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Abstract.  Understanding the spatial organization of regions in images is a crucial task, 
essential to many domains of computer vision. The histogram of forces—a quantitative 
representation of the relative position between two objects—constitutes a powerful tool 
dedicated to this task. It encapsulates structural information about the objects as well as 
information about their spatial relationships. Moreover, it offers solid theoretical guarantees 
and nice geometric properties. Numerous applications have been studied, and new applica-
tions continue to be explored. For instance, force histograms can be compared through 
similarity measures for fuzzy scene matching. They can be used for describing relative 
positions in terms of spatial relationships modeled by fuzzy relations. They can also be 
used for scene description, where relative positions are represented by linguistic expres-
sions. This chapter reviews and classifies work on the histogram of forces. It touches topics 
as varied as human-robot communication and spatial indexing mechanisms for medical 
image databases. 

Keywords.  Force histograms, relative positions, spatial relations, shape matching, scene 
matching, scene description, fuzzy sets, fuzzy logic, pattern recognition, image analysis, 
computer vision. 

1 Introduction 

Understanding the spatial organization of regions in images is a crucial task, es-
sential to countless domains of computer vision. The notion of the histogram of 
forces, which was first introduced in [16] with the aim of providing new defini-
tions of directional relations (such as “ to the right of,”  “above,”  “ to the west of,”  
“behind” ), constitutes a powerful tool for accomplishing this task. 
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A force histogram is a quantitative representation of the relative position be-
tween two 2D objects. It encapsulates structural information about the objects as 
well as information about their spatial relationships. It is sensitive to the shape of 
the objects, their orientation and their size. It is also sensitive to the distance be-
tween them. In fact, the notion of the histogram of forces allows explicit and vari-
able accounting of metric information. Moreover, it offers solid theoretical guar-
antees and nice geometric properties, ensures fast and efficient processing of vec-
tor data as well as of raster data, and enables the handling of fuzzy objects as well 
as of crisp objects, intersecting objects as well as of disjoint objects, and un-
bounded objects as well as of bounded objects. 

The applications of the histogram of forces are numerous. So far, they seem to 
fall into three categories. The applications of the first category make “ low-level”  
use of the histogram, i.e., the relative position between two objects is directly 
represented by the histogram associated with these objects. The typical application 
consists in comparing histograms through similarity measures for object pair 
matching. The question is whether a pair of objects (i.e., the two objects and their 
spatial relationships) corresponds (up to some geometric transformations, like 
translation, rotation and scaling) to another pair of objects. These two pairs may 
come from the same image, or from different images. Object pair matching leads 
to object matching (when the objects in a given pair are the same), shape match-
ing, and scene matching (when many pairs of object pairs are considered). This is 
discussed in Section 3. The applications of the second category make “ intermediate-
level”  use of the histogram of forces, i.e., the relative position between two objects 
is described in terms of a few spatial relationships. These relationships are repre-
sented by fuzzy spatial relations, and their evaluation relies on the computation of 
the histogram associated with the objects. The goal then is to assess specific spa-
tial relationships (e.g., “ to the right of” ), or to compare the relative position of two 
objects with the relative position of two other objects (knowing that the objects 
themselves might be all different). This is discussed in Section 4. Finally, the 
applications of the third category make “high-level”  use of the force histogram. 
The relative position between two objects is represented by words, i.e., linguistic 
expressions. These expressions are generated from the histogram associated with 
the objects, typically through the fuzzy spatial relations mentioned above. This is 
discussed in Section 5. First of all, in the following section, we present the notion 
of the histogram of forces and its fundamental geometric properties. 

2 The Notion of the Histogram of Forces 

In this paper, unless otherwise specified, the term “object”  denotes a bounded, 2D 
crisp object (a rigorous definition of this term for the use of histograms of forces is 
given in [16,21]). We will return to this matter at the end of Section 2.1. 
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2.1 Description 

The relative position of an object A with regard to another object B is represented 
by a function FAB from IR  into IR  +. For any direction θ, the value FAB(θ) is the total 
weight of the arguments that can be found in order to support the proposition “A is 
in direction θ of B .”  More precisely, it is the scalar resultant of elementary forces. 
These forces are exerted by the points of A on those of B, and each tends to move 
B in direction θ (Fig. 1). If FAB is defined on IR , i.e., if for any θ the scalar resul-
tant FAB(θ) is finite, then the pair (A,B) is termed F-assessable and FAB is called 
the histogram of forces associated with (A,B) via F, or the F-histogram associated 
with (A,B). The object A is the argument, and the object B the referent.  

Actually, the letter F denotes a numerical function. Let r be a real. If the ele-
mentary forces are in inverse ratio to d

r
, where d represents the distance between 

the points considered, then F is denoted by Fr . The F0  -histogram (histogram of 
constant forces) and F2 -histogram (histogram of gravitational forces) have very 
different and very interesting characteristics. The former provides a global view of 
the situation. It considers the closest parts and the farthest parts of the objects 
equally, whereas the F2 -histogram focuses on the closest parts.  

 

A

B

θ

−π/2 0 θ π/2     −π/2 0 π/2θ  

 (a)     (b)    (c) 

Fig. 1.   Force histograms. (a) FAB(θ) is the scalar resultant of forces (black arrows). Each 
one tends to move B in direction θ. (b) The histogram of constant forces associated with 
(A,B). It represents the position of A relative to B. (c) The histogram of gravitational forces 
associated with (A,B). It is another representation of the relative position between A and B. 

 

It is shown [16,21] that for any r, any pair of disjoint objects is Fr-assessable. 
If r is lower than 1, any pair of overlapping objects is Fr-assessable too. The con-
straint on r can be bypassed by defining histograms of hybrid forces [16,24,33], 
but then, some geometric properties are lost. As mentioned at the very beginning 
of Section 2, the term “object”  denotes here a bounded, 2D crisp object. Note 
however that Fr-histograms can also handle unbounded objects (if r is greater than 
1 [16,24]), and fuzzy objects (this is discussed in [16,21]). In theory, they can 
handle neither 0D objects, nor 1D objects. In practice, this is usually not a limita-
tion, since points and lines can easily be assimilated to 2D objects (see, e.g., Fig. 
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A  B F2

A  B 
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8(e)). Finally, vector data can be processed as well as of raster data [16,21,33]. In 
the first case (vector data), the complexity of force histogram computation is 
O(n N log(N)), where N denotes the total number of object vertices and n the num-
ber of directions in which forces are computed (usually between 32 and 360, de-
pending on the application that is considered). In the second case (raster data), the 
complexity is O(n N√N), where N denotes the number of pixels of the processed 
image. This complexity drops to O(n N) for convex objects. Force histogram com-
putation benefits from the power of integral calculus, is highly parallelizable, and 
utilizes a well-known algorithm that is commonly circuit coded in visualization 
systems. 

2.2 Properties 

Force histograms have nice geometric properties. Consider two objects A and B. 
Assume that (A,B) is Fr-assessable. The following properties hold. Properties 1 to 
3 are illustrated by Fig. 2. 

Property 1:   The pair (B,A) is also Fr-assessable and: 
∀θ∈IR ,  Fr

BA (θ) = Fr
AB (θ−π). 

Property 2:   Let sym be a ∆-axis orthogonal symmetry, and let α be the angle 
between the X-axis and ∆. The pair (sym (A), sym (B)) is Fr-assessable and: 
∀θ∈IR ,  Fr

sym
 
(A)

 
sym

 
(B)

 (θ) = Fr
AB (2α−θ). 

Property 3:    Let dil be a central dilation1 with a positive ratio λ. 
The pair (dil (A), dil (B)) is Fr-assessable and: 
∀θ∈IR ,  Fr

dil
 
(A) dil

 
(B)

 (θ) = λ 3−r Fr
AB (θ). 

Property 4:   Let stre be an X-axis orthogonal stretch with a positive ratio k. For 
any real θ, let θ  be the value atan (k−1 tan θ) if cos θ is positive, the value θ if cos θ 
is zero, and the value atan (k−1 tan θ)+π otherwise. The pair (stre (A), stre (B)) is Fr-
assessable and:  ∀θ∈IR ,  Fr

stre
 
(A)

 
stre

 
(B)

 (θ) = k2−r
 [1+( k2 −1)cos2θ ]  (r−1)/2  Fr

AB (θ ). 

Properties 2 and 3 define the behavior of the Fr-histograms towards any similarity 
transformation. For instance, Property 2 implies Properties 5 and 6 below. The 
stretch in Property 4 is particular, since its axis is the X-axis, and its ratio is posi-
tive. However, the properties 2 and 4 define the behavior of the Fr-histograms 
towards any orthogonal one-way stretch. All proofs are in [16] (Chapter 2, Ap-
pendix A), and [18]. Note that stretches are not similarity transformations. 

Property 5:    Let tran be a translation. (tran (A), tran (B)) is Fr-assessable and: 
∀θ∈IR , Fr

tran
 
(A)

 
tran

 
(B)

  (θ) = Fr
AB (θ). 

Property 6:    Let rot be a ρ-angle rotation. (rot (A), rot (B)) is Fr-assessable and: 
∀θ∈IR ,  Fr

rot
 
(A)

 
rot

 
(B)

 (θ) = Fr
AB (θ−ρ). 

                                                           
1 A dilation is also known as a homothecy (or homothety). 
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Fig. 2.   Some properties of force histograms. 
Knowing FAB, it is easy to retrieve FBA, Fsym(A)sym(B) and Fdil(A)dil(B). 

2.3 Inverse Problem 

The histogram of forces is sensitive to the shape, the orientation of and the dis-
tance between the objects it is associated with. One may then wonder if different 
pairs of objects can lead to the same histogram. Consider, for instance, two dis-
joint objects A and B. Let �r

AB be the set of object pairs (A’ ,B’ ) such that 
Fr

A'B'=Fr
AB. It is clear that (A,B) belongs to �r

AB. Moreover, it is not the only ele-
ment of �r

AB. Consider any translation tran, any π-angle rotation rot, and any dila-
tion dil. According to Properties 1, 3, 5 and 6, the pairs (tran(A),tran(B)) and 
(tran(rot(B)),tran(rot(A))) also belong to �r

AB; if r is equal to 3, the pairs 
(tran(dil(A)),tran(dil(B))) and (tran(rot(dil(B)),tran(rot(dil(A))) belong to �r

AB too. Does 
�r

AB contain other elements than these ones? It is an intricate problem that re-
mains to be solved. However, in practice, if two object pairs (A,B) and (A’ ,B’ ) are 
such that Fr

A'B' is equal to Fr
AB, then (A’ ,B’ ) is most probably one of the pairs listed 

above. A more detailed discussion on this topic can be found in [18]. 

3 Comparing Force Histograms 

Some applications of the histogram of forces make “ low-level”  use of the histo-
gram. In these applications, histograms are compared through similarity measures.  
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3.1 Principle 

Consider four objects A1, B1, A2 and B2 in the Euclidean plane (e.g., A1 and B1 
come from the segmentation of some digital image I1, and A2 and B2 from the 
segmentation of another image I2). Assume there exists a central dilation dil with a 
positive ratio λ such that A2=dil (A1) and B2=dil (B1) (e.g., I1 and I2 represent the 
same physical objects, but have different scaling factors). Let m1 be the mean of 
FA1B1, let m2 be the mean of FA2B2, and let µ be some similarity measure (e.g., the 
classic sigma-count of the intersection over the union [18]). According to Property 
3, the dilation ratio λ (i.e., the scaling factor ratio) is [m2/m1]

1/(3−r). Moreover, the 
value µ(FA2B2, (m2/m1)F

A1B1) tells us about the validity of the assumption concern-
ing the existence of dil . Similarly, Property 6 allows us to check the existence of a 
rotation rot  such that A2= rot (A1) and B2= rot (B1), and to retrieve the rotation angle 
(or azimuth difference). Property 4 allows us to handle the case where the projec-
tion plane of the camera (or image plane) is not parallel to the observed plane. The 
declination of the camera platform (or tilt) can even be retrieved. Naturally, it is 
possible to consider combinations of the geometric transformations involved in the 
different properties. The histogram of forces therefore constitutes a powerful tool 
for object pair matching. This is thoroughly discussed in [18]. Note that when A1=B1 
and A2=B2 (the histograms FA1B1 and FA2B2 are then called F-signatures), object 
pair matching corresponds to object matching. Hence, the notion of the histogram 
of forces can also be exploited in pattern recognition and classification problems. 
This has been illustrated in [23,36,22] (Fig. 3). Finally, the force histogram can be 
of great use in scene matching, which is one obvious application of object pair 
matching. In Section 3.2, we examine scene matching in LADAR (Laser Radar) 
imagery, and exploit the fact that force histograms are able to handle fuzzy objects. 

 

       
 bean foliaceous pyramidal fan-shaped 

 
 circular rectangular trapezoid elliptic    

      

Fig. 3.   Experts distinguish four models of sinuses (top) and four models of orbits (bot-
tom). The orbits and sinuses represented by drawings from craniums of the 3rd century A.D. 
(center) can be classified using the histogram of forces [23,36,22]. 
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3.2 Application to Fuzzy Scene Matching 

Consider, for instance, a range image generated by the laser radar system mounted 
on a surveillance plane. We show in [15] that it is possible to manipulate the three-
dimensional data contained within the image and to create a version of the scene 
as seen from above. In the transformed view, each object is represented by a fuzzy 
region, and the spatial relationship between two objects is represented by a force 
histogram. Matching two scenes then comes down to comparing force histograms. 
Each comparison gives a degree of similarity between the two object pairs under 
consideration, as well as an assessment of the pose parameters. These values can 
finally be combined to find the correct scene matching. 

First, the range image (Fig. 4(a)) is “ lighted.”  A normal to each pixel is calcu-
lated from the three-dimensional positions in the range data of the pixel and its 
immediate neighbors. It allows an intensity value to be associated with the pixel. 
The processed scene looks more natural to the human eye (Fig. 4(b)). In [15], a 
hand segmentation is then performed (Fig. 4(c)). It results in a rough approxima-
tion of the objects’  edges. The inaccuracies in the segmentation are corrected 
using range information: each approximated edge is automatically adjusted to 
correlate with the best possible “ real”  edge on the range data. 

The tilt of the camera platform is assessed using a Hough-like transform. Two 
consecutive data points in any of the columns of the range data allow a candidate 
tilt angle to be produced. The most commonly found angle is assumed to be the 
actual tilt (thus, the method only works on data which represents a relatively flat 
landscape with objects). A similar method can be used to find the roll of the scene. 

The labels of the segmented image are then mapped to the three-dimensional 
positions of the range data, and these positions are rotated by the tilt angle. The 
resulting image is the scene as viewed from above (Fig. 4(d)). It has many gaps in 
it. Some are due to the general spreading of the pixels caused by the rotation. They 
are easy to handle. The other gaps correspond to uncertainty areas, i.e., areas which 
were obscured by objects in the original image. They are “ filled”  by associating 
each object with a fuzzy region (Fig. 4(d)). To best represent the uncertainty, differ-
ent types of boundaries are considered, depending on whether the gap occurs on the 
front side of the object (i.e., the side closest to the camera), or on the back side of it. 

Once the two scenes to match have been transformed to a declination inde-
pendent angle, a force histogram is calculated for each individual fuzzy region 
pair. At this point, when comparing two histograms not coming from the same 
scene, the rotational (i.e., azimuth) difference and scaling ratio of the images can 
be assessed and varied to maximize a given similarity measure. Rotational differ-
ence is calculated as the distance between the centroids of the two histograms, and 
is varied by shifting one of the histograms along the horizontal axis. The scaling 
ratio is calculated by comparing the histogram averages, and is varied by stretch-
ing one of the histograms vertically. This is justified by properties 6 and 3. 



106          Pascal Matsakis 

In [15], experiments were conducted on a pair of LADAR range images pro-
vided by the Naval Air Warfare Center. The two images represent a power-plant 
complex seen from two different viewpoints. As illustrated by Fig. 5, we focused on 
a set of four buildings. Our goal was to coherently label the buildings, and to re-
trieve the declination angles and the rotational difference. Twelve histograms were 
computed (6 per scene), and 6!=720 possible scene matches were considered. For 
each possible matching, an overall “matching degree”  was derived from the com-
puted maximum similarity measures, scaling ratios, and rotational differences. The  

 

 

   
 (a) (b)     (c) 

    
   

(d)  
Fig. 4.   By manipulating the three-dimensional data contained within a range image, it is 
possible to create a version of the scene as seen from above [15]. In the transformed view, 
each object is represented by a fuzzy region. (a) Range image. (b) Lighted scene. (c) Seg-
mented image. (d) Overhead view and fuzzy regions.  

 

 

Fig. 5.   These two images represent a power-plant complex seen from two different view-
points. A fuzzy scene matching approach based on force histogram computation makes it 
possible to coherently label the buildings, and to retrieve the declination angles and the 
rotational difference. 

2 
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3 
3 

0 0 
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matching with the highest degree was found to be the true matching and led to a 
coherent labeling of the buildings. The actual pose parameters were not provided 
by the NAWC and could not be compared with the recovered values. However, 
extensive experiments on synthetic data have shown that the tilts can be recovered 
to within 5º and the azimuth difference to within 10º [15,18]. 

4 Defining Fuzzy Spatial Relations 

In [5], Freeman proposed that the relative position of two objects be described in 
terms of spatial relationships. He also proposed that fuzzy relations be used, be-
cause “all-or-nothing”  standard mathematical relations are clearly not suited to 
models of spatial relationships. Freeman’s ideas were widely adopted. But many 
authors assimilated 2D objects to very elementary entities such as a point (cen-
troid) or a (bounding) rectangle. This approach is extremely practical, therefore it 
has often been used, notably for spatial reasoning and representation and process-
ing of qualitative spatial knowledge. However, it cannot be hoped to give a satis-
factory modeling of the relationships, because a lot of morphological information 
on the considered objects is lost. We show here that the histogram of forces— 
which encapsulates a large amount of information on the objects2—lends itself, 
with great flexibility, to the definition of fuzzy spatial relations. This is the “ inter-
mediate-level”  use of the force histogram. 

4.1 Directional Relations 

Relative position is often assimilated to directional relationships. The point of view 
is improper, but it shows the importance of these relationships in the field of com-
puter vision. A family of fuzzy directional spatial relations is a series (�α)α∈IR  of 
fuzzy binary relations. The relation �α reads “ in direction α of.”  Depending on α 
and on context, it may also read “ to the right of,”  “above,”  “ to the west of,”  “ in 
front-left of,”  etc. It connects any pair of spatial entities A and B with a numerical 
value3. This value, A�αB, corresponds to the degree of truth of the proposition “A 
is in direction α of B .”  It is a real number greater than or equal to 0 (proposition 
completely false) and less than or equal to 1 (proposition completely true). Entity 
A is the argument of the proposition and entity B the referent. Points are easy to 
handle (Fig. 6), but the problem gets complex when parameters such as shape, size 
and orientation are involved [29,25]. Although numerous methods for defining 
families of directional relations between 2D objects can be found in the literature, 
few of these methods simultaneously meet the following requirements: 

                                                           
2 The histogram of forces does not constitute, of course, the only way to preserve structural 

information (see, for instance, [2] and [25]). 
3 The pair may also be connected with a confidence interval or a fuzzy number.  
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(a) No object is assimilated to an elementary entity such as a point or a rectangle. 
(b) The defined relations are fuzzy relations, and not “all-or-nothing”  ones. 
(c) The defined family satisfies the basic axiomatic properties [16,21] which are—

in a more or less explicit way—widely adopted by computer scientists: (i) two 
objects can be assimilated to points if they are distant enough; (ii) the direc-
tional relations are not sensitive to scale; (iii) neither a space dimension nor a 
direction are preferred; (iv) the semantic inverse principle [5] is respected (e.g., 
A is to the left of B as much as B is to the right of A). 

The centroid method (see, e.g., [10]) and the methods described in [7,9] do not 
meet requirement (a); the ones described in [1,6,13] do not meet requirement (c). 
Actually, as far as we are aware, the only methods that fairly meet the previous 
requirements are based—explicitly or not—on the notion of the histogram of an-
gles presented in [25]. These methods are the compatibility method [25], the ag-
gregation method [14], the possibility method proposed in [2]4 (but not the neces-
sity method, neither the average one), and, to a certain extent, the neural network 
methods [11]. In [16,19], we showed that the corresponding families of directional 
relations can be advantageously redefined using force histograms instead of angle 
histograms. In [16,20], we noted that most families of fuzzy relations run counter 
to the fact that, generally, people do not combine more than two spatial preposi-
tions when translating visual information into natural language descriptions 
[8,27]. We also exhibited a coherent and rational perception of the world that no 
existing family could model. 

 

0 π/2 π−π/2−π θ

µ θ( )

1

 
(a)         

 

       (b) 

Fig. 6.   Example of directional relations between points. (a) A typical fuzzy set. 
(b) The degree of truth of the proposition “A is in direction α of B”  is µ(β−α). 

These facts led us to introduce alternative families based on the notion of the 
histogram of forces [16,20]. The idea is to impose physical considerations on the 
histograms. Let r be a real and (A,B) an Fr-assessable pair of objects. Our goal is 
to assess the degree of truth of a proposition like “A is in direction α of B ,”  where 
α represents any angle. Here, we will only consider the proposition “A is in direc-
tion 0 of B ,”  which will be read “A is to the right of B .”  For another value of α, 

                                                           
4 Although its definition is based on a morphological and fuzzy pattern matching approach, 

the possibility degree introduced in [2] is basically a function of the histogram of angles. 
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you can simply perform the computations described below on the shifted histo-
gram, Fr

AB
(θ+α). The forces exerted on B are classified in different types. First, 

the set of directions is divided into four quadrants as shown in Fig. 7. The forces 
Fr

AB
(θ) of the outer quadrants (θ∈[−π,−π/2] ∪ [π/2,π]  ) are elements which, to 

various degrees, weaken the proposition “A is to the right of B ” ; the forces of the 
inner quadrants (θ∈[−π/2,0] ∪ [0,π/2]  ) are elements which support the proposi-
tion. Some forces of the third quadrant are used to compensate—as much as pos-
sible—the contradictory forces of the fourth one. The proportion of these compen-
satory forces is defined by some angle θ+ . Forces of the second quadrant are used 
in a similar way to compensate the contradictory forces of the first one. The 
amount of these compensatory forces is defined by θ−. The remaining forces are 
called the effective forces. A threshold τ divide them into optimal and sub-optimal 
components. The optimal components support the idea that A is “perfectly”  to the 
right of B: whatever their direction, they are regarded as horizontal and pointing to 
the right. The “average”  direction αr(RIGHT) of the effective forces is then com-
puted, in conformity with this agreement.  
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θ
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Fig. 7.   Force typology associated with the proposition “A is to the right of B.”  

Finally, the degree of truth of “A is to the right of B”  is set to 
µ(α  r (RIGHT)) × ra (RIGHT). In this expression, ra (RIGHT) denotes the percentage of 
the effective forces (i.e., the sum of the effective forces divided by the sum of all 
forces), and µ is the membership function of a fuzzy set that can be employed to 
define a family of fuzzy directional relations between points. In our experiments, we 
used the typical triangular function graphed in Fig. 6(a). The most optimistic point 
of view consists in saying that any effective force is optimal, i.e., τ =+∞. Then, 
µ(α  r (RIGHT)) × ra (RIGHT) is equal to ra (RIGHT)—since αr(RIGHT) is 0 and µ(0) is 
1. The most pessimistic point of view consists in saying that any effective force is 
sub-optimal, i.e., τ =0. In that case, the expression µ(α  r (RIGHT)) × ra (RIGHT) gives 
some value ar(RIGHT). Setting τ to the average—or a weighted average—of the 
effective forces constitutes a natural compromise. The degree of truth of “A is to the 
right of B ”  is then found to be some value ar(RIGHT). The 3-tuple (ar(RIGHT), 
ar(RIGHT), ra (RIGHT)) defines a triangular fuzzy number. It corresponds to the 

contradictory forces 

compensatory forces 

effective forces 

effective forces 
 

 

(sub-optimal components)
 

(optimal components)
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histogram’s “opinion”  regarding the proposition “A is to the right of B .”  Accord-
ing to Fr

AB
, the degree of truth of that proposition is ar(RIGHT), the maximum de-

gree of truth that can reasonably be attached to it (say, by another source of infor-
mation) is ra (RIGHT), and the minimum degree that can reasonably be attached to 
it is ar(RIGHT). The method has been presented in detail in [20]. The French-
speaking reader is also invited to consult [19] (or [16]). Fig. 8 shows six pairs of 
objects. For each pair (A,B), four propositions have been assessed, using two fami-
lies of fuzzy directional spatial relations. The four propositions are “A is to the 
right of B ,”  “A is above B ,”  “A is to the left of B ”  and “A is below B .”  The two 
families, F0 and F2, are based on the construction of F0 and F2-histograms, and 
the distinction between contradictory, compensatory and effective forces, as de-
scribed above. The degrees of truth produced by F0 and F2 are displayed in Table 
1. Different comparative studies can be found in [16,21,19]. 

 

 
 (a) (b) (c) (d) (e) (f) 

Fig. 8.   Six pairs of objects. The referent is drawn darker than the argument. 

 

TABLE 1 
F0 and F2’s opinions regarding the relative position of the objects displayed in Fig. 8 (the 
degrees of truth are in hundredths). According to the two families, an object cannot be simul-
taneously a bit to the left and a bit to the right of another. In particular, as illustrated by case 
(d), directional relationships should not substitute for surroundedness (see Section 4.2.1). 
Also note that F2 sometimes conflicts with F0 (i.e., a2> 0a  or  a2 < a 0), and vice versa (e.g., 
case of the house and the river). This can be exploited at a higher level (see Section 5). 

F0  a 0 a 0 0a   a 0 a 0 0a   a 0 a 0 0a   a 0 a 0 0a   a 0 a 0 0a   a 0 a 0 0a                           

RIGHT  100 100 100  69 88 100  23 23 100  0 0 0  0 0 0  0 0 0 

ABOVE  0 0 0  31 38 58  77 87 100  0 0 0  0 0 0  0 0 0 

LEFT  0 0 0  0 0 0  0 0 0  0 0 0  82 87 92  44 54 83 

BELOW  0 0 0  0 0 0  0 0 0  0 0 0  18 19 21  56 76 99 

 (a) (b) (c) (d) (e) (f) 

F2  a 2 a 2 2a   a 2 a 2 2a   a 2 a 2 2a   a 2 a 2 2a   a 2 a 2 2a   a 2 a 2 2a                           

RIGHT  100 100 100  82 100 100  23 23 100  0 0 0  0 0 0  0 0 0 

ABOVE  0 0 0  18 21 37  77 87 100  0 0 0  0 0 0  0 0 0 

LEFT  0 0 0  0 0 0  0 0 0  0 0 0  95 98 99  24 29 39 

BELOW  0 0 0  0 0 0  0 0 0  0 0 0  5 5 7  76 93 98 
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4.2 Other Spatial Relations 

The histogram of forces was introduced with the aim of providing new definitions 
of directional relations [16,21], and its use for the modeling of other relationships 
has been the subject of little investigation. It is clear that the force histogram does 
not constitute an ideal representation of the relative position between objects, i.e., 
it does not enable the definition of “any”  fuzzy spatial relation. Nevertheless, it 
can be employed to model a variety of relationships—although it might mean 
working under certain assumptions on the objects, or using extra geometric fea-
tures. This is what we illustrate here with two examples. 

4.2.1 Surroundedness 

Surroundedness can be considered a particular case of separation [28]. It is an 
important spatial relationship in the interpretation of a scene, and many quantita-
tive definitions have been proposed. There are two main approaches. The first 
approach relies on the fact that according to most families of fuzzy directional 
relations an object can be in many directions with respect to another. As men-
tioned in Section 4.1, this feature is questionable: usually, people do not combine 
more than two spatial prepositions when translating visual information into natural 
language descriptions [8,27]. However, some authors [25,2] support the idea that 
it allows “surrounds”  (and “ is surrounded by” ) to be derived. Knowing that A is 
somewhat above, below, to the right and to the left of B as well, one could con-
clude that A surrounds B. In fact, drawing such a conclusion is not reasonable, 
unless it is known that the argument A does not intersect the convex hull of B. In 
other words, “A surrounds B”  can be assessed only if it is known that B does not 
surround A at all. The reason is that the directional relations are tied by the se-
mantic inverse principle [5] (e.g., A is to the left of B as much as B is to the right 
of A). Therefore, without constraints on the objects, there is no way to know 
which one surrounds (or includes!) the other. The second approach derives from 
Rosenfeld’s visual surroundedness [30]. It is based on the computation of a histo-
gram of angles. It supposes that the argument A is connected and does not inter-
sect B. For any pixel P of B, let θP be the angle made by the two tangents from P 
to A as in Fig. 9(a). To each element θ of ]2,0[ π , the histogram associates the 
number of pixels P such that θP is equal to θ. In [35], the degree of truth for “A 
surrounds B”  is produced by a multilayer perceptron fed by the histogram values 
and trained on aggregate responses from a panel of people. Other authors resort to 
a decreasing membership function µ from ]2,0[ π  into [0,1]. The function µ is 
chosen such that µ(θ) is 1 if θ is 0, and is 0 if θ is greater than π. In [26], the his-
togram of angles is assimilated to a fuzzy set and matched to µ, using the com-
patibility notion [4]. The degree of truth for “A surrounds B ”  is obtained as the 
center of gravity of the compatibility fuzzy set. In [14], the histogram is used to 
compute the aggregated value (e.g., the arithmetic mean, or the generalized mean 
[12]) of the µ(θP), when P describes B. The degree of truth for “A surrounds B ”  is 
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set to this value. Compared with the first one, the second approach gives defini-
tions of surroundedness that are much more consistent with human perception 
[35]. However, the methods proposed are computationally expensive, and vector 
data cannot be handled. 

We show in [33] that the histogram of forces can easily be employed to assess 
surroundedness. Let µ be a membership function as above, and let [θ1,θ2] be the 
largest interval—with θ1 in ]−π,π]—on which the force histogram FAB is zero. Fig. 
9(b) illustrates the meaning of angles θ1 and θ2. The degree of truth for “A sur-
rounds B”  is set to µ(θ2−θ1). Once again, the argument is supposed to be con-
nected. Moreover, it should not intersect the convex hull of the referent (like in the 
first approach). The definition is quite simple, but compares with the others [33]. 
Some examples are shown in Fig. 10. 

 

B

A

P

θP

  

B

A

θ2

θ1
 

 (a) (b) 

Fig. 9.   Defining surroundedness. 
(a) Use of a histogram of angles. (b) Use of a histogram of forces. 

 

                        
              (a) 0.00                        (b) 0.11                          (c) 0.43                      (d) 0.72 

          
        

    (e) 0.00              (f) 0.23            (g) 0.47           (h) 0.32            (i) 0.84              (j) 1.00 

Fig. 10.   Surroundedness based on the histogram of forces. In our experiments, µ was linear: 
for any θ in [0,π], πθθµ /1)( −= . The value 1.00 means that the proposition “A surrounds 
B ”  is assessed to be completely true, and the value 0.00 that it is completely false (where A 
denotes the light gray object and B the dark one). Similar images are used in [35] for train-
ing and testing the network-based method, and in [33] for comparing different methods. 
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The advantages of the force histogram-based method are that it ensures faster 
processing of raster data, and it is able to handle vector data as well. Also, the 
directional relations can be assessed concurrently. Note that the degree of truth for 
“A surrounds B”  does not really depend on the histogram values. The only thing 
that matters is which values are equal to zero and which ones are not. This has two 
important consequences. First, the results do not depend on the choice of the force 
histogram. Second, the method is not extremely robust. Slight changes in the ob-
ject shapes (especially at the two “ends” of the argument) may have a noticeable 
impact on the degrees of truth. In fact, similar comments can be addressed to any 
method that derives from Rosenfeld’s visual surroundedness: the results are not 
sensitive to the thickness of the argument, only to tangency points. The force his-
togram-based definition is exploited in Section 5.2.2. The application described 
there does not suffer from the above-mentioned limitations (constraints on the 
objects, low robustness). However, other applications might. In [17], the degree of 
truth for “A surrounds B ”  is redefined using the force histogram values (and not 
only the fact that these values are either zero or non-zero). Related relationships, 
like “between”  and “among,”  are also examined. Designing a new type of histo-
gram of forces constitutes another promising avenue. The idea would be to adopt a 
novel set of axiomatic properties, and to change the way the longitudinal sections 
are handled [16,21]. 

4.2.2 Inner-Adjacency 

Adjacency is another important spatial relationship between image regions. Dif-
ferent quantitative definitions have been proposed, notably in [37,30,3]. Our work 
on spatial indexing mechanisms for medical image databases has led us to con-
sider a particular relationship called “ inner-adjacency.”  In [31], the position of an 
object A relative to another object B is represented by the histogram of constant 
forces associated with (A,B−A). Some histogram values may thus be zero even 
when A and B intersect. The degree of truth of the proposition “A is inner-adjacent 
to B ”  is set to  

max (
b

i
, min (

a

i
,1−

hmean

hmin
)) , 

where a denotes the size (area) of the argument, b the size of the referent, i the 
size of A∩B, and hmin and hmean are the histogram minimum and average values. 
Fig. 11 shows 8 schematic configurations and the corresponding degrees of truth.  

The fuzzy spatial relation presented here models one clinically meaningful re-
lationship. It was implemented in the spatial indexing mechanism of the medical 
content-based image retrieval system proposed in [31]. The system was tested 
using a set of 2,080 HRCT lung images (Fig. 12). It achieved a 90% accuracy rate 
for lesion retrieval based on inner-adjacency. Spatial relationships between lesions 
and anatomical landmarks in medical images are critically important in disease 
diagnosis. 
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 (a) 0.48 (b) 1.00 (c) 1.00 (d) 0.15 

                     
 (e) 0.00 (f) 0.21 (g) 0.83 (h) 0.55 

Fig. 11.   Inner-adjacency. Each value is the degree of truth of the proposition “A is inner-
adjacent to B,”  where A denotes the black object and B the intersected gray one. 

 

             
 (a) 1.00 (b) 0.82 (c) 0.48  

Fig. 12.   Lesion retrieval based on inner-adjacency. The three images were generated from 
HRCT (High Resolution Computed Tomography) lung images. Consider (a). The two lungs 
are clearly visible. Fissures divide them into chambers. A lesion has been identified by the 
physician (note that the region enclosed by the line outside the lung is not part of the le-
sion). In (a)(b)(c), we are interested in the position of the lesion relative to the chamber it 
belongs to. The inner-adjacency decreases from left to right.  

5 Generating Linguistic Spatial Descriptions 

High-level computer vision applications hold a great potential for fuzzy set theory 
because of its links to natural language. Linguistic scene description, a language-
based interpretation of regions and their relationships, is one such application that 
is starting to bear the fruits of fuzzy set theoretic involvement. In this section, we 
show how the fuzzy relations presented in Section 4 can be utilized to produce 
logical linguistic spatial descriptions along with assessments as to the validity of 
the descriptions. This is the “high-level”  use of the histogram of forces. 
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5.1 Principle 

In [20], a linguistic description of the relative position between any 2D objects A 
and B is generated from F0

AB (the histogram of constant forces associated with 
(A,B)) and F2   

AB (gravitational forces). As already mentioned in Section 2.1, these 
two histograms have very different and very interesting characteristics. The for-
mer, F0

AB, provides a global view of the situation. It considers the closest parts and 
the farthest parts of the objects equally, whereas F2   

AB focuses on the closest parts. 

The linguistic description output by the system in [20] relies on the sole primi-
tive directional relationships: “to the right of,”  “above,” “ to the left of” and “below”  
(imagine that the objects are drawn on a vertical surface). First, the histograms’  
opinions regarding these relationships are computed (see Section 4.1). For instance, 
the following triangular fuzzy numbers are extracted from F2   

AB: (a2(RIGHT), 
a2(RIGHT), 2a (RIGHT)), (a2(ABOVE), a2(ABOVE), 2a (ABOVE)), (a2(LEFT), a2(LEFT), 

2a (LEFT)) and (a2(BELOW), a2(BELOW), 2a (BELOW)). For each one of the four 
primitive directions (say, RIGHT), F0

AB may consider that F2   
AB 

’ s opinion is defensible 
(a0(RIGHT) ≤  a2(RIGHT) ≤ 0a (RIGHT)), or is not defensible (a2(RIGHT) <  a0(RIGHT) 
or a2(RIGHT) > 0a (RIGHT)), and vice versa. The histograms’  opinions are com-
bined,  as illustrated in Fig. 13. Six features result from this combination: two 
primitive directions (a primary direction and a secondary direction), and four 
numeric values (a degree of truth and a measure of agreement are associated with 
each direction). They feed a fuzzy rule base that produces the expected linguistic 
description. The system handles a set of 16 adverbs (like “mostly,”  “perfectly,”  
etc.) which are stored in a dictionary, with other terms, and can be tailored to 
individual users. A description is generally composed of three parts. The first part 
involves the primary direction (e.g., “A is mostly to the right of B ” ). The second 
part supplements the description and involves the secondary direction (e.g., “but 
somewhat above” ). The third part indicates to what extent the four primitive di- 

 

 

Fig. 13.   Generation of linguistic descriptions. 
Synoptic diagram of the system presented in [20]. 
(a) The histograms of constant and gravitational forces are 
computed. (b) Each histogram gives its opinion about the relative position between the objects. 
(c) The two opinions are combined. (d) A fuzzy rule base outputs the description.  

A 

B 

F2
AB

 

F0
AB

 

“A is perfectly 
to the right of B,

but strongly shifted upward.
The description is satisfactory.”

(a) 

(a) 

(b) 

(b) 

(c) 

(d) 
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rectional relationships are suited to describing the relative position of the objects 
(e.g., “ the description is satisfactory” ). In other words, it indicates to what extent it 
is necessary to turn or not to other spatial relations. For instance, if the self-
assessment is “not satisfactory,”  then the system proposed in [33] turns to “sur-
rounds,”  using the force histogram-based method presented in Section 4.2.1. All 
details can be found in [20] and [33]. 

5.2 Application to Image Scene Description 

The system for linguistic scene description developed in [20] was tested on nu-
merous synthetic and real data examples. In particular, we used it to describe the 
relative position between regions from LADAR (Laser Radar) range images of the 
power-plant at China Lake, CA. These images were provided by the Naval Air 
Warfare Center. They were processed by applying first a median filter, and then a 
pseudo-intensity filter. Finally, the filtered images were segmented and labeled 
manually. Here, contrary to what is said in Section 3.2, range information was not 
utilized to correct the inaccuracies in the segmentation. Fig. 14 shows some pairs 
of objects (or groups of objects) that were examined in our experiments.  

 

        

  (a) (b) 

        

  (c) (d) 

        

  (e) (f) 

Fig. 14.   (a) “The tower (in dark gray) is perfectly to the left of the stackbuildings (in 
black). The description is satisfactory.”  (b) “The tower is to the left of the stackbuildings, 
but a little above. The description is satisfactory.”  (c) “The group of storehouses is loosely 
above-left of the stackbuildings. The description is satisfactory.”  (d) “The storehouse is 
perfectly above the stackbuildings, but slightly shifted to the left. The description is satis-
factory.”  (e) “???????” (f) “The pipe is loosely to the left of the stackbuildings, but slightly 
shifted downward. The description is rather satisfactory.”  
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The richness of the system’s language is generally very well employed. Con-
sider Fig. 14(c): the system notes that the relationship is not a perfect above-left, 
and uses the adverb “ loosely”  to indicate a bias in one direction. Now, consider 
Fig. 14(d): the system points out that the storehouse is slightly shifted to the left. 
In some cases, no pertinent description relying on the sole primitive directional 
relationships can be given, and the message “???????”  is generated. For instance, 
the relative position between the pipe and the stackbuildings of Fig. 14(e) cannot 
be described. The output is appropriate, since surroundedness is not considered in 
[20]. Although the system globally performs very well and produces good intui-
tive results, some descriptions are not totally satisfactory. Dealing with a rich 
language is tricky, i.e., it is always easier to be right when vague and imprecise. 
Consider Fig. 14(f). A piece of the pipe extends between the uppermost and middle 
stackbuildings. At the end of the extension, the pipe has a strong “downward”  rela-
tionship with the uppermost building (and a weak “upward”  relationship with the 
middle one). As a result, the argument is assessed to be slightly shifted downward 
relative to the referent. Note, however, that a good amount of ambiguity is de-
tected, and the system itself considers the description rather satisfactory.  

5.3 Application to Human-Robot Communication 

In [33], we show how linguistic expressions can be generated to describe the spa-
tial relations between a mobile robot and its environment, using readings from a 
ring of sonar sensors (see also [32] and [34]). Our work is motivated by the study 
of human-robot communication for non-expert users. The eventual goal is to util-
ize these linguistic expressions for navigation of the mobile robot in an unknown 
environment, where the expressions represent the qualitative state of the robot 
with respect to its environment, in terms that are easily understood by humans. 
The differences between the systems described in [20] and [33] are few, but they 
are not inconsiderable. In [20], the force histograms are computed from raster 
data, and the spatial reference frame is implicitly determined by the reader’s loca-
tion (world view). In [33], the histograms are computed from vector data, and the 
reference frame is determined by the intrinsic orientation of the robot (egocentric 
view). The two works therefore complement one another. They illustrate the fact 
that the histogram of forces is able to handle vector data as well as of raster data, 
and makes it easy to switch between a world view and an egocentric view. The 
system in [33] also considers surroundedness, using the fuzzy relation presented in 
Section 4.2.1. Since the reference object is always the robot (a Nomad 200 with 16 
sonar sensors evenly distributed along its circumference), the limitations men-
tioned in that section are not an issue (the robot is convex and is not supposed to 
jam itself in the walls). Moreover, the system expresses proximity information 
(based on the sonar readings). Two levels of abstraction are provided, and detailed 
individual descriptions can be combined into more synthetic descriptions. On the 
other hand, the language used to describe directional positions is coarser than the 
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one in [20] (and the dictionaries are slightly different). The reason is that only a 
rough representation of the environment objects can be built anyway. Consider 
Fig. 15(a). The robot is heading rightwards in an angled hallway. There are ten 
sonar returns (i.e., ten sensors return non-maximum range values). Each one gives 
a trapezoid, located in the corresponding sonar cone, and built using a constant 
arbitrary depth. There is a question on whether adjacent sonar readings are from a 
single object or multiple objects. If the robot cannot fit between the object parts 
that are responsible for two adjacent sonar readings, then we consider these parts 
to be from the same obstacle (and the trapezoids are linked). Even if there are 
actually two objects (this happens in Fig. 15(d), right behind the robot), they may 
be considered as one for robot navigation purposes. If the robot can fit, we con-
sider separate obstacles (the trapezoids are not linked). The two readings may 
come from the same object, but there is no way to know that until the robot gets 
closer and we have a better resolution of the object (since more sensors would  

 

         
 (a) (b) 

         
 (c) (d) 

Fig. 15.   A robot describes its environment. (a) “There is an obstacle on my right; it ex-
tends forward; it is very close. There is one on my left; it extends forward; it is very close. 
One is behind me; it is close. Another one is mostly behind me, but somewhat to the right; 
it is close.”  (b) “There is an obstacle that surrounds me on the front. There is another one 
behind me; it is far.”  (c) “There is an obstacle that surrounds me, but there is an opening on 
the rear-right.”  (d) “ I am surrounded.”   
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detect its presence). In Fig. 15(a) for instance, two obstacles are detected behind 
the robot, although the readings come from the same wall. Note that the caption 
only shows the detailed individual descriptions. In the higher level of abstraction, 
the robot describes its environment as follows: “There is an obstacle on my right, 
one on my left, two behind me.”  The three other figures, Fig. 15(b) to Fig. 15(d), 
illustrate how the system handles surroundedness, using the fuzzy relation pre-
sented in Section 4.2.1. 

The experiments were carried out with the Nomad simulator. The program 
runs at real-time speed. Processing of all obstacles (i.e., construction of the po-
lygonal representations, computation of the force histograms and generation of the 
linguistic descriptions) is done faster than the robot can move, so there are no 
delayed results. 

6 Conclusion 

We have shown in this chapter that the notion of the histogram of forces can be of 
great use in understanding the spatial organization of image objects. This is a 
crucial problem, essential to countless domains of computer vision. The histogram 
of forces provides a fuzzy qualitative representation of the relative position be-
tween 2D objects. Because it offers solid theoretical guarantees and has nice geo-
metric properties, it can be used in scene matching, and enables the pose parame-
ters to be retrieved. It can also be exploited in pattern recognition. For instance, 
the F-signature—a particular force histogram that represents the shape of an ob-
ject—has been used to classify cranium sinuses. Spatial databases can clearly 
benefit from a tool like the histogram of forces. We are currently working on new 
spatial indexing mechanisms for medical image databases. They rely on the com-
putation of force histograms for modeling the relationships between lesions and 
anatomical landmarks. Geographic information systems constitute a promising 
ground also, especially as force histograms are able to handle vector data in a very 
efficient manner. Moreover, the histogram of forces lends itself, with great flexi-
bility, to the definition of numerous fuzzy spatial relations. In particular, new 
families of fuzzy directional relations have been introduced. They preserve impor-
tant relative position properties, and can provide inputs to systems for linguistic 
scene description. One such system has been developed and dedicated to human-
robot communication. Using readings from a ring of sonar sensors, a mobile robot 
describes its spatial relationship with the environment. The program runs at real-
time speed. In the future, we plan to address two important challenges. The first 
one is very interesting from a purely theoretical point of view (probably less from 
a practical point of view, although it might be useful in scene matching for in-
stance). It consists in solving the inverse problem, i.e., finding all the pairs of 
objects associated with a given force histogram. The second challenge consists in 
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extending the notion of the histogram of forces so that three-dimensional entities 
can be handled. Analysis of 3D magnetic resonance images and design of virtual 
environments are two examples of potential applications. We also plan to define 
new fuzzy spatial relations, especially new models of “surrounds,”  and to develop 
mechanisms to adapt fuzzy relations and spatial descriptions to individual users. 
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