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Abstract

The relative position between two 2-D spatial regions is often represented quantitatively by a 

force histogram. In the case of raster data, force histograms are usually computed in (KNN) 

time, where N is the number of pixels in the image and K is the number of directions in which 

forces are considered. When the regions are defined as fuzzy sets instead of crisp sets, the 

complexity also depends on the number M of possible membership degrees. In this paper, we 

show that the force histogram can be defined in a completely different but equivalent way, one 

which leads to an (N logN) algorithm, with complexity independent of K and M. Moreover, 

the equivalent definition is better adapted to the solving of theoretical issues. We use it here to 

determine the behavior of the force histogram towards any invertible affine transformation.

Keywords: relative position; histogram of forces; spatial correlation; histogram of angles;

spatial relationships.

1. Introduction

Representations of spatial configurations between physical entities play an important role in 

many applications, like geographic information systems [1], robot navigation [2] and content-
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based image retrieval [3]. For example, in order to reach its destination efficiently and safely, an 

autonomous robot must capture knowledge about its spatial location (through its navigation 

system); this is often done by generating representations of the relative positions between the 

robot and landmarks in the environment [4]. Numerous approaches have been proposed to 

quantitatively represent the relative position between two spatial regions. The angle histogram 

[5][6] has had significant influence in the field. It is appealing for its simplicity, but suffers from 

many weaknesses (e.g., excessively long processing times, anisotropy, inability to handle vector 

data). In [7], Matsakis introduced a generic, more complex representation: the F-histogram. 

There are different types of F-histograms [8]. Most work, however, has been done on a 

particular type called force histogram. The force histogram generalizes and overcomes the 

weaknesses of the angle histogram. It has been used in scene description [9], human-robot 

communication [10], for classification problems [11], content-based retrieval [12], etc. See [13]

for a review of work on and applications of the force histogram. 

The spatial regions considered here are fuzzy regions in a 2-D raster image. Fuzzy sets make 

it possible to encapsulate photometric information, or information regarding the imprecision 

or the uncertainty in the spatial extent of the regions. In [14], for example, the authors 

manipulate the 3-D data contained within a LADAR (Laser Radar) range image and create a 

2-D version of the scene as seen from above; the areas of uncertainty in the transformed view 

are then filled in with fuzzy regions from which force histograms are computed. Processing 

times are in (N 2) for angle histograms [5][6] and in (KM2NN ) for force histograms 

[13][15], where N is the number of pixels in the image, K is the number of directions in which 

forces are considered, and M is the number of membership degrees in the fuzzy regions. In a 

preliminary work [16], we expressed the idea that the complexity of force histogram 



computation could be lowered and made independent of K and M if an intermediate 

computation step was used. Histograms similar (but not identical) to force histograms could be 

obtained in (N logN ). In the present paper, we take the idea a leap further and bring it to 

fruition. We show that the histogram of forces can be defined in a completely different but 

equivalent way, with major theoretical and algorithmic implications. The equivalent definition 

allows us to determine the behavior of the force histogram towards any invertible affine 

transformation. This is an issue of prime importancewhich was, until now, only partially 

solved [17]because it is related to the design of affine-invariant descriptors. We are also able 

to introduce a general (N logN ) algorithm for force histogram computation. This is another 

important result. The traditional algorithm leads to excessively long processing times when 

forces are computed in more than a few hundred directions, when the number of membership 

degrees is not single digit, or when the regions are fractal-like regions. We can now state that 

these weaknesses are overcome.

The force histogram is reviewed in Section 2. The new, equivalent definition of the 

histogram is presented in Section 3. In Section 4, we examine the behavior of the histogram 

towards affine transformations. In Section 5, the new algorithm for force histogram 

computation is introduced. Experiments, in Section 6, validate the theoretical analysis and 

demonstrate the efficiency of the algorithm. Conclusions and future work are given in Section 7.

2. Notation and background

The notation used throughout the paper is presented in Section 2.1. The traditional definition 

of the force histogram is given in Section 2.2. The existing approximation algorithms for force 

histogram computation in the case of raster data are described in Section 2.3.



2.1.  Notation

Numbers, vectors, and points:  is the set of real numbers and m..n is the set of all integers 

between m and n inclusively. The nearest integer to x is x. The symbol 
P denotes the 

Euclidean vector plane. The norm of the vector 

u

P is |

u | and its direction is 


u[0,2). 

For any [0,2), the symbols 

 and 


 denote the vectors such that 


 =  and (


 ,

 ) is a 

positively oriented orthonormal basis. See Fig. 1. The dot product of 

u and 


v is 


u 

v . The 

symbol P denotes the Euclidean affine plane. The origin, , is the point of coordinates (0,0). If 

pP  is the point of coordinates (x,y) then p is the point of coordinates (x,y). For any 

[0,2) and any t, the symbol (t) denotes the line { + t 

 + s 


 }s . Also note that 

two points p and q define a vector
pq .

Crisp, fuzzy, and raster objects: An object is a nonempty fuzzy subset of P. For any object A

and any point p, the membership degree of p in A (i.e., the degree to which p belongs to A) is 

A(p)[0,1]. It is assumed that the support of A, i.e.,{ p P | A(p)  0 }, is bounded. A is a crisp

object iff (if and only if): pP, A(p){0,1}. It is a raster object iff: pP, A(p) = A( p ). 

A pixel is a crisp raster object with area 1. 

Affine transformations: Affine transformations are mappings from P to P that preserve 

collinearity (all points lying on a line initially still lay on a line after transformation) and ratios 

of distances (e.g., the midpoint of a line segment remains the midpoint after transformation). 

Translations, reflections, rotations, dilations and stretches (Fig. 2) are examples of affine transfo-

rmations. Any affine transformation aff can be written as the composition of a translation tra

with a linear transformation lin (an affine transformation such that lin()=). In other words, 



aff(p) = (tra  lin)(p) = tra(lin(p)), for any point pP. It is a common convention to see tra

as a vector, lin as a 22 matrix, vectors as 21 matrices, etc. We can therefore write, e.g.,

aff(p)=lin(p)+tra  and lin(+

u )=+lin 


u , where + denotes point-vector addition and  denotes 

matrix multiplication. aff is invertible iff lin is invertible, i.e., iff det(lin)0, where det(lin) is the 

determinant of (the matrix) lin. In that case, the object A is transformed by aff into aff[A], and 

aff[A](p)=A(aff 1(p)). For example, tra[A](p)=A(p+(tra)).

Fig. 1. Notation for numbers, vectors, and points.

Fig. 2. Examples of affine transformations. (a) Translation. (b) Orthogonal reflection about (0). (c) -angle 

rotation about . (d) Dilation with center  and positive ratio . (e) X-axis orthogonal stretch with positive ratio 

k. In all cases, if o is the midpoint of p and q, and if p, o and q are the affine transformations of p, o and q, then 

o is the midpoint of p and q.

2.2.  Traditional definition of the histogram of forces

Consider two objects A and B. The points p and q are seen as particles that attract each 

other: q exerts on p an elementary force whose direction is 
pq and whose magnitude is 

A(p)B(q) / |
pq |r, where r  is a constant (Fig. 3(a)). The histogram of forces Fr

AB is a rep-

resentation of the position of B relative to A (Fig. 3(b)). It is a function from [0,2) into . The 

value Fr
AB() is defined as the sum of the magnitudes of all the elementary forces in direction . 

When r=2, the force exerted by q on p obeys Newton’s law of gravity: F2
AB is called a 

gravitational force histogram. As another example, F0
AB is a constant force histogram. Let us 

give a formal definition. A histogram of forces is a function Fr
AB | [0,2)   defined by

Fr
AB()  Fr(A, B,t,)dt




 , (1)



where 

Fr(A, B, t,) = A( p)
q(t)p(t) B(q) r(

pq 

 ) dp dq (2)

and

r(k) =1/kr  if the real number k is positive and  r(k)=0  otherwise. (3)

In the case of raster data, the handling of fuzzy objects can be reduced to that of crisp 

objects, using the general double sum scheme introduced in [18]. The approach is recom-

mended (since it leads to shorter processing times) when the number of possible membership 

degrees is small. An alternative scheme is the single sum scheme [5]. Equation (2), however, is 

then implicitly replaced with Eq. (4). See [7] (Chapter II, Section 6.1) and [15] for details.

Fr(A, B, t,) = min{A( p)
q(t)p(t) , B(q)} r(

pq 

 ) dp dq (4)

It can be shown that the constant force histogram F0
AB and the angle histogram are fundam-

entally equivalent. They are, nonetheless, different functions, computed in different ways, and 

F0
AB offers stronger theoretical guarantees. In the end, the histogram of forces generalizes and 

supersedes the histogram of angles because of two unique characteristics: each object is seen as 

a surface (not as a discrete cloud of points) and distance information is explicitly taken into 

account (through r). See [7] (Chapter II, Section 5) and [15].

Fig. 3. The histogram of forces. (a) Non-raster objects can be handled. The darker the area, the higher the 

membership value. Notice the elementary force exerted by q on p. (b) Example.

2.3.  Existing algorithms for force histogram computation

As far as we know, there exist three different algorithms for the computation of force 

histograms in the case of raster data. Practically, only a finite number of histogram values can 



be calculated. Only a finite number K of directions  are, therefore, considered. A reasonable 

option is to pick a set of evenly distributed reference directions, such as {2i/K}i0..K1. For a 

given , the three algorithms approximate Fr
AB() (Eq. (1)) by a Riemann sum:

Fr
AB() = Fr


 (A, B,t,dt  (cos) Fr(A, B,k cos,)


 . (5)

The value Fr(A,B, k cos ,) is the sum of the elementary forces in direction  exerted by the 

points of B (k cos on those of A (k cos . For the sake of simplicity, let us assume 

that A and B are crisp, and that  belongs to [0,/4]. The line  (k cos) is rasterized into a set 

of pixels using Bresenham’s algorithm [19]. See Fig. 4(a). Some of these pixels belong to A, 

and their projection along the Y-axis onto  (k cos) defines pairwise disjoint segments Ii. 

Some pixels belong to B and their projection defines segments Jj. We have A (k cos)Ii  

and B(k cos)Jj. In other words,

Fr (A,B, k cos,)  pIi  qJj
r(
pq 


 ) dp dq = ij pIi  qJj

r(
pq 


 ) dp dq. (6)

Compare Eq. (6) with Eq. (2). Symbolic calculation of the double integral over Ii and Jj yields a 

set of algebraic expressions that are hard-coded. This is the traditional algorithm [7][15]. In the 

worst-case scenario, A and B are fractal-like objects: the number of segments Ii and Jj may then 

be very high; the algorithm runs in (KNN ) time, where N denotes the number of pixels in 

the image. In the best-case scenario, A and B are convex objects: the total number of segments Ii

and Jj included in (kcos) is at most two; the algorithm runs in (KN ) time.

Now, let us cut  (k cos) in two, as in Fig. 4(b). The left part yields segments I1i and J1j, 

and the right part yields I2i and J2j. When r is 0 (and only then), the force between Ii and Jj



can be expressed in terms of the force between I1i and J1j and the force between I2i and 

J2j. The value F0(A,B , k cos,) can therefore be calculated recursively. The approach leads 

to an algorithm in (KN ) time for the computation of constant force histograms [20].

When  (k cos) is cut in two, each half-line can be adjusted so that it runs through the 

center of the leftmost and rightmost pixels (Fig. 4(c)). In that case, the rasterization of each half-

line may yield a different set of pixels (notice the darker pixel in Fig. 4(c); compare with Fig. 

4(b)) and, therefore, different segments I1i, J1j, I2i, J2j. This slightly different approach leads to 

an algorithm in (N logN) time [20] which computes constant forces in 8N8 directions.

Fig. 4. Key principles of the existing algorithms for force histogram computation. Pixels marked “A” (resp. “B”; 

“AB”; “X”) belong to A and not B (resp. B and not A; A and B; neither A nor B). (a) Computing the histogram 

value Fr
AB() comes down to computing the force between two unions of segments, such as I1I2 and J1J2. 

(b) When r is 0, this force can be computed recursively. (c) A variant.

3. An equivalent definition of the histogram of forces

Consider the function  AB  | 
P   defined by

AB (

v ) = u 

P   A( +

u ) B( +


u +

v ) d


u . (7)

It is a mathematical correlation that provides raw information about the relative position 

between the objects A and B. We call it the spatial correlation between A and B. Using 

coordinate notation, Eq. (7) becomes: 

AB(s, t)  A(x, y) B(x  s, y  t)






 dx dy . (8)

Now, consider the function F̂r
AB | [0,2)  defined by:

F̂r
AB() = [

0


 AB (k


 ) / k r ] dk . (9)



Or, using coordinate notation:

F̂r
AB()  [AB(k cos, k sin) / kr]dk

0


 . (10)

We have F̂r
AB = Fr

AB , where Fr
AB is the force histogram defined through Eqs. (1-3).

The proof is given in Appendix A.

4. Geometric properties

Many computer vision tasks require the design of robust descriptors: these descriptors should

not be sensitive to the position of the camera with respect to the photographed scene; they

should not be affected by variations in size, translation and rotation. We examine here the 

behavior of the spatial correlation (Section 4.1) and of the force histogram (Section 4.2) towards 

invertible affine transformations. This is an important step towards the design of affine-

invariant relative position descriptors [17].

4.1.  Properties of  AB

Consider two objects A and B and two translations tra1 and tra2. As shown in Appendix B:

 tra1[A] tra2[B](

v ) =  AB (


v + tra1  tra2). (11)

In other words, the spatial correlation  tra1[A] tra2[B] between tra1[A] and tra2[B] can be easily 

deduced from the spatial correlation AB. Note that when tra1 = tra2 = tra, Eq. (11) becomes

 tra[A] tra[B](

v ) =  AB (


v ). (12)

Now, consider an invertible linear transformation lin. As shown in Appendix C: 

 lin[A] lin[B](

v ) = |det(lin)| AB (lin1 .


v ) . (13)

Finally, consider an invertible affine transformation aff = tra  lin. We have 

aff [A]aff[B] (

v ) =  tra[lin[A]] tra[lin[B]](


v ) . (14)



Equations (12, 14) give

aff[A]aff[B](

v ) =  lin[A] lin[B](


v ) (15)

and Eqs. (13, 15) give

aff[A]aff[B](

v ) = |det(lin)| AB (lin1 .


v ) . (16)

4.2.  Properties of F̂r
AB

The behavior of the histogram of forces Fr
AB towards the basic affine transformations shown 

in Fig. 2 was examined in previous work: proofs of Properties 1-4 below are in [7] (Chapter II, 

Appendix A) and proof of Property 5 is in [17] (Appendix C). The behavior of Fr
AB towards 

any invertible affine transformation was not, however, determined. This is achieved here, 

through Property 6. Its proof is given in Appendix D. Since F̂r
AB = Fr

AB (Section 3), all these 

properties hold, of course, for both Fr
AB and F̂r

AB . For any [0,2):

Property 1: Fr
tra[A] tra[B] ()  Fr

AB() (17)

Property 2: Fr
ref [A]ref [B]()  Fr

AB( ') (18)

where ' belongs to [0,2) and is congruent to 2 modulo 2.

Property 3: Fr
rot[A]rot[B]()  Fr

AB( ') (19)

where ' belongs to [0,2) and is congruent to  modulo 2.

Property 4: Fr
dil[A] dil[B] ()  3r Fr

AB() (20)

Property 5:      Fr
str[A] str[B] ()  k2r [1 (k2 1)cos2] (r1)/2 Fr

AB( ') (21)

where ' belongs to [0,2) and is congruent to arctan(k1tan) if cos is positive;

to  if cos is zero; to arctan(k1tan)+ otherwise.

Property 6: F̂r
aff [A]aff [B]()= |det(lin)| | lin1 .




 |r1 F̂r

AB(') (22)



where ' is  (lin1 .

 )  and aff = tra  lin  is any invertible affine transformation.

Note that Property 6 implies all other properties. As an example, Appendix E shows how 

Property 5 can be derived from Property 6. The proof is far more elegant than the one in [17].

5. Case of raster data

Here, A and B correspond to regions in a digital image of size N=mn. In other words: m and 

n are positive integers; A and B are raster objects; for any point p such that A(p)0 or B(p) 0, 

the x- and y- coordinates of p belong to 0..m1 and 0..n1 respectively. As shown in Section 

5.2 (and illustrated later in Section 6), the force histogram F̂r
AB can then be approximated in an 

efficient and accurate way. First, Section 5.1 examines how to implement AB. Note that some 

of the elements in Section 5.1 can be found in a preliminary work [16], which introduced the 

idea of the spatial correlation. In [16], however, AB was defined directly in the discrete space

and could not, therefore, be properly linked to the histogram of forces. As a result, the

histograms actually considered (and approximated) in [16] are similarbut not identicalto 

force histograms.

5.1.  Implementing AB

Consider Eq. (8). Practically, only a finite number of AB(s,t) values can be calculated. It is 

easy to show that if s and t are integers, we have (since A and B are raster objects):

A(x, y) B(x  s, y  t)






 dx dy  A(x, y) B(x  s, y  t)

y0

n1x0

m1 . (23)

This double sum is 0 if sm+1..m1 or tn+1..n1 (Fig. 5). In other words,  

AB(s,t)  A(x, y) B(x  s, y  t)
y0

n1x0

m1 (24)



and (about) 4N pairs (s,t) of integers are of interest. When A and B are crisp, AB(s,t) simply

counts the number of pairs (p,q) where p and q are points with integer coordinates such that 

A(p)=1, B(q)=1, and 
pq = (s,t).

Fig. 5. Spatial correlation AB in the case of raster data. (a) Two (crisp) objects A and B in an mn image.

(b) The nonzero AB values are all in a (2m1)(2n1) domain. The brighter the area, the higher the value. 

Equation (24) calculates each AB(s,t) in (N ) time, i.e., it calculates AB in (4N 2) time. 

There is, however, a much faster way. Let A be the reflection of A about the origin and let B be 

the translation of B by the vector (m+1,n+1). For any real numbers x and y, we have

A(x,y) =A(x,y) and B(x,y) =B(x+m1,y+n1). See Fig. 6. Consider the matrix [AB ] with 

2m1 columns and 2n1 rows defined as follows: for any i in 1..2m1 and any j in 1..2n1, the 

element [AB ]ij at the i-th column (counting from left to right) and j-th row (from bottom to top) 

is AB (im, jn). The matrices [A' ] and [B' ] are defined in the same way. Now, let us make the 

change of variables x=x and y=y in Eq. (24). We get:

AB(s,t)  A '(x ', y ')B(s  x ',t  y ')
y 'n1

0x 'm1

0 . (25)

Equation (25) corresponds to a 2-D discrete convolution. Using matrix notation:

[AB ] = [A' ]  [B' ] , (26)

where  denotes the convolution operator. As we all know, the Fourier transform has the ability 

to convert a convolution into an ordinary product, and vice versa. According to the convolution 

theorem, Eq. (26) can be transformed into

[AB ] = W2n1
1 . [(W2n1

. [A' ] .W2m1 )  (W2n1
. [B' ] .W2m1 )] .W2m1

1 , (27)



where Wk and Wk
1 are the Fourier and inverse Fourier transform matrices of order k, and 

where  is the array product (given two matrices M1 and M2 of the same size, [M1M2]ij = 

[M1]ij [M2]ij for any i and j ). According to Eq. (27), the computation of [AB ] requires three 2-D 

discrete Fourier transforms. AB can therefore be calculated in (N logN ) timesince this is 

the complexity of Fast Fourier Transform algorithms.

Fig. 6. Computation of  AB. (a) A is the reflection of A about the origin. B is the translation of B by the vector 

(m+1,n+1). (b) The matrix [A] defined from A. (c) The matrix [B] defined from B. (d) The matrix [AB], 

which defines AB, can be deduced from [A] and [B].

The behavior of AB towards translations leads to further optimization. Consider a vector 

v

and a translation tra. If 

v and the translation vector have integer coordinates then

 tra[A]B(

v ) = AB (


v + tra) . (28)

Equation (28) comes from Eq. (11): replace tra1 with tra and tra2 with the translation whose 

vector is the null vector. Let us permute the two members of the equality, and let us make the 

change of variable 

u =

v + tra. We get:

AB (

u ) =  tra[A]B(


u  tra). (29)

Now, let us choose tra so that the minimum bounding rectangle of tra[A] and B is as small as 

possible. This rectangle defines a host image of size N' = m'  n'. See Fig. 7. Since  tra[A]B can 

be computed in (N logN ) time using the FFT, and since AB can be derived from  tra[A]B

in (N ) time according to Eq. (29), AB can be computed in (N logN +N) timewhich can 

be noticeably less than (N logN ) if N is small compared to N.



Fig. 7. Optimization of the algorithm for the computation of AB. (a) A and B are objects in an mn image. 

A' =tra[A] and B are objects in a smaller m'n' image. (b) AB can be deduced from A'B.

5.2.  Implementing F̂r
AB

Here again, only a finite number of F̂r
AB() values can be calculated. Only a finite number 

K of directions  are therefore considered. A reasonable option, as mentioned in Section 2.3,

is to pick a set of evenly distributed reference directions such as {2i/K}i0..K1. Assume 

[0,/4)[7/4,2). Let s =k cos, i.e., k = s/cos. We then have 1/kr=(cos)r/sr and 

dk = ds/cos. Equation (10) becomes:

F̂r
AB()  (cos)r1 [AB(s, s tan) / sr]ds

0


 . (30)

F̂r
AB() is approximated as follows:

F̂r
AB() (cos)r1 AB

s0

m1 (s , s tan ) fr(s) , (31)

where fr(s) is chosen based upon the interpretation of 1/sr in the context of Eq. (30). Consider 

two points p and q in P such that 
pq is the vector of coordinates (s , s tan). Let p and q be the 

projections of p and q on the X-axis. In Eq. (30), the value s represents the distance between p

and q, and 1/sr measures the magnitude of the elementary force exerted by q on p. This force 

tends to pull p in direction 0. See Fig. 8(a). In Eq. (31), however, p and q are such that 
pq is 

the vector of coordinates (s , s tan ). The point p is actually the representative of a whole set 

of points, i.e., the pixel it belongs to. The same applies to q. These pixels project on the X-axis 

as unit line segments, I and J. See Fig. 8(b). It is therefore natural to define fr(s) as the sum of 

the elementary forces exerted in direction 0 by all points of J on those of I, i.e., 



fr(s) = r(x  y  s)dx dy
0

1

0

1

 , (32)

where r is defined as in Eq. (3). This double integral can be calculated analytically. Its 

algebraic expression depends on s and r, as shown in Table 1.

Fig. 8. About the function fr . Case [0,/4)[7/4,2). In (a), s is a nonnegative real number and 
pq is the 

vector of coordinates (s , s tan). The value 1/sr is the magnitude of the force exerted by q' on p'. In (b), s is a 

nonnegative integer and 
pq is the vector of coordinates (s , s tan ). The value fr(s) is the magnitude of the 

force exerted by J on I.

Table 1.  Algebraic expressions for the double integral in Eq. (32), where ln denotes the Neperian logarithm.

Equation (31) only holds when [0,/4)[7/4,2). Other values of  yield other 

equations.  When [3/4,5/4),

F̂r
AB() (cos)r1 AB

s0

m1 (s ,s tan) fr(s) ; (33)

when [/4,3/4),

F̂r
AB() (sin)r1 AB

s0

m1 ( s cot , s ) fr(s) ; (34)

and when [5/4,7/4),

F̂r
AB() (sin)r1 AB

s0

m1 (s cot , s ) fr(s) . (35)

Equations (31, 33-35) represent a new way of computing force histograms in the case of 2-D 

raster data. The histograms are computed in (N logN +KN) time: the equations above require

(KN ) by themselves, while the spatial correlation AB requires (N logN ) (see Section 5.1).

Let us take a closer look at K. Assume the image is of size N=nn. Consider two raster lines

as depicted in Fig. 9(ab). Starting from the boundary pixel p1 (in the leftmost column), they run 



in slightly different directions 1 and 2, with 1[0,/4] and 2[0,/4]. The two lines 

correspond to different sets of pixels, but both join p1 and p2 (in the rightmost column). We 

hypothesize that the difference between the computed values for F̂r
AB(1) and F̂r

AB(2) is 

negligible, below significance considering the image resolution. In other words, no more than n

directions are worth considering in [0,/4] (see Fig. 9(c)), and no more than 8n8 directions in 

[0,2). This shows that there is no interest in choosing for K a value greater than 8N8. 

In conclusion, the algorithm presented in this section actually runs in (N logN +N N ), 

i.e., in (N logN ). Computational times are basically independent of r (the type of force 

histograms), K (the number of directions in which forces are computed), and M (the number of 

possible membership degrees). All objectswhether they are convex or concave, of simple or 

complex shapes, defined as crisp or fuzzy setsare handled in an equal manner. The 

experiments in Section 6 validate this analysis.

Fig. 9. Directions  in an nn image. The gray pixels represent (a) the raster line in direction 1 originating from 

p1, and (b) the raster line in direction 2 originating from p1. Since both lines join p1 to p2, there is no reason to 

distinguish 2 from 1. Therefore, (c), no more than n directions are worth considering in the range [0,/4].

6. Comparative experimental study

In this section, F̂r
AB denotes a force histogram computed using the new algorithm (Section

5); Fr
AB denotes a histogram computed using the traditional algorithm (briefly described in 

Section 2.3); FAB and F
~AB are constant force histograms computed in (KN ) and (N logN ) 

time respectively (see Section 2.3 as well). For a given K, the i=2i/K values with i in 0..K1

are the directions in which forces are considered.



The four algorithms are dedicated to the handling of 2-D data in raster form. All are 

approximation algorithms. For example, the traditional algorithm is based on the approxima-

tions expressed by Eqs. (5, 6), while the new algorithm is based on the approximations

expressed by Eqs. (31, 33-35). We can expect, therefore, to have F̂r
AB  Fr

AB instead of 

F̂r
AB  Fr

AB . We can also expect F
~AB F0

AB . The exception is FAB  F0
AB , since the two algo-

rithms only differ in that one uses recursion and the other does not (Section 2.3). In the case of 

vector data, however, there exists an exact algorithm: its time complexity (for crisp objects) is

(Klog), where  is the total number of object vertices [7][10][15]. It is therefore possible

to evaluate the accuracy of each histogram F̂r
AB , Fr

AB , FAB and 
FAB . This is achieved in

Section 6.2. Processing times are compared in Section 6.3. The test data are presented first, in 

Section 6.1. Note that the memory complexity of the four approximation algorithms is (N ).

The algorithms were implemented in C and run on a machine equipped with Intel Pentium D 

CPU 3.0 GHz, 1GB memory, and Windows Vista.

6.1.  Test data

The test data include 4 pairs of crisp objects. Each pair consists of two identical objects: the

quadratic Koch island fractal at iteration 0 (Fig. 10(a)), 1 (Fig. 10(b)) and 3 (Fig. 10(cd)). Any

line that runs through A and B in Fig. 10(a) intersects them in one segment each. As explained 

in Section 2.3, this is the best-case scenario for Fr
AB in terms of processing time. Even more so 

that many directions i satisfy Fr
AB(i)=0; these directions can be predetermined in order to 

speed up computation. On the other hand, a line that runs through A and B in Fig. 10(c)

intersects them in a large number of segments. This is due to the fractal structures of the objects 



(and would be less apparent with, say, the more famous Koch snowflake). Processing times for 

Fr
AB can be expected to be much higher. The worst-case scenario is represented by Fig. 10(d):

since A and B overlap, lines that run through A and B can be found in every direction i (i.e., 

Fr
AB(i) is never 0). In the end, the variety offered by the four pairs of objects allows us to fairly 

compare the computational efficiency of the different algorithms. 

Each pair of objects in Fig. 10 was also used to generate several pairs of fuzzy objects. For a 

given M, the pixels in A were assigned different membership degrees, randomly selected from 

{i/M}i1..M. The object B was fuzzified in the same way. 

Fig. 10. Test data. The crisp objects used in the experiments are quadratic Koch islands generated after (a) 0, (b)

1, and (c)(d) 3 iterations. In (d), the two objects overlap (black area).

6.2.  Results on accuracy

The handling of fuzzy objects basically comes down to the handling of their -cuts, which 

are crisp objects [7][15]. The accuracy of the force histogram approximations does not depend, 

therefore, on whether the objects are crisp or fuzzy. This was confirmed experimentally (results 

not shown here). In this section, we use the (crisp) squares of Fig. 10(a) to illustrate the fact that 

the new algorithm is more accurate than its competitors. The two squares, A and B, can be easily 

encoded in vector form. As mentioned in the introductory paragraphs of Section 6, this makes it 

possible to calculate the exact force histogramwhich can then be compared with F̂r
AB , Fr

AB , 

FAB and 
FAB . The dissimilarity between one of these four histograms, h, and the exact 

histogram, he, is measured by the difference ratio 



DR(h) 
h(i) he(i)i0

K1
max{h(i),he(i)}i0

K1












100% (36)

DR(h)=0% iff h=he, and DR(h)=100% iff h and he are orthogonal in the vector space K. The 

lower DR(h), the higher the accuracy of the approximation h. Note that DR is defined based on 

the grid norm (1-norm). Other norms, like the Euclidean norm (2-norm), could be used. 

Besides, there are other bin-by-bin or cross-bin measurements suitable for the task as well [21].

Figure 11 summarizes the most interesting results of our experiments. FAB does not appear 

in this figure for the simple reason that FAB = F0
AB (as explained in the introductory paragraphs 

of Section 6) and hence DR( FAB )=DR( F0
AB ). The parameter K does not appear either because it 

has no noticeable impact on the measurement of accuracy; all the diagrams look the same 

whether K is a three- or a four-digit number. The accuracy of all histograms increases with N. 

It drops, however, as r increases past 2. The most accurate approximation is F̂r
AB : we have      

DR( F̂r
AB )<0.1% when r2 and N2562. The accuracy of Fr

AB is not as high, but comparable:

in our experiments, we have consistently found that DR( F̂r
AB )<DR( Fr

AB )<3DR( F̂r
AB ). The 

least accurate approximation is 
FAB , since 18DR( F̂r

AB )<DR(
FAB )<128DR( F̂r

AB ).

Fig. 11. Histogram accuracy. A and B are the objects from Fig. 10(a). In (c), N=2562.

6.3.  Results on efficiency

Experiments (not shown here) confirm that r has no impact on the processing time of F̂r
AB . 

This is not exactly the case for Fr
AB , as F1

AB and F2
AB are processed noticeably faster (Fig. 12).

The main reason is that the computation of each Fr
AB(i) translates into the assessment of a 



number of algebraic expressions (Section 2.3) which are computationally simpler when r=1 or 

r=2. These two values naturally appear when determining the expressions through integral 

calculus (as they appear in Table 1). See [7] for details. In the following, only constant and 

gravitational force histograms are considered: r=0 represents the worst-case scenario for Fr
AB , 

while r=2 represents the best-case scenario.

Fig. 12. Processing time (T) of Fr
AB

with respect to the type of forces (r).

The objects A and B are from Fig. 10(c), N=2562, K=360, and the increment for r is 0.5.

K has almost no influence on the computational efficiencies of F̂r
AB and 

FAB , and F̂0
AB

computes much faster than 
FAB (Figs. 13(b)-14(b)). On the other hand, the processing times of 

Fr
AB and FAB depend linearly on K. When K is set to 8N8 (the maximum number of 

directions that are worth considering, as shown in Section 5.2), F̂r
AB outperforms Fr

AB and FAB

(Fig. 13). When K is small enough, however, Fr
AB and FAB compute faster than F̂r

AB (Fig. 14).

The shape of the objects A and B has no influence on the computational efficiencies of F̂r
AB , 


F AB and F AB , but it does have (as mentioned in Section 2.3) a significant influence on Fr

AB   

(see the gray areas in Figs. 13(ac)-14(ac)). The phenomenon, however, is less pronounced for 

F2
AB than for F0

AB , for the same reason that F2
AB computes noticeably faster than other Fr

AB

histograms (as explained above).

Similarly, the relative position of the objects has no influence on the computational 

efficiencies of F̂r
AB and 

FAB , but it does have an influence on Fr
AB . In particular, F0

AB displays 



a huge efficiency decrement when A and B overlap (upper boundary of the gray areas in Figs. 

13(a)-14(a)). The efficiency of FAB decreases as well (Figs. 13(b)-14(b)), for the same reason. 

Fig. 13. Processing times (T) of F̂r
AB , Fr

AB , FAB and 
F AB with respect to the image size (N), when K=8N8. 

In each diagram, the objects A and B are from Fig. 10(a-d). The processing times of Fr
AB and F AB depend on 

the shape and/or the relative position of the objectshence the gray areas. The lower boundary of each gray area 

corresponds to the best-case scenario, i.e., A and B are from Fig.10(a). The upper boundary corresponds to the 

worst-case scenario, i.e., A and B are from Fig. 10(d).

Fig. 14. Processing times (T) of F̂r
AB , Fr

AB , F AB and 
FAB with respect to the image size (N), when K=360.

Experiments confirm that the number M of membership degrees has no influence on the 

computational efficiencies of F̂r
AB (Fig. 15), FAB and F

~AB (results not shown here). On the 

other hand (Fig. 15 and Section 2.2), the complexity of Fr
AB depends on M either quadratically 

(when using the double sum scheme) or linearly (when using the single sum scheme). 

Consequently, F̂r
AB outperforms Fr

AB even for small values of M.

Table 2 summarizes the dependence of the processing times on the various parameters.

Fig. 15. Processing times (T) of F̂r
AB and Fr

AB with respect to the number of possible membership degrees (M). 

In each diagram, the objects A and B are from Fig. 10(c), N=2562, and K=360. The symbols  and  indicate 

the simple and double sum schemes (see Section 2.2).

Table 2.  The processing time of a histogram like Fr
AB , F AB , 

FAB or F̂r
AB may (YES) or may not (NO) depend 

significantly on N, K, M, r, and on the shape and relative position of the objects A and B. Dependence can be, 

e.g., linear (K) or quadratic (M 2).

To conclude this section, let us highlight an important feature of the new algorithm. Consider 

Fig. 14(a). The curve for F̂0
AB would look exactly the same if K was, say, 1440 instead of 360

(on the other hand, the curves for F0
AB would go 4 times higher). This is because most of the 



processing time is actually spent on AB. As a result, the following tasks are performed in 

practically the same amount of time: computing F̂r
AB with K=360 values; computing F̂r

AB with 

K=1440; computing F̂r1
AB , F̂r2

AB , F̂r3

AB and F̂r4

AB with 360 values each; computing F̂r
tra1[A] tra2[B] , 

F̂r
tra3[A] tra4[B] , F̂r

tra5[A] tra6[B] and F̂r
tra7[A] tra8[B] with 360 values each (since  trai[A] traj[B]

can be 

easily derived from AB using Eq. (11)). In other words, the new algorithm is particularly 

suitable not only when forces must be considered in a large number of directions, but also when 

different force histograms must be calculated for the same two objects (as in [9]), or when the

force histogram of two moving objects must be calculated at different times.

7.   Conclusion 

The traditional algorithm for force histogram computation in the case of 2-D raster data runs 

in (KM 2NN ) time, where K is the number of directions in which forces are considered, M is 

the number of possible membership degrees, and N is the number of pixels in the image. An 

alternative algorithm runs in (KMNN ) time. Moreover, two algorithms dedicated to constant

force histogram computation can be found in the literature: one is in (KN ), and the other in 

(N logN ). In this paper, we have described an algorithm that runs in (N logN ), regardless of 

the type of force. A comparative study has shown the following. For the computation of a 

histogram of constant forces when only a relatively small number K of histogram values are 

needed: the dedicated algorithm in (KN ) is the most efficient if the objects are fuzzy (M >1), 

or crisp (M =1) with complex shapes; the traditional algorithm has the best performance if the 

objects are crisp with simple shapes. For the computation of a histogram of non-constant 



forces when only a relatively small number of histogram values are needed: the traditional 

algorithm is the most efficient if the objects are crisp with simple shapes. In all other cases, 

the new algorithm outperforms its competitors. It is also particularly suitable when different 

force histograms must be calculated for the same two objects, or when the force histogram of 

two moving objects must be calculated at different times. The algorithm derives from an 

equivalent definition of the force histogram that involves a mathematical correlation over the 2-

D vector space. This correlation provides raw information about the relative position between 

the objects and can be efficiently computed using the Fast Fourier Transform. We have shown, 

moreover, that the equivalent definition is better adapted to the solving of theoretical issues. We 

have used it here to determine the behavior of the force histogram towards any invertible affine 

transformation. In the future, it should help us solve other issues, such as the inverse problem

[6], object localization [22] and histogram composition [23]. We will also show that it can be 

extended to 3-D raster data, like the standard definition [24], and we will examine the case of 

vector data. 
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Appendix A.   Proof of F̂r
AB  Fr

AB

Equations (3, 9) give:

F̂r
AB() = [




 AB (k


 ) r(k ) ] dk

Combine it with Eq. (7):

F̂r
AB() = [




 u 

P   A( +

u ) B( +


u + k


 ) d


u ] r(k ) dk

(

 ,

 ) is an orthonormal basis of 

P . Therefore, for each vector 

u , there exist values s

and t such that  

u = t


 +s


 . The above equation becomes:



F̂r
AB() = (




 A







 ( + t


 +s


 ) B ( + t


 +(s+k)


 )  r(k )  dk ds ) dt

The points p =  + t

 + s


 and q =  + t


 +(s+k)


 belong to (t).

Since 
pq = k


 we have 

pq 

 = k. Thereforeand according to Eqs. (2, 1):

F̂r
AB() = [




 A( p)

q(t)p(t) B(q) r(
pq 


 ) dp dq ] dt

                                         = Fr


 (A, B,t,dt = Fr

AB()

Appendix B.   Proof of Eq. (11)

From Eq. (7), we have:

 tra1[A] tra2[B] (

v ) = u 

P   tra1[A]( +

u ) tra2[B]( +


u +

v ) d


u

Since tra1[A](p)=A(p+(tra1)) and tra2[B](p)=B(p+(tra2)):

 tra1[A] tra2[B] (

v ) = u 

P   A( +

u  tra1) B( +


u +

v  tra2) d


u          

                                       = u 
P   A( +


u  tra1) B( +


u  tra1 +


v + tra1  tra2) d


u

Let 

u ' = 


u  tra1 . We have d


u ' = d


u andaccording to Eq. (7):

 tra1[A] tra2[B](

v ) = u ' 

P   A( +

u ' ) B( +


u '+ (


v + tra1  tra2)) d


u '  =  AB (


v + tra1  tra2)

Appendix C.   Proof of Eq. (13)

From Eq. (7):  lin[A] lin[B] (

v ) = u 

P   lin[A]( +

u ) lin[B]( +


u +

v ) d


u

However: lin[A]( +

u ) = A(lin1( +


u )) = A( + lin1 .


u )                                                  

Similarly: lin[B]( +

u +

v ) = B( + lin1 . (


u +

v )) = B( + lin1 .


u + lin1 .


v )

Therefore:           lin[A] lin[B] (

v ) = u 

P A( + lin1 .

u ) B( + lin1 .


u + lin1 .


v ) d


u

Let 

u ' = lin1 .


u . We then have 


u = lin .


u '  and, according to linear algebra,



d

u = d(lin .


u ') = |det(lin)| d


u '. The above equation becomes:

 lin[A] lin[B] (

v ) = |det(lin)|  u '

P A( +

u ') B( +


u ' + lin1 .


v ) d


u '

which, according to Eq. (7), can be rewritten:

 lin[A] lin[B] (

v ) = |det(lin)| AB(lin1 .


v )

Appendix D.   Proof of Eq. (22)

According to Eq. (9): F̂r
aff [A]aff [B]()= [

0


 aff[A]aff[B](k


 ) / kr ] dk

Combine it with Eq. (15): F̂r
aff [A]aff [B]()= [

0


  lin[A] lin[B] (k


 ) / k r ] dk

and now with Eq. (13): F̂r
aff [A]aff [B]() =  |det(lin)| [

0


 AB(k (lin1 .


 )) / kr ] dk

Let ' = (lin1 .

 ), i.e., 


 ' = (lin1 .


 ) / | lin1 .


 |. The above equation can be rewritten as:

F̂r
aff [A]aff [B]() =  |det(lin)| [

0


 AB(k | lin1 .


 | 

 ' ) / kr ] dk

Now, let t = k | lin1 .

 |.  We have  k = | lin1 .


 |1 t  and  dk = | lin1 .


 |1 dt.  Therefore:

F̂r
aff [A]aff [B]() =  |det(lin)|  |lin1 .


 | r 1 [

0


 AB( t


 ' ) / t r ] dt

which can be rewritten (according to Eq. (9)):

F̂r
aff [A]aff [B]() =  |det(lin)|  |lin1 .


 | r 1

F̂r
AB( ')

Appendix E.   Proof of Property 5

In this case, aff = lin = str = 1 0
0 k







,  lin1 = 1 0
0 1 / k







  and   det(lin) = k.  Moreover,

we have 



  cos

sin






, lin1 .

 =

cos
sin

k













and   |lin1 .

 | = k1 [1+(k21) cos2]1/2 .

Property 6 then yields:

Fr
str[A] str[B] ()  k2r [1 (k2 1)cos2] (r1)/2 Fr

AB( ')



with  ' = (lin1 .

 ) = 

cos
sin

k













, i.e., ' belongs to [0,2) and is congruent to arctan(k1tan) 

if cos is positive; to  if cos is zero; to arctan(k1tan)+ otherwise.



fr (s) s =0 s =1 s >1 
r <1 1/[(1−r)(2−r)] (22−r−2)/[(1−r)(2−r)] [(s+1)2−r−2s2−r+(s−1)2−r]/[(1−r)(2−r)] 
r =1 +∞ 2ln(2) (s+1)ln(s+1)−2sln(s)+(s−1)ln(s−1) 

1< r < 2 +∞ (22−r−2)/[(1−r)(2−r)] [(s+1)2−r−2s2−r+(s−1)2−r]/[(1−r)(2−r)] 
r =2 +∞ +∞ ln{s2/[(s−1)(s+1)]} 
r >2 +∞ +∞ [(s+1)2−r−2s2−r+(s−1)2−r]/[(1−r)(2−r)] 

 

Table 1



 
 N K M r shape position 

F YES (N to N √N) 1 YES (K) YES (M or M 
2) 2 NO 3 YES 4 YES 5 

F
_
 YES (N) YES (K) NO N/A NO YES 5 

F
~ YES (N logN ) NO NO N/A NO NO 

F̂ YES (N logN ) NO NO NO NO NO 
 

1 N for convex objects, N √N for fractal-like objects 
2 M with the single sum scheme, M 

2 with the double sum scheme 
3 F1

AB  and F2
AB  histograms, however, are processed faster than other Fr

AB  histograms 
4 see 1 above 
5 processing times are higher when there are forces in all directions (e.g., overlapping objects) 

Table 2
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