
SIAM J. DISCRETE MATH. c© 2007 Society for Industrial and Applied Mathematics
Vol. 21, No. 1, pp. 16–25

A SIMPLE GRAY CODE TO LIST ALL MINIMAL SIGNED BINARY
REPRESENTATIONS∗

J. SAWADA†

Abstract. A signed binary representation (SBR) of an integer N is a string ab · · · a2a1a0 over

the alphabet {−1, 0, 1} such that N =
∑b

i=0 ai2
i. An SBR of an integer N is said to be minimal if

the number of nonzero digits is minimum. In this paper, we describe a simple 3-close Gray code for
listing all minimal SBRs of an integer N . The algorithm is implemented to run in constant amortized
time. In addition, we identify the values for N that have the maximum number of minimal SBRs
given the length of the binary representation of N .

Key words. Signed binary representations, Gray code

AMS subject classification. 05A

DOI. 10.1137/050641405

1. Introduction. A signed binary representation (SBR) of an integer N is a

string ab · · · a2a1a0 over the alphabet {−1, 0, 1} such that N =
∑b

i=0 ai2
i. An example

of an SBR for N = 51 is 101̄0101̄ (where for convenience we use 1̄ for −1), which
corresponds to 26 − 24 + 22 − 20.

An SBR of an integer N is said to be minimal if the number of nonzero digits is
minimum. A minimal SBR for an integer N is not necessarily unique; in fact, we will
show that there may be an exponential number of such strings with respect to the
length of the binary representation of N . As an example, there are 5 minimal SBRs
for N = 51 each requiring 4 nonzero bits:

0110011, 0110101̄, 1001̄1̄01̄, 101̄0011, 101̄0101̄.

Booth [2] first applied the notion of SBRs to a signed binary multiplication tech-
nique. A decade later, Reitwiesner [10] gave the first linear time algorithm to find a
minimal SBR for a given integer N . Since then, several other researchers have pro-
vided similar linear time algorithms, including the following one-line algorithm (based
on work by Güntzer and Paul [4]) given by Prodinger [9]: “writing 3N/2 in binary
and subtracting (bitwise) the binary representation of N/2.” For a more thorough
history of SBRs and how they apply to fast exponentiation and cryptography, consult
[6, 8, 12, 14].

As there are potentially an exponential number of minimal SBRs for an integer
N (with respect to the length of the binary representation of N), it is natural to ask
how efficiently we can produce an exhaustive listing of these objects. Ideally, a listing
algorithm will run in time proportional to the number of objects (strings) generated.
Such algorithms are said to be CAT for constant amortized time. Also, it is often
useful for a listing of objects to have the Gray code property : successive objects in the
listing differ by a constant amount.

In [6], Ganesan and Manku show how minimal SBRs can be used to find optimal
routes in a network derived from Chord [5], a peer-to-peer network topology. They

∗Received by the editors September 28, 2005; accepted for publication (in revised form) July 23,
2006; published electronically January 8, 2007.

http://www.siam.org/journals/sidma/21-1/64140.html
†Computing and Information Science, University of Guelph, Guelph N1G 2W1, ON, Canada

(sawada@cis.uoguelph.ca).

16



A SIMPLE GRAY CODE TO LIST ALL MINIMAL SBRs 17

also present the only previously known algorithm for exhaustively listing all minimal
SBRs. Unfortunately, no analysis of the algorithm was provided and the resulting
listing does not have the Gray code property. To remedy this situation, we modify
their algorithm into one that is a 3-close Gray code listing (successive strings differ
in 3 consecutive positions) and provide steps to make the algorithm CAT. This is
discussed in section 2. Then in section 3, as a secondary result, we identify precisely
the values for N that have the maximum number of minimal SBRs given the length
of the binary representation for N . In section 4 we identify two interesting sequences
with respect to SBRs and conclude with final remarks in section 5.

For the remainder of this paper we will let SBR(N) denote the set of all minimal
signed binary representations of an integer N . It also assumed that N is represented
in binary as ab · · · a2a1a0, and as mentioned earlier, we will use 1̄ to represent −1 for
convenience.

2. Listing minimal SBRs. The following is a recursive description of Ganesan
and Manku’s algorithm [6] where B(N) denotes a listing of all the strings in SBR(N).
The notation B(N) · 1 denotes the listing B(N) with an additional 1 appended to
each string. The notation B(N),B(M) indicates the list of strings B(N) followed by
the list of strings B(M):

B(N) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if N = 0,

B(N
2

) · 0 if suffix(N, 0) and N > 0,

B(N−1
2

) · 1 if suffix(N, 0(01)∗01),

B(N+1
2

) · 1̄ if suffix(N, 1(10)∗11) ,

B(N+1
2

) · 1̄, B(N−1
2

) · 1 if suffix(N, 11(01)∗01) or
if suffix(N, 00(10)∗11).

The predicate suffix(N , expr) returns true if a suffix of N , represented in binary
(and padded with 0’s on the left), matches the regular expression expr. An example
computation tree for B(51) is given in Figure 1. The nodes in the tree represent the
input strings, and the labels on the edges represent the character to be prepended to
the output string as specified by B(N). Thus, each minimal SBR can be found by
tracing a path from a leaf back to the root while recording the labels on the edges.
Observe that since 0011 is a suffix of 110011, it satisfies the last case in the recursive
description. Thus, the root node in Figure 1 has 2 children producing strings that
end with 1̄ and 1, respectively.

2.1. A Gray code. In general the listing B(N) is not a Gray code since suc-
cessive strings in the listing may differ by up to a linear amount Ω(b). However, by
studying the listings for a variety of input values and focusing on the parities of the
repeated terms in the regular expressions, we discover a 3-close Gray code description
for SBR(N). This new listing is obtained by reversing the order of particular subtrees
within the computation tree of B(N). The result is a listing that will produce the
same strings but in a different order. The overline in the description of this new listing
L(N) indicates that the listing of strings is reversed:



18 J. SAWADA

Level  1

Level  2

Level  3

Level  4

Level  5

Level  6

Level  0

1

1

1

1 1

1010101

0

0

0

1

0

0

1

1

0

1

0

0

1

11010

1101

111

100

10 10 1

110

11 11

110

1100

11001

10 1

111

11

1 1 1

1010011 01100111001101 0110101

110011

minimal SBRs:

Fig. 1. Computation tree for B((110011)2) = B(51).

L(N) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if N = 0,

L(N
2

) · 0 if suffix(N, 0) and N > 0,

L(N−1
2

) · 1 if suffix(N, 0(01)∗01),

L(N+1
2

) · 1̄ if suffix(N, 1(10)∗11),

L(N+1
2

) · 1̄, L(N−1
2

) · 1 if suffix(N, 11(01)t01) and t even (1),

L(N+1
2

) · 1̄, L(N−1
2

) · 1 if suffix(N, 00(10)t11) and t even (2),

L(N+1
2

) · 1̄, L(N−1
2

) · 1 if suffix(N, 11(01)t01) and t odd or (3),
if suffix(N, 00(10)t11) and t odd (4).

Theorem 1. The listing L(N) of all strings in SBR(N) where N > 0 is a 3-close
Gray code.

Proof. Assume that N is represented in binary. Let first(N) and last(N) denote
the first and last strings in the listing of L(N). To prove that the listing L(N) is a
3-close Gray code we show that the interface strings for Cases (1), (2), (3), and (4)
differ in exactly the last three positions. Applying induction completes the proof.

Case (1). N is of the form x11(01)t01, where x is some binary string and t is



A SIMPLE GRAY CODE TO LIST ALL MINIMAL SBRs 19

even. Here we must compare the last string in L(N+1
2 ) · 1̄ = first(x11(01)t1) · 1̄ and

the first string in L(N−1
2 ) · 1 = first(x11(01)t0) · 1. First consider t > 0:

first(x11(01)t1) · 1̄ = first(x1(10)t11) · 1̄
= first(x1(10)t−1110) · 1̄1̄

= first(x1(10)t−111) · 01̄1̄,

first(x11(01)t0) · 1 = first(x11(01)t) · 01

= first(x11(01)t−101) · 01

= first(x11(01)t−11) · 1̄01

= first(x1(10)t−111) · 1̄01.

If t = 0, let x = y01r:

first(y01r111) · 1̄ = first(y10r00) · 1̄1̄

= first(y10r0) · 01̄1̄,

first(y01r110) · 1 = first(y01r11) · 01

= first(y10r0) · 1̄01.

Case (2). N is of the form x00(10)t11, where x is some binary string and t is
even. Again we consider two subcases depending on the value for t. If t > 0, then
we must compare the last string in L(N+1

2 ) · 1̄ = last(x00(10)t−1110) · 1̄ and the first

string in L(N−1
2 ) · 1 = last(x00(10)t1) · 1:

last(x00(10)t−1110) · 1̄ = last(x00(10)t−111) · 01̄

= last(x00(10)t−11) · 101̄

= last(x0(01)t) · 101̄,

last(x00(10)t1) · 1 = last(x0(01)t01) · 1
= last(x0(01)t0) · 11

= last(x0(01)t) · 011.

If t = 0, then the two interface strings are last(x010)·1̄ and last(x001)·1, respectively:

last(x010) · 1̄ = last(x01) · 01̄

= last(x0) · 101̄,

last(x001) · 1 = last(x001) · 1
= last(x0) · 011.

Case (3). N is of the form x11(01)t01, where x is some binary string and t is odd.
Here we must compare the last string in L(N+1

2 ) · 1̄ = last(x11(01)t1) · 1̄ and the first

string in L(N−1
2 ) · 1 = first(x11(01)t0) · 1:

last(x11(01)t1) · 1̄ = last(x1(10)t11) · 1̄
= last(x1(10)t−1110) · 1̄1̄

= last(x1(10)t−111) · 01̄1̄,

first(x11(01)t0) · 1 = first(x11(01)t−101) · 01

= last(x11(01)t−11) · 1̄01

= last(x1(10)t−111) · 1̄01.



20 J. SAWADA

Case (4). N is of the form x00(10)t11, where x is some binary string and t is odd.
Here we must compare the last string in L(N+1

2 ) · 1̄ = last(x00(10)t−1110) · 1̄ and the

first string in L(N−1
2 ) · 1 = first(x00(10)t1) · 1:

last(x00(10)t−1110) · 1̄ = last(x00(10)t−111) · 01̄

= first(x00(10)t−11) · 101̄

= first(x0(01)t) · 101̄,

first(x00(10)t1) · 1 = first(x0(01)t01) · 1
= first(x0(01)t0) · 11

= first(x0(01)t) · 011.

In all cases we have shown that the interface strings differ in exactly the last 3
positions. By applying induction, this proves that L(N) is a 3-close Gray code for
the strings in SBR(N).

As an example, Figure 2 displays the computation tree for L(110011). As before,
the nodes represent the input strings, but now if a subtree is to be reversed, this infor-
mation is additionally passed down via the edges and represented by R. Naturally, a
reversal of a reversed subtree produces the regular ordering (see the 11 node furthest
to the right in Figure 2).

The following is the final listing generated for L(110011):

0 1 0 0 1̄ 1̄ 0 1̄
0 1 0 1̄ 0 1 0 1̄ (2)
0 0 1 1 0 1 0 1̄ (4)
0 0 1 1 0 0 1 1 (0)
0 1 0 1̄ 0 0 1 1 (4)

Observe that each successive string differs in exactly 3 consecutive positions by
either the transformation 011 ↔ 101̄ or 01̄1̄ ↔ 1̄01. Also observe that the rightmost
of these positions (indicated in parentheses) corresponds to the levels of the degree
2 nodes in the computation tree when visited in order. These properties can also be
inferred from Theorem 1 and its proof. Therefore given the in-order sequence of levels
of the degree 2 nodes along with the first output string in the listing, we can generate
the Gray code listing L(N) in constant amortized time. In the next subsection, we
describe how we can efficiently generate this sequence.

It is also interesting to note from this example that a 2-close listing is impossible
in general. This is because the first string is the only one that contains 01̄1̄ in positions
4, 5, and 6.

Also of interest is the underlying graph with vertices corresponding to the minimal
SBRs (for a given integer N) and edges between two vertices if and only if their
corresponding SBRs differ in exactly 3 adjacent positions. Clark and Liang [3] showed
that this graph is connected. The result in this paper shows that this graph contains
a Hamilton path. In general there is no Hamilton cycle since the underlying graph
from our example has a vertex with degree 1: 01001̄1̄01̄.

2.2. Efficiency considerations. If we apply the algorithm for L(N) or B(N)
directly, we may require a linear amount of work to process each node: computing
the suffix and modifying the input string for the next recursive call. This amount
of computation is not desirable; however, because there are repeated subtrees, we
can precompute the parent child relationships for each node. In fact, given that



A SIMPLE GRAY CODE TO LIST ALL MINIMAL SBRs 21

Level  1

Level  2

Level  3

Level  4

Level  5

Level  6

Level  0

1

1

1 1

1

1001101 01100111010101 0110101 1010011

110011

11010

1101

111

100

10

1 1

10

11

110

1100

110

11

11001

10

1

0

0

0 0

0

1

0

0

0

1

1 1

1

11

1

1

1

1

1

R

R

R

R

R

R

R

R

R

minimal SBRs:

Fig. 2. Computation tree for L(110011).

N = ab · · · a2a1a0 and that αi denotes the prefix ab · · · ai and βi = αi+1, the following
lemma shows that the number of different possible nodes in the computation tree for
L(N) or B(N) is at most 2(b + 1).

Lemma 2. At level i in the computation tree of L(N) or B(N) the input string
is either αi or βi.

Proof. The proof is by induction on i. When i = 0, we are at the root of the
computation tree and the input string is α0. For the inductive hypothesis, suppose
that the input string for a node at level i ≥ 0 is either αi or βi. By using the rules
of the listing L(N) or B(N), observe that the input string for the child of a node is
obtained either by trimming off the least significant bit or by adding one first and
then trimming off the final bit. Thus, if the input string of a node at level i is αi,
then the input for its children must be either αi+1 or βi+1. In the case where the
input string is βi we consider two subcases depending on the last bit. If βi ends with
0, then its only child is (βi)/2 = βi+1. Otherwise, if βi ends with 1, then trimming
off the last bit will result in αi+1. If we add one first and then trim the last bit, we
will obtain βi+1.

Since there at most 2(b+1) different nodes in the computation tree for L(N), we
can precompute the parent child relationships for all nodes in O(b2) time. (In fact, if
we reuse the suffix details starting at node α0, we could perform this precomputation
in linear time O(b).) After performing this precomputation, we can determine the
children of a node in constant time, allowing us to construct the computation tree for
L(N) in constant time per node. Applying this method, the overall running time of



22 J. SAWADA

the algorithm will be proportional to the number of nodes in the computation tree.
If this number is proportional to the number of strings generated (the leaves in the
tree), then the algorithm will be CAT. However, in general, this will not be the case
due to the large number of degree 1 nodes.

Fortunately, as discussed at the end of the previous subsection, we need only visit
the degree 2 nodes (in order) from the computation tree to obtain the Gray code
listing. Again, since there are only a linear number of nodes, we can precompute the
nearest (left and right) descendants that have degree 2 for each potential node in the
computation tree. This can be done in O(b) time, since there are only O(b) nodes to
visit. Now, for each node, we can find the nearest left and/or right descendant that
has degree 2 in constant time. All that remains is to compute the initial minimal
SBR by following the leftmost path in the computation tree and then traversing the
degree 2 nodes in order, outputting the original level of each node. When traversing
this tree we must be careful to maintain information about subtree reversal so that
we know which child branch to visit first.

The following is a detailed summary of the steps required to produce the listing
L(N) in constant amortized time:

1. For 0 ≤ i ≤ n determine the child or children of each node αi and βi. The
level of these nodes will be i, and from the recursive description of L(N) we
can determine whether or not the subtrees for each child should be reversed.
This will take O(b2) time.

2. For 0 ≤ i ≤ n determine the nearest left and/or right descendant of αi and βi

that has degree 2. This can be computed in linear time O(b) by starting with
i = b and working back to i = 0. Details about whether or not the subtrees
are to be reversed must be maintained for each degree 2 node.

3. Determine the initial minimal SBR of the listing L(N) by tracing a path
through the virtual computation tree rooted by α0. This will take linear time
O(b).

4. Visit the degree 2 nodes in order, being careful to consider when subtrees are
to be reversed. For each level i that is output, modify the current minimal
SBR in positions i + 2, i + 1, i. This is done by scanning these 3 characters
and applying the appropriate transformation rule: 011 ↔ 101̄ or 01̄1̄ ↔ 1̄01.
The degree 2 nodes can be traversed in constant amortized time; thus the
running time of this step will be proportional to the number of minimal
SBRs generated.

Observe that the original computation tree is never actually constructed.

Theorem 3. The Gray code listing L(N) can be generated in constant amortized
time with O(b2) initialization.

3. Maximizing the number of minimal SBRs. If N is represented by the
binary string ab · · · a2a1a0, where ab = 1, then there may be only one string in SBR(N)
or there could potentially be an exponential number with respect to b. Thus given b,
we are interested in finding a tight upper bound on the number of strings in SBR(N),
denoted Max(b), as well as a characterization of the bitstrings that obtain this upper
bound. Note that the actual length of the binary representation of N is b+ 1. When
b = 0, 1, 2, the binary representations that produce the maximum number of minimal
SBRs are 1, 11, and 110, respectively. The values Max(0) = 1 and Max(1) =
Max(2) = 2. For 3 ≤ b ≤ 10 we apply a generation algorithm to determine which
binary representations of N have Max(b) strings in SBR(N):



A SIMPLE GRAY CODE TO LIST ALL MINIMAL SBRs 23

b Binary representations of N Max(b)
3 1011 1101 3
4 10110 11010 3
5 101101 110011 5
6 1011010 1100110 5
7 10110011 11001101 8
8 101100110 110011010 8
9 1011001101 1100110011 13
10 10110011010 11001100110 13

Theorem 4. Max(b) = f�b/2�+2, the �b/2�+2nd Fibonacci number. Moreover,
the SBRs of the two values of N that have Max(b) minimal SBRs where b ≥ 3 are

10(1100)t11 and 11(0011)t01 if b = 4t+3,
10(1100)t110 and 11(0011)t010 if b = 4t+4,
10(1100)t1101 and 11(0011)t0011 if b = 4t+5,
10(1100)t11010 and 11(0011)t00110 if b = 4t+6.

Proof. Applying a generation algorithm, it is trivial to verify the theorem for
3 ≤ b ≤ 6. For b > 6 we assume that Max(i) = f� i

2 �+2 for 3 ≤ i < b (inductive

hypothesis) and consider ab · · · a2a1a0, the binary representation for an integer N .
Using the recursive listing B(N), we will examine each possible suffix of N to de-
termine restrictions on the strings in SBR(N). In particular, we will show that the
strings in SBR(N) must end with particular bit sequences for a given suffix.

suffix(N, 0). All strings end with 0. Thus, the maximum number of strings is
bounded by Max(b − 1). This result implies that Max(b) does not decrease as b
increases.

suffix(N , 0(01)∗01). Applying the recursive rules twice, all strings must end with
01. Thus, the maximum number of strings is bounded by Max(b− 2).

suffix(N , 1(10)∗11). Applying the recursive rules twice, all strings must end with
01̄. Thus, the maximum number of strings is bounded by Max(b− 2).

For the remaining two suffixes, the strings may end with either 1 or 1̄.

suffix(N, 11(01)t01). Applying the recursive rules, all strings ending with 1 will
end with 01. Otherwise if a string ends with 1̄, then if t = 0, it must end with 001̄1̄;
if t = 1, it must end with 001̄01̄1̄; if t > 1, it must end with 1̄01̄01̄1̄. Thus, when
the suffix of N is 1101, an upper bound on the maximum number of minimal SBRs
is Max(b − 2) + Max(b − 4). Otherwise if t > 1, the upper bound is Max(b − 2) +
Max(b− 6).

suffix(N, 00(10)t11). Applying the recursive rules, all strings ending with 1̄ will
end with 01̄. Otherwise if a string ends with 1, then if t = 0, it must end with 0011;
if t = 1, it must end with 001011; if t > 1, it must end with 101011. Thus, when
the suffix of N is 0011, an upper bound on the maximum number of minimal SBRs
is Max(b − 2) + Max(b − 4). Otherwise if t > 1, the upper bound is Max(b − 2) +
Max(b− 6).

Observe that from our inductive hypotheses that when b is even, Max(b − 1) =
Max(b−2)+Max(b−4) = f� b

2 �+2, and when b is odd, Max(b−1) = f� b
2 �+2−1. Thus

an overall upper bound on Max(b) is f� b
2 �+2. We complete the proof by showing the

two strings that obtain this bound, thus proving Max(b) = f� b
2 �+2. We examine four

cases depending on b. Since b > 6, we must have t ≥ 1.



24 J. SAWADA

b = 4t − 1. In this case b is odd, so if Max(b) is to obtain the upper bound
of Max(b − 2) + Max(b − 4), N must have the suffix 1101 or 0011. If it ends with
1101, then in order for the number of strings in SBR(N) that end with 01 to meet
the maximum of Max(b − 2), the first b − 2 bits must be either 10(1100)t−11101 or
11(0011)t−10011 (by induction). Additionally, in order for the number of strings that
end with 001̄1̄ to meet the maximum of Max(b − 4), the first b − 4 bits must be
either 10(1100)t−111 or 11(0011)t−101 with 1 subtracted as a result of the recursive
definition applied to the final 4 bits. Thus taking the union of these criteria over all
binary strings, we are left with N = 11(0011)t01. A similar examination will show
that when N has a suffix 0011, the only string that will obtain the upper bound of
Max(b− 2) + Max(b− 4) strings is N = 10(1100)t11.

b = 4t. Using induction, if N ends with 0, then Max(b) = Max(b − 1) if and
only if N = 10(1100)t110 or N = 11(0011)t010. Otherwise, in order for the size
of SBR(N) to meet the upper bound, it must have the suffix 1101 or 0011. If it
ends with 1101, the first b− 2 bits must be either 10(1100)t11010 or 11(0011)t00110.
However, since neither of these strings ends with 11, no value for N ending with 1101
will meet the upper bound in this case. If it ends with 0011, the first b− 2 bits must
be either 10(1100)t11010 or 11(0011)t00110, but this time with 1 subtracted since the
strings must end with 01̄ (from the recursive definition). However, since neither of the
resulting strings ends with 00, no value for N ending with 0011 will meet the upper
bound.

b = 4t + 1. This is similar to the case b = 4t− 1.
b = 4t + 2. This is similar to the case b = 4t.

4. Related sequences. If we consider the number of bits required to represent
each string in SBR(N) for each value of N starting from N = 0, we obtain the
following sequence:

A = 0, 1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 3, 2, 3, 2, 2, . . . .

For example, the minimum number of bits required to represent the integer 3 as the
difference of 2 binary numbers is 2 (given by the fourth element in the sequence). This
sequence corresponds to sequence A007302 in Sloane’s The On-Line Encyclopedia of
Integer Sequences [13]. Interestingly, these values also correspond to the cost of grid
communications on the Connection Machine [15]. This sequence is also discussed with
respect to k-regular sequences in [1].

Another interesting sequence is the one obtained from the number of strings in
SBR(N) for each value of N starting from 0:

B = 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 3, 2, 3, 1, 1, . . . .

For example, the fourth element in this sequence is 2 since there are two strings in
SBR(3). This sequence corresponds to sequence A110955 in Sloane’s The On-Line
Encyclopedia of Integer Sequences [13].

5. Final remarks. In this paper we have presented a 3-close Gray code algo-
rithm to generate all minimal SBRs of an integer N . After some initialization, the
algorithm can be implemented to run in constant amortized time. A CAT imple-
mentation is available from the author upon request or at http://www.cis.uoguelph.
ca/∼sawada/prog.html. As a secondary result, we have precisely identified the values
for N that produce the maximum number of minimal SBRs given the length of the
binary representation of N .



A SIMPLE GRAY CODE TO LIST ALL MINIMAL SBRs 25

A preliminary version of this work appears in the proceedings of GRACO 2005
[11]. Since this manuscript was submitted, a related result by Manku and Sawada
appeared in the proceedings of ESA 2005 [7]. In that work, a loopless algorithm to
list all minimal SBRs of an integer N is provided. The loopless algorithm is based
on the binary reflected Gray code and is significantly more complex than the simple
recursive description given in this paper.

Acknowledgments. The author would like to thank the anonymous referees
and Frank Ruskey for helpful comments to improve the final version of this paper.

REFERENCES

[1] J. P. Allouche and J. Shallit, The ring of k-regular sequences, II, Theoret. Comput. Sci.,
307 (2003), pp. 3–29.

[2] A. D. Booth, A signed binary multiplication technique, Quart. J. Mech. Appl. Math., 4 (1951),
pp. 236–240.

[3] W. E. Clark and J. J. Liang, On arithmetic weight for a general radix representation of
integers, IEEE Trans. Inform. Theory, 19 (1973), pp. 823–826.

[4] U. Güntzer and M. Paul, Jump interpolation search trees and symmetric binary numbers,
Inform. Process. Lett., 26 (1987), pp. 193–204.

[5] I. Stoica, R. Morris, D. Liben-Lowell, D. R. Karger, M. F. Kaashoek, F. Dabek, and H.

Balakrishnan, Chord: A scalable peer-to-peer lookup protocol for Internet applications,
IEEE/ACM Trans. Networking, 11 (2003), pp. 17–32.

[6] P. Ganesan and G. S. Manku, Optimal routing in Chord, in Proceedings of the Fifteenth
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), New Orleans, 2004, pp.
169–178.

[7] G. S. Manku and J. Sawada, A loopless Gray code for minimal signed-binary representations,
in Proceedings of the 13th Annual European Symposium on Algorithms (ESA), Lecture
Notes in Comput. Sci. 3669, Springer-Verlag, Berlin, 2005, pp. 438–447.

[8] K. Okeya, K. Schmidt-Samoa, C. Spahn, and T. Takagi, Signed binary representations
revisited, in Advances in Cryptology—CRYPTO 2004, Lecture Notes in Comput. Sci. 3152,
Springer-Verlag, Berlin, 2004, pp. 123–139.

[9] H. Prodinger, On binary representations of integers with digits -1, 0, 1, Integers (2000), A8,
14 pp.

[10] G. W. Reitwiesner, Binary arithmetic, in Advances in Computers, Vol. 1, Academic Press,
New York, 1960, pp. 231–308.

[11] J. Sawada, A Gray code for binary subtraction, in Proceedings of GRACO 2005, Electron.
Notes Discrete Math., 19 (2005), pp. 125–131.

[12] K. Schmidt-Samoa, O. Semay, and T. Takagi, Analysis of fractional window recoding meth-
ods and their application to elliptic curve cryptosystems, IEEE Trans. Comput., 55 (2006),
pp. 48–57.

[13] N. Sloane, The on-line encyclopedia of integer sequences: ID A007302, A110955, http://www.
research.att.com/∼njas/sequences/index.html (2006).

[14] T. Takagi, D. Reis, Jr., S. Yen, and B. Wu, Radix-r nonadjacent form and its application
to pairing-based cryptosystem, IEICE Trans. Fund. Elec., Comm., & Comp. Sci., E89-A
(2006), pp. 115–123.

[15] A. Weitzman, Transformation of parallel programs guided by micro-analysis, in Algorithms
Seminar (1992–1993), B. Salvy, ed., INRIA, Rocquencourt, France, 1993, Rapport de
Recherche 2130, pp. 155–159.


