
Theoretical Informatics and Applications Will be set by the publisher
Informatique Théorique et Applications

LAS VEGAS ALGORITHMS TO GENERATE UNIVERSAL CYCLES
AND DE BRUIJN SEQUENCES UNIFORMLY AT RANDOM

JOE SAWADA AND DANIEL GABRIĆ

Abstract. We present practical algorithms for generating universal cycles uni-
formly at random. In particular, we consider universal cycles for shorthand
permutations, subsets and multiset permutations, weak orders, and orientable
sequences. Additionally, we consider de Bruijn sequences, weight-range de
Bruin sequences, and de Bruijn sequences, with forbidden 0z substring. Each
algorithm, seeded with a random element from the given set, applies a random
walk of an underlying Eulerian de Bruijn graph to obtain a random arborescence
(spanning in-tree). Given the random arborescence and the de Bruijn graph, a
corresponding random universal cycle can be generated in constant time per
symbol. We present experimental results on the average cover time needed to
compute a random arborescence for each object using a Las Vegas algorithm.

AMS Subject Classification. — Give AMS classification codes —.

1. INTRODUCTION

Let Σk(n) denote the set of all strings of length n over the alphabet {0, 1, . . . , k−1}.
Let S denote a subset of Σk(n). The de Bruijn graph of S, denoted G(S), is the directed
graph where each vertex corresponds to a length-(n−1) prefix or a length-(n−1) suffix
of a string in S; for each string u1u2 · · ·un in S there is a directed edge labeled un from
vertex u = u1u2 · · ·un−1 to vertex v = u2u2 · · ·un. For example, see Figure 1.

A universal cycle for S, is a cyclic string of length |S| that contains each string
in S as a substring exactly once (including the wraparound); they exist if and only if
G(S) is Eulerian, that is, G(S) contains an Euler cycle. For example, consider S =
{001, 010, 101, 011, 110, 100} and the de Bruijn graph G(S) illustrated in Figure 1(b):
the Euler cycle 00, 01, 11, 10, 01, 10, 00 corresponds to the universal cycle 110100 ob-
tained by outputting the labels on the edges in the Euler cycle. In this paper we are

Keywords and phrases: Las Vegas algorithm, universal cycle, de Bruijn sequence, weak order, subsets,
permutations, orientable sequence

© EDP Sciences 1999

2 TITLE WILL BE SET BY THE PUBLISHER

(a) G({001, 000, 011, 111, 110, 101}) (b) G({001, 010, 101, 011, 110, 100})

00 01

1110

1

1

1

0

0

0

00 01

1110

1

1

1

1

0

0

FIGURE 1. Two de Bruijn graphs. The graph in (b) is Eulerian.

concerned with interesting subsets S whose underlying de Bruijn graph is Eulerian, i.e.,
S admits a universal cycle. In particular, we consider:

(1) (shorthand) permutations, subsets, and permutations of a multiset,
(2) weak orders,
(3) k-ary strings of length n (which yield de Bruijn sequences),
(4) k-ary strings of length n that do not contain 0z (cyclically),
(5) k-ary strings of length n with weight in the range [a, b], and
(6) k-ary strings of length n that produce asymptotically optimal orientable sequences,

where the weight of a string is the sum of its symbols, and [a, b] denotes the set of integers
{a, a+1, . . . , b}.

The primary objective of this paper is to describe practical algorithms to generate uni-
versal cycles for these objects uniformly at random, while using exponential space to
store an underlying de Bruijn graph. We recall a generic Las Vegas algorithm from [16]
that generates a random Euler cycle in any directed Eulerian graph by first generating a
random arborescence (spanning in-tree). For each set S, we generate a random string in
S in order to seed the algorithm by selecting a root for the arborescence. The generic
algorithm is presented in Section 3. Then, in Section 4 we consider each of the aforemen-
tioned sets S and provide (i) a discussion of how to generate a random element from S and
(ii) experimental evidence for the average cover time to compute a random arborescence
in G(S).

Motivation. This paper is motivated by a recent result from Lipták and Parmigiani [18]
that generates random de Bruijn sequences, although not uniformly at random (see Sec-
tion 4.3). In that paper, they compared their approach with an implementation of Fleury’s
algorithm [11] to generate Euler cycles, modified by adding randomization. That im-
plementation could not generate all possible de Bruijn sequences, however, it served “as
the closest available method for comparison” [18]. Indeed, despite the vast literature on
universal cycle constructions, and in particular, de Bruijn sequences, we also found no
detailed discussion or resource regarding the generation of these sequences uniformly at
random, other than a passing comment by Propp and Wilson in [19, p.172]. However,
it is well known that a random arborescence in a directed Eulerian graph can be used to
generate a random Euler cycle [16].

TITLE WILL BE SET BY THE PUBLISHER 3

2. PRELIMINARIES

Let G = (V,E) denote a directed graph consisting of a non-empty set of vertices
V and an edge set E consisting of ordered pairs of elements in V . A walk in G is a
sequence of vertices v1, v2, . . . , vj such that (vi, vi+1) ∈ E for all i in {1, 2, . . . , j−1}.
A reverse walk is a sequence of vertices v1, v2, . . . , vj such that (vi+1, vi) ∈ E for all i
in {1, 2, . . . , j−1}. Let G be represented by a standard adjacency list representation. We
define a traversal to be a walk starting from some vertex v that follows the rule: at each
vertex u , the next vertex corresponds to the first unused edge on u’s adjacency list; the
traversal terminates when it reaches a vertex whose adjacency list has been exhausted.

Example 1 Consider the directed graph G = (V,E) where V = {u, v, w} and E =
{(u, u), (u, v), (v, w), (w, u)}. Then u, v, w is a walk in G, and w, v, u is a reverse walk in
G. Give the adjacency list representation u→ u, v, v → w, and w → u, the traversal starting
at u is the walk u, u, v, w, u using all four edges. It corresponds to an Euler cycle in G.

A traversal that starts and ends with the same vertex, say r, and visits all the edges in
E generates an Euler cycle, i.e., the traversal does not “burn bridges” [11]. This means
that the |V | − 1 edges corresponding to the last edges on each adjacency list, except for
r’s, form an arborescence (spanning in-tree) rooted at r. Using this well-known fact, all
Euler cycles can be generated as follows:

Generate all Euler Cycles for a directed graph G

(1) Generate all arborescences T for each possible root r ∈ V .
(2) For each T generated in step (1), take each edge (u, v) in T , and set the vertex

v to be the last on u’s adjacency list; then generate all possible orderings for the
remaining vertices on each adjacency list.

(3) For each set of adjacency lists generated in step (2), generate a traversal of G starting
at the corresponding root r.

It is important to note that the above algorithm will generate all Euler cycles in G
exactly once, where the starting edge in each cycle is important. By fixing a single root r
at step (1), we generate all Euler cycles up to equivalence when the edges are considered
to be a circular list of edges; the starting edge in the cycle is immaterial. However, note
that the same equivalent cycle could be generated twice. For instance, consider the graph
in Example 1 with root vertex u. The algorithm produces two sets of edge listings at step
(2): one where u → u, v, and one where u → v, u. The two listings produce equivalent
Euler cycles, namely u, u, v, w, u and u, v, w, u, u.

3. RANDOM GENERATION

In this section the algorithm outlined in Section 2 to generate all possible Euler cycles
in a directed graph is applied to generate a single universal cycle uniformly at random
for a set S with an underlying Eulerian de Bruijn graph G(S). The Las Vegas algorithm

4 TITLE WILL BE SET BY THE PUBLISHER

describe by Algorithm R below summarizes the approach from Kandel et al. [16], which
extends the work from [4]. We note one difference in our presentation. The algorithm
in [16], takes as input a (cyclic) sequence S that may contain duplicate length n substrings.
From this sequence, it constructs a de Bruijn graph that allows for multiple edges between
vertices. The algorithm is then initialized by selecting a random rotation of S, which
effectively generates a random edge in the underlying graph. For our purposes, we do not
have an initial sequence S. Instead, for each set S considered in Section 4, we present
an efficient algorithm to compute a random element in S, which corresponds to a random
edge in G(S).

Algorithm R
Generate a universal cycle for set S uniformly at random given the underlying (Eulerian) de
Bruijn graph G(S):

(1) Generate a random edge (r, v) in G(S), i.e., a string in S, to obtain a random root
vertex r

(2) Generate a random arborescence T directed to root r
(3) Make each edge of T (the bridges) the last edge on the adjacency list of the cor-

responding outgoing vertex (the root does not have such a bridge), then randomly
assign the order of the remaining outgoing edges

(4) Starting from r, perform a traversal of G(S), outputting the label on each edge as it
is visited.

Selecting a random vertex instead of an edge at step (1) of Algorithm R will not lead
to Euler cycle generated uniformly at random if G(S) is not regular, as illustrated in the
following example.

Example 2 Consider S = {001, 010, 101, 011, 110, 100} and its corresponding de
Bruijn graph G(S) illustrated in Figure 1(b). Every vertex in G(S) roots two unique span-
ning arborescences. For each tree rooted at r = 000 there is one corresponding edge labeling;
however, each tree rooted at r = 010 has two edge labelings since the there are two possible
adjacency lists for the root. Thus, when r = 000, there are two possible universal cycles,
while if r = 010 there are 4 possible universal cycles that could get generated. Thus, if a ran-
dom vertex instead of a random edge is chosen at step (1) in Algorithm R, a universal cycle
generated from r = 000 will occur twice as frequently as a universal cycle rooted at r = 010.

The following example highlights the steps from Algorithm R.

Example 3 Consider the set S consisting of all binary strings of length n = 6 with weight
in the range [1,2]. The de Bruijn graph G(S) is shown below with the randomly selected edge
000100 from step (1) of Algorithm R.

TITLE WILL BE SET BY THE PUBLISHER 5

00000

00001

00100 01000

10001

00101 01010

01001 10100

10010

10000

00011

00110

01100 11000

00010

0

0

0

0

0

0

0

0

0

0
0

0

0

0

1

1

1

1

1
1

0

The graph illustrates a random arborescence T rooted at r = 00010. Based on T , the ordering
of the adjacency lists for the vertices following step (3) in Algorithm R is as follows, where
the adjacency list of the root 00010 is randomly selected as 00100,00101:

00000 → 00001
00001 → 00011, 00010
00010 → 00100, 00101
00100 → 01001, 01000
01000 → 10001, 10000
10000 → 00001, 00000
00011 → 00110
00101 → 01010

00110 → 01100
01001 → 10010
01010 → 10100
01100 → 11000
10001 → 00010
10010 → 00100
10100 → 01000
11000 → 10000.

Step (4) from Algorithm R produces the following random universal cycle for S:

010001010000110000010.

For Eulerian graphs, an arborescence can be generated uniformly at random by per-
forming a random backwards walk until every vertex is visited. The first time a vertex is
visited, the edge is recorded as a tree edge in the random arborescence [16]. The running
time of this step depends on the cover time of the random walk, which is the number of
steps it takes to visit every vertex. The algorithm requires Θ(|S|) space to store the graph.
The final step (4) of Algorithm R generates a random universal cycle for S in constant
time per symbol.

Theorem 3 in [16] shows that the expected cover time of a directed Eulerian graph is
at most |V |2|E|. In the next section, however, our experiments seem to indicate that some
de Bruijn graphs appear to have a significantly faster expected cover time. We do not have
a proof of this observation, nor have we found a proof in the literature.

There are algorithms to generate random arborescences that are not dependent on the
expected cover time. Wilson [26] shows how to produce a random arborescence in time
proportional to the maximum hitting time. The maximum hitting time is the maximum
over all pairs of vertices u and v of the expected number of steps for a random walk to
travel from u to v. Propp and Wilson [19] show how to produce a random arborescence in
time proportional to the smaller of the maximum hitting time and the mean hitting time.

6 TITLE WILL BE SET BY THE PUBLISHER

The mean hitting time is the average over all pairs of vertices u and v of the expected
number of steps for a random walk to travel from u to v.

4. APPLICATIONS AND EXPERIMENTAL RESULTS

In this section we apply Algorithm R to generate universal cycles uniformly at random
for shorthand permutations, subsets and multiset permutations, k-ary strings (de Bruijn
sequences), generalizations of de Bruijn sequences including those with no 0z substring
and those with bounded weight, and orientable sequences.

For each object, we discuss how to generate a random edge in the underlying de Bruijn
graph to seed the algorithm, and present experimental evidence for the cover time required
to compute a random arborescence. Implementations of our algorithms are available at
http://debruijnsequence.org/db/random. In our implementations to com-
pute the random arborescences, we did not pre-compute the shift-graphs, but instead used
a mapping of each vertex to an integer (using a ranking algorithm or similar) to store
whether a vertex had been visited. We applied a similar strategy to generate the random
universal cycle in step (4) of Algorithm R.

The results presented in this section with respect to the cover times of certain de Bruijn
graphs are experimental. We leave it as in interesting open problem to determine a tight
upper bound on the expected cover time for the de Bruijn graphs being considered.

4.1. PERMUTATIONS, SUBSETS, AND MULTISET PERMUTATIONS

Universal cycles do not exist, in general, for permutations and subsets. For permuta-
tions, however, observe that the final symbol is redundant. If p1p2 · · · pn is a permutation,
we say that p1p2 · · · pn−1 is a shorthand permutation of order n, where the last symbol
is implied. Let SP(n) be the set of all shorthand permutations of order n. Similarly, if
b1b2 · · · bn is a binary string with k ones (representing a k-subset of an n-set), we say that
b1b2 · · · bn−1 is a shorthand k-subset of order n, where the last bit is implied. Let S(n, k)
be the set of all shorthand k-subsets of order n. Multiset permutations (strings with fixed
content) generalize both permutations and subsets. If m1m2 · · ·mn is a permutation of
the multiset {s1, s2, . . . , sn}, then we say m1m2 · · ·mn−1 is a shorthand multiset per-
mutation. When each si = i, a multiset permutation is simply a permutation, and when
the multiset contains k ones and (n−k) zeros, it represents a binary string with weight k
representing a k-subset of an n-set.

For shorthand permutations, the underlying de Bruijn graph has n! edges. Each vertex
has in-degree = out-degree = 2 and thus there are n!/2 vertices. For shorthand k-subsets,
where k ≥ 2, the underlying de Bruijn graph has

(
n
k

)
edges and each vertex is a binary

string of length n−2 with weight k − 2, k − 1, or k; there are
(
n−2
k−2

)
+

(
n−2
k−1

)
+

(
n−2
k

)
vertices. Note that each vertex has the same in-degree as out-degree; however, this value
may be either 1 or 2. For example, if n = 5 and k = 2, the vertex 001 has two incoming
edges from 000 and 100, and outgoing edges to 010 and 011, while the vertex 000 has
one incoming edge from 100 and one outgoing edge to 001.

http://debruijnsequence.org/db/random

TITLE WILL BE SET BY THE PUBLISHER 7

It is well known that a random permutation can be generated by applying the Fisher-
Yates shuffle [10]; an O(n) time implementation is provided by Knuth [17, Algorithm P]
based on a presentation by Durstenfeld [9]. As noted by Arndt [5], it is straightforward
to apply the shuffle to generate an unbiased random multiset permutation m1m2 · · ·mn

in O(n) time as illustrated in Algorithm 1. Thus, m1m2 · · ·mn−1 is a random shorthand
multiset permutation that can be used to seed Algorithm R for shorthand permutations,
shorthand subsets, and more generally, shorthand multiset permutations.

Algorithm 1 Random generation of a permutation m1m2 · · ·mn of the multiset
{s1, s2, . . . , sn} applying the Fisher-Yates shuffle
m1m2 · · ·mn ← s1s2 · · · sn
for i from n down to 2 do

j ← random integer in [1, i]
SWAP(mi,mj)

Table 1 shows the minimum, maximum, and average ratios of the cover time to total
edges in G(SP(n)) and G(S(n, n/2)) by running Algorithm R for 10,000 iterations.

Ratio: cover time / n!
n Min Max Avg
3 0.3 0.3 0.3
4 0.5 3.7 1.1
5 0.8 5.3 2.0
6 1.7 6.8 3.0
7 2.7 6.5 3.9
8 3.9 8.0 4.9
9 5.0 7.7 5.9

10 6.4 8.1 7.0

Ratio: cover time /
(n
k

)
n Min Max Avg

10 1.8 18.9 5.0
12 3.2 18.0 6.3
14 4.6 16.4 7.6
16 5.9 18.8 8.8
18 7.2 20.3 10.1
20 8.5 21.8 11.4
22 9.7 21.8 12.7
24 11.2 22.6 14.1
26 12.4 24.0 15.4

TABLE 1. The minimum, maximum, and average ratios of the cover
time to total edges in the de Bruijn graphs G(SP(n)) (left) and
G(S(n, n/2)) (right) by running Algorithm R for 10,000 iterations.

Universal cycles for shorthand permutations can be constructed in O(1) amortized
time per symbol using O(n) space [15, 21]. An O(n)-time successor rule is presented
in [14], and an O(1) amortized time per symbol algorithm applying concatenation trees
is presented in [22] that uses O(n2) space. Universal cycles for shorthand subsets can
be constructed in O(1) amortized time per symbol using O(n) space [20]. Universal
cycles for shorthand multiset permutations (strings with fixed content) can be constructed
in O(1) amortized time per symbol using O(n) space [23].

4.2. WEAK ORDERS

A weak order is the number of ways n competitors can finish in a race if ties are
allowed. Let W(n) denote the set of weak orders with n competitors, and let Wn denote

8 TITLE WILL BE SET BY THE PUBLISHER

|W(n)|. For example,

W(3) = {111, 113, 131, 311, 122, 212, 221, 123, 132, 213, 231, 312, 321},

and W3 = 13. The number of weak orders where there is a k-way tie for first is given by(
n
k

)
Wn−k for k < n; there is 1 weak order when k = n. Thus, Wn =

∑n
k=1

(
n
k

)
Wn−k.

To generate a random weak order, we will apply this recurrence to group the strings
of W(n) based on their content. Let ci denote the number of occurrences of the symbol
i in ω = w1w2 · · ·wn. Since every weak order contains 1 as its smallest symbol and
the largest symbol possible is n, we say that (c1, c2, . . . , cn) is the content (also known
as the Parikh vector) of ω. For example, if n = 3 then each weak order has content
(1, 1, 1), (1, 2, 0), (2, 0, 1), or (3, 0, 0). If we partition W(n) into subsets based on their
content, we can order the subsets based on the lexicographic ordering of the correspond-
ing content. The weak orders with exactly one 1 comes first, followed by those with
exactly two 1s and so on. Thus, to generate a random weak ordering in W(n), we can
(i) select a random integer r in [1,Wn], (ii) apply the recurrence to determine the content
(c1, c2, . . . , cn) based on the described ordering, and (iii) apply a Fisher-Yates shuffle to
obtain a random multiset permutation (weak order) with content (c1, c2, . . . , cn) (see Sec-
tion 4.1). Details are provided in Algorithm 2. Note that the integer r does not uniquely
determine the weak order being generated, however, it is possible to obtain this property
by applying an unranking algorithm for multiset permutations instead of applying the
shuffle.

Algorithm 2 Random generation of a weak order ω from W(n).

(c1, c2, . . . , cn)← (0, 0, . . . 0)
t← n
v ← 1
r ← random integer in [1,Wn]
while t ≥ 1 do

▷ Determine cv applying the recurrence for Wt

for j from 1 to t do
pj ←

(
t
j

)
Wt−j

if r ≤ pj then break
r ← r − pj

cv ← j
v ← v + j
t← t− j

▷ Apply Fisher-Yates shuffle to generate a random multiset permutation
ω ← a random multiset permutation with content (c1, c2, . . . , cn)

Lemma 4.1. Algorithm 2 can generate a weak order w1w2 · · ·wn uniformly at random
using O(n2) simple operations on numbers up to Wn.

Proof. Consider Algorithm 2. The values Wj , for 1 ≤ j ≤ n can be precomputed
via dynamic programming using O(n2) simple operations on numbers up to Wn. We

TITLE WILL BE SET BY THE PUBLISHER 9

Ratio: cover time / Wn

n Min Max Avg
3 0.5 9.3 1.8
4 1.1 12.7 3.7
5 2.5 12.9 5.4
6 4.1 16.7 7.2
7 6.4 21.3 9.3
8 8.7 18.5 11.5
9 12.0 15.4 13.8

TABLE 2. The minimum, maximum, and average ratios of the cover
time to total edges in G(W(n)) by running Algorithm R for 10,000
iterations.

can compute the required binomial coefficients of the form
(
n
k

)
in the same time using

Pascal’s identity. The while loop iterates at most n times and each iteration requires at
most O(n) simple operations on numbers up to Wn. □

Table 2 shows the minimum, maximum, and average ratios of the cover time to total
edges in G(W(n)) by running Algorithm R for 10,000 iterations.

Universal cycles for weak orders can be constructed via a successor rule that generates
the sequence in O(n) time per symbol using O(n) space [25]. By applying concatenation
trees, they can be generated in O(1) amortized time using O(n2) space [22]. See the enu-
meration sequence A000670 for Wn in the Online Encyclopedia of Integer Sequences [1].

4.3. DE BRUIJN SEQUENCES

For de Bruijn sequences, the underlying de Bruijn graph G(Σk(n)) has kn−1 vertices
and kn edges. A random k-ary string (edge) can be computed in O(n) time by generating
a random symbol in [0, k−1] n times. Table 3 and Table 4 show the minimum, maximum,
and average ratios of the cover time to total edges in G(Σk(n)), for k = 2, 3, 4 by running
Algorithm R for 10,000 iterations.

If an application does not require a sequence generated uniformly at random, an al-
gorithm which applies a Burrows-Wheeler transform can be applied; it outputs each de
Bruijn sequence with positive probability [18]. The algorithm requires Θ(2n) space and
produces each symbol in O(α(2n)) amortized time per symbol for k = 2, where α(n) is
the inverse Ackerman function. It is important to note that α(n) grows extremely slowly,
with α(n) ≤ 5 for any n of practical value. The first estimate on the mean discrepancy
of de Bruijn sequences is obtained using this algorithm [18].

In Table 5, we compare the running times of the (non-uniform) C++ algorithm im-
plemented by the authors of [18] and our (uniform) algorithm implemented in C; both
implementations are available online for download at [2]. We average the running time

10 TITLE WILL BE SET BY THE PUBLISHER

Ratio: cover time / 2n

n Min Max Avg
4 0.4 8.4 1.3
5 0.5 7.1 1.7
6 0.6 8.3 2.1
7 0.9 8.7 2.4
8 1.1 8.6 2.7
9 1.4 9.0 3.1

10 1.9 9.0 3.4
11 2.2 9.9 3.8
12 2.5 10.7 4.1
13 2.9 9.0 4.5
14 3.4 10.2 4.8
15 3.8 10.1 5.1

Ratio: cover time / 2n

n Min Max Avg
16 4.1 10.4 5.5
17 4.5 9.8 5.9
18 4.9 9.1 6.2
19 5.3 9.8 6.5
20 5.8 9.8 6.9
21 6.1 9.4 7.3
22 6.6 10.4 7.8
23 7.0 9.2 8.0
24 7.7 11.6 9.1
25 7.6 10.5 8.5
26 8.1 10.7 8.9

TABLE 3. The minimum, maximum, and average ratios of the cover
time to total edges in the de Bruijn graph G(Σ2(n)) by running Algo-
rithm R for 10,000 iterations.

Ratio: cover time / 3n

n Min Max Avg
3 0.3 3.9 0.9
4 0.5 4.5 1.3
5 0.7 4.6 1.7
6 1.0 5.6 2.0
7 1.5 5.1 2.4
8 1.8 5.6 2.8
9 2.2 6.3 3.1

10 2.6 6.0 3.5
11 3.0 6.1 3.9
12 3.4 6.3 4.3
13 4.0 6.4 4.6
14 4.3 6.3 4.9
15 4.6 6.6 5.3
16 5.0 6.7 5.7

Ratio: cover time / 4n

n Min Max Avg
4 0.5 4.5 1.3
5 0.7 4.6 1.7
6 1.0 5.6 2.0
7 1.5 5.1 2.4
8 1.8 5.6 2.8
9 2.2 6.3 3.1

10 2.6 6.0 3.5
11 3.0 6.1 3.9
12 3.6 4.7 4.0
13 3.9 5.0 4.3

TABLE 4. The minimum, maximum, and average ratios of the cover
time to total edges in the de Bruijn graph G(Σk(n)) for k = 3 and
k = 4 by running Algorithm R for 10,000 iterations.

over 10 iterations, not including the time it takes to output the sequence.1 Interestingly,

1Our experiments were run on an iMac desktop with an Apple M4 processor. Our experimental times are faster
than those reported in [18], which is likely due to a faster processor.

TITLE WILL BE SET BY THE PUBLISHER 11

Average clock time in seconds
n Non-uniform [18] Uniform
22 < 1 3
23 < 1 6
24 < 1 14
25 2 31
26 6 92
27 13 211
28 28 509
29 56 1094
30 122 2287

TABLE 5. Comparing the average clock time in seconds over 10 iter-
ations between the algorithm from [18] which generates a de Bruijn
sequence non-uniformly at random, and Algorithm R which generates
a de Bruijn sequence uniformly at random.

using the standard rand() function in the latter implementation resulted in a large cycle
of generated bits, which did not allow all vertices to be visited during the “random” walk
when n ≥ 28. Thus, an alternate method for generating random bits had to be deployed. 2

If running time is a concern, the non-uniform result from [18] may be preferred for such
applications. However, if a sequence is desired to be generated uniformly at random, the
one presented in this paper should be considered. It is also important to note that the
algorithm described in this paper is a “Las Vegas” algorithm which means that no upper
bound on the running time can be given, as it is not guaranteed to terminate.

4.4. WEIGHT-RANGE DE BRUIJN SEQUENCES

Let WRk(n, [ℓ, u]) denote the subset of strings in Σk(n) with weight in the range
[ℓ, u]. Let WRk(n, [ℓ, u]) denote |WRk(n, [ℓ, u])|. It is straightforward to observe that
WRk(n, [ℓ, u]) = 0 if u < 0 or ℓ > n(k− 1); otherwise, if n = 1 then WRk(n, [ℓ, u]) =
min(u, k−1)−max(ℓ, 0) + 1, and if n > 1:

WRk(n, [ℓ, u]) =

k−1∑
j=0

WRk(n− 1, [ℓ−j, u−j]).

A weight-range de Bruijn sequence is a universal cycle for the set WRk(n, [ℓ, u]). The de
Bruijn graph G(WRk(n, [ℓ, u])) is generally not regular. A random edge s1s2 · · · sn can
be generated using values for WRk(n, [ℓ, u]) as outlined in Algorithm 3. The algorithm
essentially unranks a string in WRk(n, [ℓ, u]) as it appears in lexicographic order.

2We added a value corresponding to the number of times the current vertex had been visited to the output of
rand().

12 TITLE WILL BE SET BY THE PUBLISHER

Lemma 4.2. Algorithm 3 can generate a string s1s2 · · · sn from WRk(n, [ℓ, u]) uni-
formly at random using O(kn3) simple operations on numbers up to kn.

Proof. Consider Algorithm 3. The required values WRk(n, [ℓ, u]), for 1 ≤ j ≤ n can be
precomputed via dynamic programming using O(kn3) simple operations on numbers up
to kn. The outer for loop iterates at most n−1 times and each iteration requires O(k+n)
simple operations on numbers up to kn. □

Algorithm 3 Random generation of a string s1s2 · · · sn in WRk(n, [ℓ, u])

r ← random integer in [1,WRk(n, [ℓ, u])]
for j from 1 to n− 1 do

for i from 0 to k − 1 do ni ←WRk(n− j, [ℓ− i, u− i])

i← 0
while r > ni do r ← r − ni; i← i+ 1

sj ← i
ℓ← ℓ− i; u← u− i

if ℓ < 0 then ℓ← 0

sn ← ℓ+ r − 1

Table 6 shows the minimum, maximum, and average ratios of the cover time to total
edges in G(WR2(n, [5, 10])) by running Algorithm R for 10,000 iterations.

Ratio: cover time / WR2(n, [5, 10])

n Min Max Avg
10 2.3 19.4 5.1
11 2.5 15.9 5.5
12 3.2 13.0 6.0
13 3.9 15.6 6.5
14 4.2 15.8 7.2
15 5.2 14.7 7.9
16 6.0 16.0 8.6
17 6.7 15.2 9.3
18 7.4 17.0 10.2
19 8.1 17.5 10.8
20 9.1 17.2 11.5

TABLE 6. The minimum, maximum, and average ratios of the cover
time to total edges in the de Bruijn graph G(WR2(n, [5, 10])) by run-
ning Algorithm R for 10,000 iterations.

Weight-range de Bruijn sequences can be constructed via an O(n) time per symbol
successor rule when the minimum weight is 0, or the maximum weight is (k − 1)n

[GSWW20]. In the binary case, they can be constructed for any weight range in O(1)
amortized time [SWW13]. When k = 2 and ℓ+1 = u, weight-range de Bruijn sequences
correspond to the universal cycles for (shorthand) subsets discussed in Section 4.1.

TITLE WILL BE SET BY THE PUBLISHER 13

4.5. DE BRUIJN SEQUENCES WITH FORBIDDEN 0z

A necklace class is an equivalence class of strings under rotation; we call the lexico-
graphically smallest string in the class a necklace. The necklace class containing α is de-
noted [α]. For example, if α = 0001 then [α] = {0001, 0010, 0100, 1000}. Let Nk(n, z)
denote the set of all necklaces in Σk(n) with no 0z substring for z > 1. All such neck-
laces end with 1 when z ≤ n. Let Zk(n, z) =

⋃
α∈Nk(n,z)

[α]. It is known that Zk(n, z)

admits a maximal length universal cycle that does not contain the substring 0z [7]. We
call a maximum length universal cycle that does not contain 0z as a substring, a de Bruijn
sequence with forbidden 0z .

The de Bruijn graph G(Zk(n, z)) is not necessarily regular. A random edge can be
generated by applying the following recurrences. Let Fk(n, z) denote the number of
k-ary strings of length n with no 0z substring. It satisfies the following recurrence for
z < n:

Fk(n, z) = (k−1)

z∑
j=1

Fk(n− j, z),

where Fk(n, z) = kn for z > n and Fk(n, n) = kn − 1.
Let Zk(n, z) denote the number of k-ary strings of length n with no 0z substring,

including the wraparound. It satisfies the following recurrence for z < n obtained by
partitioning the strings into those beginning with a non-zero, and those with j zeros in the
wraparound, in which case there are k−1 possibilities for each of the first non-zero and
last non-zero:

Zk(n, z) = (k−1)Fk(n− 1, z) + (k−1)2
z−1∑
j=1

j · Fk(n− j − 2, z),

where Zk(n, z) = kn for z > n and Zk(n, n) = kn − 1.
Given these recurrences, we can compute a random string in Fk(n, z) following a

similar unranking strategy using lexicographic order as done with WRk(n, [ℓ, u]) in the
previous subsection. We omit the details in this case. Table 7 shows the minimum, maxi-
mum, and average ratios of the cover time to total edges in G(F2(n, 2)) and G(F2(n, 3))
by running Algorithm R for 10,000 iterations.

The lexicographically smallest de Bruijn sequences with forbidden 0z can be generated
via a simple greedy algorithm [24]; it can also be generated efficiently by concatenating
the aperiodic prefixes of necklaces with no 0z substring as they appear in lexicographic
order [12, 24]. An exponential number of such sequences can be efficiently generated by
applying cycle-joining as described in [7].

4.6. ORIENTABLE SEQUENCES

Recall the definitions of a necklace class and necklace from the previous subsection.
A bracelet class is an equivalence class of strings under rotation and reversal; we call the

14 TITLE WILL BE SET BY THE PUBLISHER

Ratio: cover time / F2(n, 2)

n Min Max Avg
8 1.0 20.9 3.6
9 1.2 15.9 3.9

10 1.7 21.2 4.6
11 2.0 13.5 4.8
12 2.4 17.6 5.7
13 2.9 15.7 5.7
14 3.3 19.0 6.4
15 3.8 18.1 6.9
16 4.3 21.9 7.4
17 4.3 15.9 7.8
18 5.2 21.9 8.4
19 5.9 18.7 8.8
20 6.4 17.2 9.3
21 6.9 21.2 9.7
22 7.6 20.1 10.2
23 8.0 18.7 10.7
24 8.3 24.8 11.2

Ratio: cover time / F2(n, 3)

n Min Max Avg
8 1.4 21.5 4.3
9 1.8 13.3 4.6

10 2.5 18.7 5.3
11 3.1 14.8 5.8
12 3.8 17.5 6.5
13 4.1 16.5 7.0
14 4.5 17.0 7.7
15 5.5 16.7 8.2
16 6.1 20.0 8.9
17 6.7 19.8 9.5
18 7.4 17.7 10.1
19 8.2 16.3 10.6
20 8.8 16.9 11.3
21 9.6 15.8 11.8
22 10.2 17.7 12.5
23 10.8 18.0 13.1
24 11.0 22.8 13.9

TABLE 7. The minimum, maximum, and average ratios of the cover
time to total edges in the de Bruijn graphs G(F2(n, 2)) (left) and
G(F2(n, 3)) (right) by running Algorithm R for 10,000 iterations.

lexicographically smallest string in the class a bracelet. A bracelet is said to be asym-
metric if it is not in the same necklace class as its reversal. For example, 001011 is an
asymmetric bracelet, but 001001 is not. Let ABk(n) denote the set of all k-ary asym-
metric bracelets of length n, and let OSk(n) =

⋃
α∈ABk(n)

[α]. Let OSk(n) denote
|OSk(n)|.

For example, AB2(7) = {0001011, 0010111}, and

OS2(7) = {0001011, 0010110, 0101100, 1011000, 0110001, 1100010, 1000101} ∪
{0010111, 0101110, 1011100, 0111001, 1110010, 1100101, 1001011},

where OS2(7) = 14.
An orientable sequence is cyclic sequence such that each length-n substring occurs

at most once in either direction. For example, a maximum-length orientable sequence
for n = 5 and k = 2 is 001101. A universal cycle for OSk(n) is known to be an
orientable sequence with asymptotically optimal length [3, 6]. A formula for OSk(n), is
given in [8, 13]. Generating a random string from OSk(n) does not appear to be a trivial
matter. However, by randomly generating k-ary strings with rejection, on average only
two random strings need to be generated to obtain a string in OSk(n) as n gets large.
Thus, the expected time to generate a random edge in G(OSk(n)) is Θ(n).

TITLE WILL BE SET BY THE PUBLISHER 15

Ratio: cover time / OS2(n)

n Min Max Avg
6 0.8 0.8 0.8
7 0.9 8.5 1.5
8 0.9 18.8 3.2
9 1.3 13.2 4.3

10 2.1 14.7 5.0
11 2.7 18.4 5.7
12 3.6 16.3 6.5
13 4.2 17.0 7.2
14 5.1 17.6 7.9
15 5.3 18.0 8.5
16 6.2 18.9 9.2
17 7.0 18.4 9.9
18 7.8 18.6 10.6
19 8.6 17.7 11.2
20 9.5 17.7 11.8

TABLE 8. The minimum, maximum, and average ratios of the cover
time to total edges in the de Bruijn graph G(OS2(n)) by running Al-
gorithm R for 10,000 iterations.

Table 8 illustrates the minimum, maximum, and average ratios of the cover time to
total edges in G(OS2(n)) by running Algorithm R for 10,000 iterations.

Orientable sequences with asymptotically optimal length can be constructed in O(n)
time per symbol using O(n) space [13]; in the binary case, they can be constructed in
O(1) amortized time per bit using O(n2) space.

REFERENCES

[1] OEIS Foundation Inc. (2025), Entry A000670 in The On-Line Encyclopedia of Integer Sequences,
https://oeis.org/A000670.

[2] De Bruijn sequence and universal cycle constructions (2025). http://debruijnsequence.org., 2025.
[3] ALHAKIM, A., MITCHELL, C. J., SZMIDT, J., AND WILD, P. R. Orientable sequences over non-binary

alphabets. In Cryptography and Communications (to appear) (2024).
[4] ALTSCHUL, S. F., AND ERICKSON, B. W. Significance of nucleotide sequence alignments: a method

for random sequence permutation that preserves dinucleotide and codon usage. Molecular Biology and
Evolution 2, 6 (11 1985), 526–538.

[5] ARNDT, J. Generating Random Permutations. Phd thesis, Australian National University, 2010.
[6] BURNS, J., AND MITCHELL, C. Position sensing coding schemes. In Cryptography and Coding III

(M.J.Ganley, ed.) (1993), Oxford University Press, pp. 31–66.
[7] CHEE, Y. M., ETZION, T., NGUYEN, T. L., TA, D. H., TRAN, V. D., AND VU, V. K. Maximum length

RLL sequences in de Bruijn graph, arXiv preprint arXiv:2403.01454, 2024.
[8] DAI, Z.-D., MARTIN, K., ROBSHAW, B., AND WILD, P. Orientable sequences. In Cryptography and

Coding III (M.J.Ganley, ed.) (1993), Oxford University Press, pp. 97–115.
[9] DURSTENFELD, R. Algorithm 235: Random permutation. Commun. ACM 7, 7 (July 1964), 420.

16 TITLE WILL BE SET BY THE PUBLISHER

[10] FISHER, R. A., AND YATES, F. Statistical Tables for Biological, Agricultural and Medical Research.
Oliver and Boyd, London, 1938.

[11] FLEURY, P.-H. Deux problèmes de géométrie de situation. Journal de mathématiques élémentaires 42
(1883), 257–261.

[12] GABRIĆ, D., AND SAWADA, J. Constructing de Bruijn sequences by concatenating smaller universal
cycles. Theoret. Comput. Sci. 743 (2018), 12–22.

[13] GABRIĆ, D., AND SAWADA, J. Constructing k-ary orientable sequences with asymptotically optimal
length. Designs, Codes and Cryptography (Feb 2025).

[14] GABRIĆ, D., SAWADA, J., WILLIAMS, A., AND WONG, D. A successor rule framework for constructing
k -ary de Bruijn sequences and universal cycles. IEEE Transactions on Information Theory 66, 1 (2020),
679–687.

[15] HOLROYD, A. E., RUSKEY, F., AND WILLIAMS, A. Shorthand universal cycles for permutations. Algo-
rithmica 64, 2 (2012), 215–245.

[16] KANDEL, D., MATIAS, Y., UNGER, R., AND WINKLER, P. Shuffling biological sequences. Discrete
Applied Mathematics 71, 1 (1996), 171–185.

[17] KNUTH, D. E. The Art of Computer Programming, Volume 2: Seminumerical Algorithms, 3rd ed., vol. 2.
Addison-Wesley, Reading MA, 1997.

[18] LIPTÁK, Z., AND PARMIGIANI, L. A BWT-based algorithm for random de Bruijn sequence construction.
In LATIN 2024, LNCS 14578 (2024), pp. 130–145.

[19] PROPP, J. G., AND WILSON, D. B. How to get a perfectly random sample from a generic Markov chain
and generate a random spanning tree of a directed graph. Journal of Algorithms 27, 2 (1998), 170–217.

[20] RUSKEY, F., SAWADA, J., AND WILLIAMS, A. De Bruijn sequences for fixed-weight binary strings.
SIAM J. Discrete Math. 26, 2 (2012), 605–617.

[21] RUSKEY, F., AND WILLIAMS, A. An explicit universal cycle for the (n-1)-permutations of an n-set. ACM
Trans. Algorithms 6, 3 (July 2010), 1–12.

[22] SAWADA, J., SEARS, J., TRAUTRIM, A., AND WILLIAMS, A. Concatenation trees: A framework for
efficient universal cycle and de Bruijn sequence constructions. arXiv preprint arXiv:2308.12405 (2024).

[23] SAWADA, J., AND WILLIAMS, A. A universal cycle for strings with fixed-content. Manuscript (2021).
[24] SAWADA, J., WILLIAMS, A., AND WONG, D. Generalizing the classic greedy and necklace constructions

of de Bruijn sequences and universal cycles. Electron. J. Combin. 23, 1 (2016), Paper 1.24, 20.
[25] SAWADA, J., AND WONG, D. Efficient universal cycle constructions for weak orders. Discrete Mathemat-

ics 343, 10 (2020), 112022.
[26] WILSON, D. B. Generating random spanning trees more quickly than the cover time. In Proceedings of

the Twenty-Eighth Annual ACM Symposium on Theory of Computing (New York, NY, USA, 1996), STOC
’96, Association for Computing Machinery, p. 296–303.

Communicated by (The editor will be set by the publisher).
(The dates will be set by the publisher).

	1. Introduction
	2. Preliminaries
	3. Random Generation
	4. Applications and experimental results
	4.1. Permutations, subsets, and multiset permutations
	4.2. Weak orders
	4.3. de Bruijn sequences
	4.4. Weight-range de Bruijn sequences
	4.5. de Bruijn sequences with forbidden 0z
	4.6. Orientable sequences

	References

