumptions, the accuracy
remains “fair” to “good” (Table 8, Fig. 18). Since the images
provided by the NAWC did not come with the pose
parameters, those error rates were not computed.

For each data set, we may wonder which matching
method and type of histogram lead to highest accuracy,
which ones lead to best tilt retrieval, etc. The “mathema-
tical” answer to these questions is given by the shadowed
boxes in Tables 5, 6, 7, and 8. But, most experiments
produce similar results. As a general rule (see Tables 5, 6
and 7), the pose parameters, and especially the scaling
factor ratios, are best recovered when using histograms of
constant forces. The ’2-histogram, which focuses on the
closest parts of the objects, seems to be more sensitive to
deviation from theoretical assumptions. Because they
search for the best rotation angles and/or the best scaling
factor ratios, we expected even numbered methods to give
lower error rates �T and �R. In fact, the results are not
significantly better (see Tables 5 and 6), and do not always
confirm our expectation (see Table 7, two last columns).
Finally, we are inclined to systematically use matching
Method 1 and ’0-histograms. By avoiding the two inner-
most loops of the matching algorithm, Method 1 drastically
reduces the computational burden. Moreover, it relies on
similarity measure �T (Tanimoto index) which seems to
perform at least as well as the other measures, and is the
simplest one.

In conclusion, the theoretical tools presented in this
paper appear to be fairly robust. Even with seriously
violated assumptions, the matching algorithm is able to

separate “matching” object pairs from “nonmatching” pairs

reasonably well, and also to give useful information about

the “nearly” affine transformation two object pairs match

through.

5.5 Remarks

5.5.1 Cases of Multiple Possible Poses

For each pair of views listed in Table 2, calculate the angular

distance between the azimuth difference and the closest

cardinal direction: j280� � 270�j ¼ 10�, j230� � 270�j ¼ 40�,

j330� � 360�j ¼ 30�, j160� � 180�j ¼ 20�, j110� � 90�j ¼ 20�,

and j300� � 270�j ¼ 30�. None of these values is zero.

Therefore, according to Proposition 1, a unique set of

parameters �, ‘, k, and k0 (rotation angle, scaling factor, and

stretch ratios) can be associated with any given pair.

Considering such view pairs was appropriate since we

wanted to evaluate the errors in recovering these para-

meters. However, one should be aware that if the angular

distance mentioned above is zero (or “close” to zero), then

the recovered tilts and scaling factor ratio do not necessarily

correspond to the actual ones. For instance, we processed

two views (vector data) with the following features:

azimuth difference 0�, first tilt 10�, second tilt 50�.

Depending on the matching method and on the object

pairs, the retrieved parameters were either 0�; 10�; 50� or

0�; 40�; 60�. This is in perfect accordance with Proposition 1

2) since cos50�=cos10� ¼ cos60�=cos40�.
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Fig. 15. The best ROC curve for data set 2 (Method 5, ’2-histograms).

TABLE 5
Results for Data Set 2

TABLE 6
Results for Data Set 3

TABLE 7
Results for Data Set 4



5.5.2 Search for the One True Mapping

Consider the two views Figs. 13a and 13b. Each defines a set
of three ’0-histograms and there exist 3! ¼ 6 one-to-one
mappings between the two sets, i.e., six ways to match the
two views. Consider any mapping. Each histogram from
view Fig. 13a can be compared with its associated
histogram from Fig. 13b using matching Method 1. The
output is a 5-tuple ð�i;Ri;Li;Ki;K

0
iÞ, where i belongs to

f1; 2; 3g. The one true mapping should be such that the �i

are close to 1, the Ri are close to each other (modulo �), the
Li are close to each other, etc. A scene matching degree,
based on the computation, normalization, and averaging of
mean deviations, can therefore be derived from the three
tuples ð�i;Ri;Li;Ki;K

0
iÞ. It is better, however, to ignore the

values Ki and K0i in the scoring equation because the tilts are
not always well retrieved (see Table 7). A first experiment
involved the views 5.1 and 5.2 of the power plant at China
Lake (Fig. 12). Each one leads to the computation of a set of
10 ’0-histograms, instead of three as in Fig. 13. Therefore,
there are 10! ¼ 3; 628; 800 ways to match the two views. Of
course, the search space could be drastically reduced since
the histograms of each set are not totally independent (they
are associated with object pairs that share the same five
objects). However, we did not care about such “details,”
and the 3,628,800 cases were processed exhaustively. The
one true mapping produced the highest scene matching
degree. We repeated the experiment with the views 5.2 and
5.3. Once again, the one true match produced the highest
matching degree. Then, we tested 14 other scoring
equations, i.e., using only the �i values, or only the �i and
the Ri, or all parameters including the retrieved stretch
ratios, etc. None of these other matching degrees led to the
same perfect result. Note that each scene matching (i.e.,
complete processing of one pair of views) took about
6 minutes. The computation of one single ’0-histogram took

about 1 second on an Athlon 700 MHz PC (20 seconds for
the 20 histograms);5 the comparison of two histograms
using matching Method 1 took about 2 seconds (3 minutes
20 seconds for the 100 comparisons); the computation and
comparison of the 3,628,800 matching degrees took about
2 minutes on a Pentium III 500 MHz.

6 CONCLUSION

As color, texture and shape, relative position is a funda-
mental concept in computer vision. We argue that, as color,
texture, and shape affine invariant descriptors, affine
invariant relative position descriptors have a role to play.
The histogram of forces was designed to quantitatively
represent the position of an object with respect to another.
In this paper, we have shown that it can be normalized to
achieve invariance under translations, rotations, and scal-
ings, i.e., similarity transformations. Moreover, we have
proved that, basically, any two of the following elements,
1) an affine transformation, 2) a relative position (described
through a histogram of forces), and 3) the “transformed”
relative position, allow the third one to be recovered. An
experimental study, for which 700 histograms were
computed and more than 50,000 histogram comparisons
performed, has validated the theoretical results. It has also
shown that the descriptor is fairly robust to departures from
the assumptions on the transformations being handled. The
affinity that “best” approximates the “nearly” affine
transformation two relative positions are related through
can be retrieved (up to a translation) and the quality of the
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Fig. 16. The best ROC curve for data set 3 (Method 4, ’2-histograms).

Fig. 17. The best ROC curve for data set 4 (Method 1, ’0-histograms).

TABLE 8
Results for Data Set 5

Fig. 18. The best ROC curve for data set 5 (Method 1, ’0-histograms).

5. All the programs were written in C without excessive attention to
optimization. Moreover, our basic implementation does not allow multiple
object pairs to be handled simultaneously.



approximation assessed (through a matching degree).
Relative position descriptors like the histogram of forces
are orthogonal—and, therefore, constitute a natural com-
plement—to color, texture, and shape descriptors. In our
last experiment, for instance, a scene matching problem was
translated into the search for a one-to-one mapping among
three and a half million others (Section 5.5.2). The search
was based solely on force histogram comparisons, i.e.,
without using any information on color, texture, or shape.
The mapping, however, was found. Fig. 19 provides an
even better illustration of the above-mentioned orthogon-
ality. In this other scene matching problem—solved as in
Section 5.5.2—color, texture, and shape descriptors would
clearly not be very helpful.

Technically, the histogram of forces resembles more
region-based shape descriptors than boundary-based de-
scriptors—although it allows data to be stored and
efficiently processed in vector form as well as in raster
form. There are virtually no constraints on the objects.
Intersecting concave objects with holes and multiple
connected components do not need special care. No
preprocessing is required (like recovery of the boundary,
extraction of interest points, encoding, filtering, and
sampling). One should also point out that additivity in
feature space is enforced, i.e., the ’r-histogram ’ðA1[A2ÞB

r is
equal to ’A1B

r þ ’A2B
r . This is a most useful property because

image objects are often determined through oversegmenta-
tion and merging procedures. Conceptually, the histogram
of forces is very different than shape descriptors. It is
sensitive to the shape of the objects, but only because shape
affects relative position, as color affects texture. A force
histogram does not allow anything to be said on the
individual shapes. By construction, however, it allows
propositions such as “object A is to the right of object B”
to be assessed [25] and, conversely, linguistic descriptions
such as “A is mostly to the right of B but a little above” to be
generated [27]. A “subversive” use of the histogram of
forces would be the description of the position of an object
with respect to itself (remember that intersecting objects can
be handled when r is lower than 1). This could be exploited
in affine invariant shape recognition and classification
problems. For these particular ’r-histograms (also called
’r-signatures [28]), a comparative study with classical shape
descriptors could be conducted, using test images that have
been popular in the literature (like images of military
airplanes, see, e.g., [12]).

Much remains to be done. Obviously, in practical
applications, various descriptors should cooperate. The
results presented in this paper suggest that the histogram of

forces could be of great use in scene matching and would

yield powerful edge attributes in attributed relational

graphs.6 We plan to investigate the subject in the near

future. We would also like to investigate the histogram of

forces—which is able to handle fuzzy objects [25]—as a

descriptor of relative position between gray-level objects.

Moreover, the inverse problem has not been solved yet

(given a relative position, i.e., a force histogram, construct

all pairs of objects this histogram is associated with).

Finally, although the histogram of forces reacts “well” to

affine transformations, in a mathematically predictable

way, normalized histograms are similarity invariant only.

Relative position descriptors truly invariant under arbitrary

affine transformations still have to be found.

APPENDIX A

PROOF OF PROPOSITION 1

This appendix will be published in the IEEE PAMI digital

library available at http://computer.org/publications/dlib.

APPENDIX B

SOME PROPERTIES OF FUNCTION Fr

This appendix will be published in the IEEE PAMI digital

library available at http://computer.org/publications/dlib.

APPENDIX C

PROOF OF PROPERTY 5

This appendix will be published in the IEEE PAMI digital

library available at http://computer.org/publications/dlib.

APPENDIX D

PROOF OF PROPOSITION 2

Consider the objects A ¼ stre0ðtranðrotðscaðstreðA0ÞÞÞÞÞ and
B ¼ stre0ðtranðrotðscaðstreðB0ÞÞÞÞÞ. Equation (8) becomes

’
A00B

0
0

r ¼ ’AB
r , i.e., ðA00;B00Þ 2 OAB (Section 4.2). Since O is

r-regular (Definition 3), only four cases have to be examined.

Assume, for instance, that r is 3. Then, ðA00;B00Þmight well be
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Fig. 19. Relative position descriptors are orthogonal to color, texture, and shape descriptors. (a) The two RGB pictures were taken with a commercial

digital camera. Which can is which? (b) Here, segmentation was achieved by choosing the color channel with the best contrast (red channel),

running an optimum thresholding algorithm (like Otsu’s) on the corresponding gray-level histogram and performing 7� 7 median filtering on the

thresholded image. The correct mapping was found using the same method as in Section 5.5.2.

6. In such a graph [36], [37], [38], [39], a node represents an image region
and is given a list of attributes (e.g., color, texture, shape). An edge
represents the relations between two regions and is also with attributes
(e.g., relative position).



a pair like ðtran1ðrot1ðsca1ðBÞÞÞ; tran1ðrot1ðsca1ðAÞÞÞÞ, where

rot1 denotes a �-angle rotation. In that case, we have:

A00 ¼ tran1ðrot1ðsca1ðstre0ðtranðrotðscaðstreðB0ÞÞÞÞÞÞÞÞ
and B00 ¼ tran1ðrot1ðsca1ðstre0ðtranðrotðscaðstreðA0ÞÞÞÞÞÞÞÞ:

Function composition is not commutative. However, here,

because of the nature of the transformations involved and

since rot1 is a �-angle rotation and not any rotation, it is

possible to find a translation tran2 such that:

tran1 � rot1 � sca1 � stre0 � tran � rot � sca � stre
¼ stre0 � tran2 � rot1 � rot � sca1 � sca � stre:

Let rot2 and sca2 be the compound transformations rot1 � rot
and sca1 � sca. The angle of rot2 is �þ �. We now can write:

A00 ¼ stre0ðtran2ðrot2ðsca2ðstreðB0ÞÞÞÞÞ
and B00 ¼ stre0ðtran2ðrot2ðsca2ðstreðA0ÞÞÞÞÞ:

In other words, ðA00;B00Þ matches ðB0;A0Þ through

ðstre0; tran2; rot2; sca2; streÞ. The three other cases can be

handled in the same way.

APPENDIX E

PROOF OF PROPOSITION 3

Let us use the notations introduced in Fig. 3: A1 ¼ streðA0Þ,
B3 ¼ rotðB2Þ, etc. Note that, for convenience’s sake, the object

tranðA3Þ is referred to by two symbols, A4 and A04. The same

applies to tranðB3Þ. Equation (8) then becomes ’
A00B

0
0

r ¼
’
stre0ðA04Þstre0ðB04Þ
r and, according to Property 5, can be rewritten

as follows:

8� 2 IR;

’
A00B

0
0

r ð�Þ ¼ k0
2�r½1þ ðk02 � 1Þcos2��ðr�1Þ=2’A04B

0
4

r ð�½k0 �Þ:
ð12Þ

Solving � ¼ �½k0 � for � gives � ¼ �½k0�1� and allows us to

“reverse” (12). After simplification:

8� 2 IR;

’
A04B

0
4

r ð�Þ ¼ k0
r�2½1þ ðk0�2 � 1Þcos2��ðr�1Þ=2’A00B

0
0

r ð�½k0�1�Þ:
ð13Þ

Moreover: ’A4B4
r ¼ ’tranðA3ÞtranðB3Þ

r , ’A3B3
r ¼ ’rotðA2ÞrotðB2Þ

r , ’A2B2
r

¼ ’scaðA1ÞscaðB1Þ
r , and ’A1B1

r ¼ ’streðA0ÞstreðB0Þ
r . Using succes-

sively Properties 2, 3, 4, and 5, we can rewrite these

equations as follows:

8� 2 IR; ’A4B4
r ð�Þ ¼ ’A3B3

r ð�Þ;
8� 2 IR; ’A3B3

r ð�Þ ¼ ’A2B2
r ð�� �Þ;

8� 2 IR; ’A2B2
r ð�Þ ¼ ‘3�r’A1B1

r ð�Þ; and
8� 2 IR; ’A1B1

r ð�Þ ¼ k2�r½1þ ðk2 � 1Þcos2��ðr�1Þ=2’A0B0
r ð�½k�Þ:

ð14Þ

Successive substitutions then yield (15) and (16) below;

equating (13) and (15) yields (17), which will prove useful in

Appendix F.2; finally, equating (13) and (16) gives (9), the

equation we were looking for.

8� 2 IR; ’A4B4
r ð�Þ ¼ ‘3�r’A1B1

r ð�� �Þ: ð15Þ

8� 2 IR; ’A4B4
r ð�Þ ¼

‘3�rk2�r½1þ ðk2 � 1Þcos2ð�� �Þ�ðr�1Þ=2’A0B0
r ðð�� �Þ½k�Þ:

ð16Þ

8� 2 IR; ’
A04B

0
4

r ð�Þ ¼ ‘3�r’A1B1
r ð�� �Þ: ð17Þ

Obviously, we can reverse all the steps above and show that

(9) implies (8).
Proposition 3 is demonstrated.

APPENDIX F

THE MATCHING ALGORITHM: PRACTICAL ISSUES

In this appendix, we take a closer look at the algorithm

presented in Section 4.4.

F.1 Histogram Comparison (Step 3.2.1.1.2)

For the computation of matching degrees in Section 5, three

similarity measures were tested:

�Tðh1; h2Þ ¼
P

� minðh1ð�Þ; h2ð�ÞÞP
� maxðh1ð�Þ; h2ð�ÞÞ

;

�Pðh1; h2Þ ¼ 1�
P

� jh1ð�Þ � h2ð�ÞjP
� jh1ð�Þ þ h2ð�Þj

;

�Cðh1; h2Þ ¼
P

� h1ð�Þh2ð�ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
� h

2
1ð�Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
� h

2
2ð�Þ

p :

�T corresponds to a Tversky index (the Tanimoto index), �P

to a Pappis’ measure, and �C to normalized cross-correla-

tion. h1 and h2 denote two force histograms. � belongs to the

finite set of directions in which forces are considered.

Although they represent three different types of measure,

�T, �P, and �C all satisfy:

0 � �ðh1; h2Þ � 1; ð18Þ

h1 ¼ h2 ) �ðh1; h2Þ ¼ 1; ð19Þ

�ðh1; h2Þ ¼ �ðh2; h1Þ; ð20Þ

8q 2 IR�þ; �ðqh1; qh2Þ ¼ �ðh1; h2Þ: ð21Þ

Equation (20) expresses the fact that the two histograms

play equivalent parts. We want to assess the degree to

which they are similar to each other. No pair of objects is

privileged. The last equation, (21), expresses that the

similarity between two histograms is invariant with

respect to overall scale changes: Property 4 and (21) give

�ð’scaðA04ÞscaðB04Þ
r ; ’scaðA4ÞscaðB4ÞÞ

r ¼ �ð’A04B
0
4

r ; ’A4B4
r Þ. Note that �C

also satisfies:

8q1 2 IR�þ; 8q2 2 IR�þ; �ðq1h1; q2h2Þ ¼ �ðh1; h2Þ: ð22Þ

Therefore, in the algorithm described in Section 4.4, the

value of ‘ is of no matter when using �C.
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We can get rid of the loop For each ‘ and replace

line 3.2.1 by, say, ‘ 1; .

F.2 Loops

In fact, it is better to compute ’A4B4
r in two stages, and to use

(14) and (15) (Appendix E) rather than (11). The reason is

that, if k and k0 are known, then ‘ and � can be deduced from

’
A04B

0
4

r in (10) and ’A1B1
r in (14). In other words, we can get rid

of the two inmost loops and replace lines 3.2.1 and 3.2.1.1

(For each ‘ and For each �) by statements like ‘ ‘k;k0 ;

and � �k;k0 ; . Let m
0 and c0 be the mean and centroid7 of

’
A04B

0
4

r , and letm and c be the mean and centroid of ’A1B1
r . The

values m and m0 represent forces on the Y-axis of the

histograms, whereas c and c0 represent angles on the X-axis.

By equating ’
A04B

0
4

r and ’A4B4
r as defined in (15), we get

’
A04B

0
4

r ð�Þ ¼ ‘3�r’A1B1
r ð�� �Þ, for any �. As a result,m0 ¼ ‘3�rm

and c0 ¼ cþ �, i.e., ‘ ¼ ‘k;k0 and � ¼ �k;k0 , where ‘k;k0 denotes

½m0=m�1=ð3�rÞ and �k;k0 denotes c
0 � c.
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APPENDIX A — PROOF OF PROPOSITION 1

Since (A’0 ,B’0) matches (A0,B0) through (stre’1,tran1,rot1,sca1,stre1) and through (stre’2 ,tran2,rot2,sca2,stre2),

we have (Definition 1a):

A’0 = stre’1(tran1(rot1(sca1(stre1(A0))))) and B’0 = stre’1(tran1(rot1(sca1(stre1(B0))))) and

A’0 = stre’2(tran2(rot2(sca2(stre2(A0))))) and B’0 = stre’2(tran2(rot2(sca2(stre2(B0))))) .

Since is not ambiguous (Definition 2), the above equalities imply:

stre’1 tran1 rot1 sca1 stre1 = stre’2 tran2 rot2 sca2 stre2 .

These two affine transformations can be represented by the following matrices, H and K:
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(i), (ii) and (iii) are obtained by equating H to K. For instance, if ρ1∉{−π/2,0,π/2,π}, H22/H11 = K22/K11

and H12/H21 = K12/K21 imply k1=k2 and k’1 =k’2 . Note that, in all cases, (u1, v1, u1', v1', u1", v1") and

(u2, v2, u2', v2', u2", v2") are not necessarily equal. There are an infinite number of ways to choose tran and

the rotation and scaling centers.

APPENDIX B — SOME PROPERTIES OF FUNCTION Fr

Fr denotes the F function (Fig. 7cd) associated with ϕr (Equation (3)). Consider any element (θ,I,J) of

T, where T is defined as in Section III.A. Assume Fr is defined at (θ,I,J). The following properties hold.



The proofs, which can be found in [24], naturally rely on Equations (2) and (3).

Property 6: Fr is defined at (θ, tran(I), tran(J)) and: Fr(θ, tran(I), tran(J))=Fr(θ,I,J).

Property 7: Fr is defined at (θ+ρ,rot(I),rot(J)) and: Fr(θ+ρ,rot(I),rot(J))=Fr(θ,I,J).

Property 8: Fr is defined at (θ,sca(I),sca(J)) and: Fr(θ,sca(I),sca(J)) = 2−r Fr(θ,I,J).

APPENDIX C — PROOF OF PROPERTY 5

stre is an affine transformation: it preserves collinearity and ratios of distances. In the following (refer

to Fig. 20), A’ and B’ denote the transformed objects stre(A) and stre(B). v is a given real, α a given

angle, and β is α+π/2. U is the oriented line ∆α(0), V is ∆β(0), U’ is stre(U), and V’ is stre(V). α’ denotes

the angle such that U’=∆α’(0), and β’ the angle such that V’=∆β’(0). W’ is the line ∆α’+π/2(0), and w’ the

real such that stre(∆α(v))=∆α’(w’). This line ∆α’(w’) intersects V’ in a point whose coordinate with respect

to the reference frame (O, iβ’) is v’.

∆  ( )vα

X

UV

O

v α
β

A

B

X
O

W’

U’V’

v’
w’ α’

∆   ( )w’α’β’

B’

A’

Fig. 20. Proof of Property 5. Notations.

Lemma 1: If cosα is zero, α’ is α. Otherwise: cosα’cosα > 0 and sinα’sinα ≥ 0 and tanα’= k tanα .

Proof: Let M(x,y) be the point of ∆α(0) whose coordinate with respect to the reference frame (O, iα) is

1, and let M’(x’,y’) be stre(M). We have: cosα=x, sinα=y, cosα’=x’=x and sinα’=y’=ky. The rest is

straightforward.

Lemma 2: cosα’=k1
−1 cosα and sinα’=k k1

−1sinα , where k1 denotes [k2+(1−k2)cos2α]1/2 .



Proof: These identities come easily using Lemma 1 and the following formulas:

∀x∈IR , cos(atanx)=[1+x2]−1/2 and sin(atanx)=x[1+x2]−1/2 .

Lemma 3: Assume: M∈∆α(v), N∈∆α(v), M’=stre(M) and N’=stre(N). Then: M’N’⋅⋅⋅⋅ iα’ =k1 MN ⋅⋅⋅⋅ iα .

Proof: We assume that (x1,y1) and (x2,y2) are the coordinates of M and N. Note that M’(x1,ky1) and

N’(x2,ky2) belong to ∆α’(w’). If x2 is not equal to x1, we have: MN ⋅⋅⋅⋅ iα =(x2−x1)cosα+(y2−y1)sinα=

(x2−x1)[cosα+ tanαsinα] =(x2−x1)/cosα. In the same way: M’N’⋅⋅⋅⋅ iα’ =(x2−x1)/cosα’. Using Lemma 2, we

obtain: M’N’⋅⋅⋅⋅ iα’ =k1 MN ⋅⋅⋅⋅ iα . It is easy to check that the identity holds when x2 is equal to x1.

Lemma 4: cosβ’= −k2
−1sinα and sinβ’=k k2

−1cosα , where k2 denotes [1+(k2−1)cos2α] 1/2 .

Proof: Lemma 2 obviously holds when replacing the pair (α,α’) by (β,β’). We also use the fact that β

is α+π/2 (hence, cosβ=−sinα, and cos2β=1−sin2β=1−cos2α).

Lemma 5: v’=k2v .

Proof: Let M and N be two points of ∆β(0) (i.e., two point of V), and let M’ and N’ be stre(M) and

stre(N). We can show, exactly as we showed Lemma 3, that: M’N’⋅⋅⋅⋅ iβ’ =k2 MN ⋅⋅⋅⋅ iβ . We obtain v’=k2v by

choosing M equal to the origin O and by choosing N equal to the point of V whose coordinate is v (with

respect to the reference frame (O, iβ)).

Lemma 6: w’ = k [k1k2]
−1 v’ = k k1

−1v.

Proof: We have: w’=v’cos(β’−(α’+π/2))=v’sin(β’−α’)=v’[sinβ’cosα’−sinα’cosβ’].

We then use Lemmas 2, 4 and 5.

Lemma 7: There exist a translation tran, a scaling sca, and a rotation rot such that: A'α’(w’) =

(tran o sca o rot)(Aα(v)) and B'α’(w’) = (tran o sca o rot)(Bα(v)) . The scaling ratio is k1 and the rotation

angle is α’−α.

Proof: stre is an affine transformation that transforms line ∆α(v) into line ∆α’(w’). Therefore, there exist a

translation tran, a scaling sca, and a rotation rot such that: ∀M∈∆α(v), stre(M)=(tran o sca o rot)(M). The

scaling ratio is k1 because of Lemma 3, and the rotation angle is α’−α because α’−α is the angle between the

oriented line ∆α(v) and its image ∆α’(w’). Hence: stre(Aα(v))=(tran o sca o rot)(Aα(v)). But we also have:

stre(Aα(v))=stre(∆α(v)∩A)=stre(∆α(v))∩stre(A)=∆α’(w’)∩A'=A'α’(w’).

Finally: A'α’(w’)= (tran o sca o rot)(Aα(v)). In the same way: B'α’(w’)=(tran o sca o rot)(Bα(v)).



We can now proceed to the body of the proof. Using successively Lemma 7 and Properties 7, 8 and 6

(Appendix B), we can state that Fr is defined at (α’,A'α’(w’),B'α’(w’)). Moreover:

Fr(α’,A'α’(w’),B'α’(w’)) = Fr(α’,(tran o sca o rot)(Aα(v)),(tran o sca o rot)(Bα(v)))

= Fr(α’,(sca o rot)(Aα(v)),(sca o rot)(Bα(v))) = k1
2−r × Fr(α+(α’−α),rot(Aα(v)),rot(Bα(v))

= k1
2−r ×Fr(α,Aα(v),Bα(v))

This result, Lemma 6 and Equation (1) allow us to write:

ϕr
A'B' (α’) = −∞

+∞ Fr(α’,A'α’(w’),B'α’(w’)) dw’ = −∞
+∞ k1

2−r × Fr(α,Aα(v),Bα(v)) (k k1
−1dv)

= k k1
1−r

−∞
+∞ Fr(α,Aα(v),Bα(v)) dv = k [k2 + (1−k2)cos2α] (1−r)/2 ϕr

AB(α) .

Lemmas 1 and 2 obviously hold when replacing the 3-tuplet (α,α’,k) by (α’,α,k−1). In other words, we can

substitute [k−2+(1−k−2)cos2 α’]−1/2 cosα’ for cosα in the last expression of ϕr
A'B' (α’). We obtain:

ϕr
A'B' (α’) = k2−r [1+(k2−1)cos2α’] (r−1)/2 ϕr

AB(α) .

The trigonometric function atan is a one-to-one map from IR onto ]−π/2,π/2[. According to Lemma 1, the

angle α is atan(k−1 tanα’) if cosα’ is positive, is α’ if cosα’ is zero, and is atan(k−1 tanα’)+π otherwise.

Now, replace A' by stre(A), B' by stre(B), α’ by θ, and α by θ[k] : Property 5 is demonstrated.
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