
Theoretical Computer Science 301 (2003) 321–340
www.elsevier.com/locate/tcs

Euclidean strings�

John Ellisa , Frank Ruskeya ;∗ , Joe Sawadab , Jamie Simpsonc
aDepartment of Computer Science, University of Victoria, P.O. Box 3055, Victoria, British Columbia,

Canada V8W 3P6
bDepartment of Computer Science, University of Toronto, Toronto, Canada

cDepartment of Mathematics and Statistics, Curtin University, Perth, Western Australia, Australia

Received 15 December 2000; received in revised form 11 July 2002; accepted 29 July 2002
Communicated by G. Ausiello

Abstract

A string p = p0p1 · · ·pn−1 of non-negative integers is a Euclidean string if the string (p0 +
1)p1 · · · (pn−1 − 1) is rotationally equivalent (i.e., conjugate) to p. We show that Euclidean
strings exist if and only if n and p0 +p1 + · · ·+pn−1 are relatively prime and that, if they exist,
they are unique. We show how to construct them using an algorithm with the same structure
as the Euclidean algorithm, hence the name. We show that Euclidean strings are Lyndon words
and we describe relationships between Euclidean strings and the Stern–Brocot tree, Fibonacci
strings, Beatty sequences, and Sturmian sequences. We also describe an application to a graph
embedding problem.
c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Euclidean algorithm; Lyndon word; Stern–Brocot tree; Fibonacci string; Beatty sequence;
Rational mechanical sequence; Sturmian sequence; Christo9el word; Morphism

1. Introduction

The string 01001010 has a curious property. The string is not equal to any of its
non-trivial rotations, but if we reverse the marked 01 pair, we get the string 01010010,
which is rotationally equivalent to the original string. In this paper, we will investigate
this phenomenon in a slightly more general setting.

� This work was supported by the Natural Sciences and Engineering Research Council of Canada and by
Czech grant GACR 201=99=0242.

∗ Corresponding author.
E-mail address: fruskey@cs.uvic.ca (F. Ruskey).

0304-3975/03/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(02)00589 -3

mailto:fruskey@cs.uvic.ca

322 J. Ellis et al. / Theoretical Computer Science 301 (2003) 321–340

Our initial interest in strings with this property stems from a certain graph embed-
ding problem which is explained in Section 9 of this paper. Subsequent investigations
revealed that these strings had many interesting properties and were related to classic
concepts in the subject area of combinatorics on words.
Informally, a Euclidean string is a string of integers with the property that if the Erst

character is increased by one and the last character is decreased by one, then the result
is conjugate to the original string. We will show how to generate Euclidean strings
by a variant of the Euclidean algorithm, from which they get their name. We prove
various characterizations of Euclidean strings, and derive some of their properties. As
Erst pointed out to us by the referees, Euclidean strings are closely related to Sturmian
words; in fact, we will eventually show that the binary Euclidean strings are exactly
the so-called lower rational mechanical words. The rational mechanical words are
also called Christo6el words and characteristic sequences [1, 15], and arise in several
di9erent Eelds. All words studied in this paper are Enite. The Sturmian words are
inEnite but their Enite subwords are related to the Euclidean strings.

1.1. De8nitions

Let p=p0p1 · · ·pn−1 denote a string of n non-negative integers. When the length
of p is at least 2, we let �(p) denote a right rotation of p by one position, i.e.,
�(p)=pn−1p0p1 · · ·pn−2. Then let �d(p) denote a right rotation through d positions
and �−d(p) denote a left rotation through d positions. Let �(p) be the string obtained
from p by replacing p0 by p0 + 1 and pn−1 by pn−1 − 1.

De�nition 1. The string p is a Euclidean string if it is of unit length or if there exists
an integer d such that �(p)= �d(p).

For example, p=22322322322323 is a Euclidean string because

�(p) = 32322322322322 = �3(p):

We will refer to the parameter d in the deEnition as a displacement of the Euclidean
string. For consistency we deEne the displacement of a unit length Euclidean string to
be one. Two strings p and q are said to be conjugate if there is an integer d such
that p= �d(q). So another way of deEning a Euclidean string is as a string p which is
conjugate to �(p).

De�nition 2. The weight of a Euclidean string is
∑n−1

i=0 pi, i.e., the sum of all its
elements.

De�nition 3. The cost of a unit length Euclidean string is p0− 1. Otherwise, the cost,
relative to a displacement d, is

∑d−1
i=0 pi, i.e., the sum of the d elements to the right

of and including p0.

Throughout the paper, we use k to denote the weight and c to denote the cost of a
Euclidean string. We denote a Euclidean string of length n and weight k by En; k . In

J. Ellis et al. / Theoretical Computer Science 301 (2003) 321–340 323

arithmetic expressions, mod will denote the remainder after integer division. We adopt
the convention that all arithmetic on the string indices is done modulo n, the length of
the string, e.g., we write pi+j for p(i+j) mod n.

1.2. Organization

In Section 2, we show that a Euclidean string exists if and only if its length and
weight are relatively prime and that, if it exists, it is unique, as are the cost and
displacement. Thus there is a natural bijection between the set of Euclidean strings
and the set of rational numbers. We show how to eHciently compute Euclidean
strings, together with their displacements and costs, using a variant of the Euclidean
algorithm.
In Section 3, we show some interesting properties relating the complement, the

reversal and the “dual” of a Euclidean string. In Section 4, we show that Euclidean
strings are Lyndon words and deduce some related properties. A Lyndon word is one
which is lexicographically less than all of its non-trivial conjugates. The relationship
between Lyndon words and Sturmian words is explained in [15].
In Section 5, we show a correspondence between the set of all binary Euclidean

strings and the Stern–Brocot tree of reduced fractions. The Stern–Brocot tree is an
inEnite construction of the set of all non-negative fractions k=n between 0 and 1 where
k and n are relatively prime. The tree is a rooted binary tree in which each node in the
tree is deEned in terms of its nearest left ancestor (L), and nearest right ancestor (R).
If a node x has L= k ′=n′ and R= k ′′=n′′ then x=(k ′ + k ′′)=(n′ + n′′). Similar results
are discussed by Berstel and de Luca [3].
In Section 6, we show that every Fibonacci string is conjugate to a Euclidean string.

A Fibonacci string is deEned by the morphism b �→ a; a �→ ab.
In Section 7, we show that Euclidean strings are related to Beatty sequences. A

Beatty sequence is a sequence of the form aj = ��j + �� where �¿1 and j∈Z. We
show that a Euclidean string is the reversal of the histogram of a rational Beatty
sequence.
In Section 8, we show the relation of Euclidean strings to Sturmian strings; in

particular that the Euclidean strings are the (lower) rational mechanical words. For
real numbers � and �, the lower mechanical word s�; � has nth character �(n + 1)� +
��−�n�+�� [15, Section 2.1.2]. If � is a positive rational number and �=0, then we
refer to these as rational mechanical words. A string s is Sturmian if and only if it is
irrational mechanical [15, Theorem 2.1.13]. The deEnition of a Sturmian word is not
directly related to the content of this paper; the interested reader is referred to Lothaire
[15] for many fascinating results. Proposition 2.2.12 of [15] implies that the rational
mechanical words with 0¡�¡1 have the form 0w1, where w is a central word. The
set of all central words is denoted PER and was studied by de Luca and Mignosi
in [16].
We conclude in Section 9 with the application to a graph embedding problem that

was the original motivation for the investigation. Some of the results in this paper were
Erst presented in [8].

324 J. Ellis et al. / Theoretical Computer Science 301 (2003) 321–340

2. Characterization and generation

Lemma 1. Any length n Euclidean string p0p1 · · ·pn−1 has the following properties:
(a) the length and the weight are relatively prime and
(b) it is unique, for given length and weight, as are its displacement and cost and
(c) for all i in {jdmod n: 06j6n − (k mod n) − 1}; pi = �k=n� and for all i in

{(n−1+jd)mod n: 06j6(k mod n)−1}; pi =
k=n� or, alternatively, pi = |{j : n−
1 + jd≡ imod n; 06j¡k}| and

(d) dk ≡ 1mod n.

Proof. Let p be a Euclidean string of length n and weight k and with a displacement
d so that �d(p)= �(p). We can deduce from the deEnition of a Euclidean string that

if (06 j 6 n− d− 2) or (n− d+ 16 j 6 n− 1) then pj = pj+d (1)

pn−d−1 = pn−1 − 1 and pn−d = p0 + 1: (2)

Consider the sequence of string elements

S = p0; pd; p2d; : : : ; pjd;

where all the indices are taken modulo n and where j is the smallest positive integer
such that jd≡ 0mod n. Such a j must exist. It must be that pn−d is the penultimate
item in S since it is the predecessor of p0. By (2) pn−d =p0+1. But, by Eqs. (1) and
(2), every element in the sequence is equal to its predecessor in the sequence, unless
the element is p0 or pn−1. Since the sequence starts and ends with p0, it must then
also contain pn−1, because pn−d−1 is the only remaining element which can break the
sequence of identical elements. So S is a sequence of string elements

S = p0; pd; p2d; : : : ; pn−d−1; pn−1; : : : ; pn−d; p0;

where every element is identical to its successor except for pn−d−1 and pn−d.
It follows that there are only two values in S, di9ering by one. Let them be x=p0

and x + 1=pn−1. Then S consists of a sequence of x’s followed by a sequence of
(x + 1)’s. Let there be r of the x’s. It must be that the Erst (x + 1) is pn−1 and
that n − 1≡ rdmod n, i.e., rd≡−1mod n, which implies that gcd(r; n)= 1 and that
gcd(d; n) = 1. Since gcd(d; n)= 1, it must be that S contains all the elements of p.
Then x= �k=n� and x+1=
k=n�; rx+ (n− r)(x+1)= k and hence k + r≡ 0mod n.

We can then derive the items in the lemma as follows.

(a) From gcd(r; n)= 1 and k + r≡ 0mod n we derive gcd(n; k)= 1.
(b) We have that rd≡−1mod n, where r= n − (k mod n). This implies that d has a

unique value in the reduced residue set modulo n. Hence the sequence S is unique
and the corresponding Euclidean string is unique.

J. Ellis et al. / Theoretical Computer Science 301 (2003) 321–340 325

(c) Since r, the number of smaller elements, is necessarily n − (k mod n), the Erst
two statements follow. The third statement follows from the observation that, since
gcd(d; n)= 1; |{j : n− 1 + jd≡ imod n; 06j¡n}|=1 for all i.

(d) From k + r≡ 0mod n and rd≡−1mod n we derive dk ≡ 1mod n.

In the proof of the following lemma we will make use of two string operations,
increment and expand. Increment, denoted inc, adds one to every integer in the string.
Expand, denoted exp, replaces every integer i in the string by 01i, where 1i denotes a
string of i ones. In other words, exp and inc are the morphisms

i �→ i + 1 and i �→ 01i :

We have not seen these morphisms used before in the literature of combinatorics on
words. However, they will be crucial to proving some of our new results and in deriving
simpler proofs of some known results.

Lemma 2. If n and k are relatively prime, positive integers, then there exists a
Euclidean string of length n and weight k.

Proof. The proof is constructive. The function E-STRING constructs a Euclidean string,
of length n and weight k, when n and k are relatively prime. It mirrors the structure of
the symmetric Euclidean algorithm, and is the reason that we call our strings “Euclidean
strings”.

function E-STRING (n; k :Z+) : String over N∗;
if k¡n→ return(exp(E-STRING (n− k; k)))
[] k = n→ return(‘1’);
[] k¿n→ return(inc(E-STRING (n; k − n)))
�

We demonstrate the correctness of the procedure by induction on the number of
invocations to the increment and expand procedures. For the base case, where n= k =1,
the procedure returns the string “1”, which conforms to DeEnition 1.
It can not be the case that n= k and n¿1 because n and k are relatively prime.

Suppose k¿n, in which case the increment operation is applied to the result of invoking
the procedure with parameters (n; k − n). Since n and k are relatively prime, so are
n and k − n. Hence we may assume that a Euclidean string of length n and weight
k−n, say p, is returned. It is clear that since �(p)= �d(p), where d is the displacement
of p, then �(inc(p))= �d(inc(p)). Further, the incrementation increases the weight of
the string from k − n to k. Hence inc(p) is a Euclidean string of length n and weight
k. The displacement is unchanged by the operation. The cost (recall DeEnition 3) is
increased by d, since the values of the leftmost d elements are each increased by one.
Now suppose n¿k, in which case the expand operation is applied to the result of

invoking the procedure with parameters (n− k; k). Since n and k are relatively prime,
so are n− k and k. Hence we may assume that a Euclidean string of length n− k and

326 J. Ellis et al. / Theoretical Computer Science 301 (2003) 321–340

Fig. 1. Computing the Euclidean string E14; 33. The symbol I denotes an increment, E denotes an expansion
and the caret denotes the exchange point (Lemma 5).

weight k, say p, is returned and that �(p)= �d(p), where d is the displacement of p.
Now

exp(p) = 01p001p1 · · · 01pn−k−1 :

It follows that �(exp(p))= �d+c(exp(p)), where c is the cost of p, because the leftmost
d elements in p are replaced by d+c elements by the expansion. Further, the length of
the expanded string is the number of 0’s plus the number of 1’s which is (n−k)+k = n,
but the weight of the expanded string remains k. Hence exp(p) is a Euclidean string
of length n and weight k. The expansion increases the displacement by c and the cost
is unchanged.

An example of the computation of a string is given in Fig. 1. In the Egure the cost
and displacement are also shown. The computation of these parameters is discussed in
the next section.
The unwinding of the recursion can be viewed as a walk from the root in an inEnite

binary tree T. In T each node is labelled by an ordered pair (x; y). The left child
of (x; y) is (x; x + y) and the right child is (x + y; y). The root is (1; 1). See Fig. 2.
Every reduced fraction x=y occurs once in this tree and a breadth Erst traversal of this
tree provides a proof that the rational numbers are countable [4]. Fig. 3 shows the
corresponding tree of strings.
From Lemmas 2 and 1(a), we immediately obtain Theorem 1. This theorem implies

that the number of Euclidean strings of length n is the Euler totient function �(n).

J. Ellis et al. / Theoretical Computer Science 301 (2003) 321–340 327

Fig. 2. The tree of reduced fractions.

Fig. 3. The tree of strings corresponding to the tree of reduced fractions in Fig. 2.

Theorem 1. There exists a Euclidean string of length n and weight k if and only if
gcd(n; k)= 1.

If d is known, then we can use Lemma 1(c), to generate the Euclidean string in time
linear in the length of the string. Below is a procedure which computes the displacement
and cost, d and c. Variables c and d are global and the initial call is DISP–COST(n; k). The
correctness of the procedure follows immediately from the deEnition of each parameter,
i.e., an incrementation requires that the cost be increased by d, whereas an expansion
requires that the displacement be increased by c. For consistency, we have deEned the
displacement and cost of a unit length Euclidean string to be 1 and k−1, respectively.
Also note that one of the terminating conditions must be reached.

procedure DISP–COST (n; k :Z+)
if k¡n→ DISP–COST(n− k; k); d :=d+ c
[] k = n→ c; d := 0; 1
[] k¿n→ DISP–COST(n; k − n); c := c + d
�

328 J. Ellis et al. / Theoretical Computer Science 301 (2003) 321–340

The following lemma describes a relationship between cost and displacement.

Lemma 3. If n+ k ¿ 2 then dk = cn+ 1.

Proof. Let dn; k and cn; k denote the displacement and cost, respectively, of a Euclidean
string of length n and weight k. We argue by induction on the number of recursive
invocations of the procedure. For the basis we note that if n=1 and k =1 the initial-
ization deEned by the algorithm satisEes the lemma.
For the induction suppose Erst that n¡k. By the inductive hypothesis:

dn; k−n(k−n)= cn; k−nn+1. Hence dn; k−n(k−n)+dn; k−nn=(cn; k−n+dn; k−n)n+1. Hence
dn; k−nk =(cn; k−n + dn; k−n)n+1. But, when n¡k, the algorithm sets dn; k =dn; k−n and
cn; k = cn; k−n + dn; k−n. Hence dn; kk = cn; kn+ 1.
Suppose k¡n. By the inductive hypothesis: dn−k; kk = cn−k; k(n − k) + 1. Hence

(dn−k; k+cn−k; k)k = cn−k; kn+1. But, when n¡k, the algorithm sets dn; k =dn−k; k+cn−k; k

and cn; k = cn−k; k . Hence dn; kk = cn; kn+ 1.

So d and −c are in fact the constants computed by the standard extended Euclidean
algorithm, see for example [5, p. 811]. We have already shown, in Lemma 1(d), that
dk ≡ 1mod n, i.e., d is the multiplicative inverse of k modulo n. Lemma 3 immediately
yields an analogous corollary, which is crucial to the application described in the Enal
section of this paper and taken from [7].

Corollary 1. The number c is the multiplicative inverse of (k − n)modulo k, i.e.,
c(k − n)≡ 1mod k.

3. Some properties of Euclidean strings

Let R(p) denote the reversal (or mirror image) of p, i.e., R(p)=pn−1pn−2 · · ·p1p0.

Lemma 4. If p is a Euclidean string of length at least 2 and with displacement d,
then p=R(�(p))=R(�d(p)) and �(p)=R(p).

Proof. We proceed by induction on the number of applications of the expand and
increment operations in the construction of p. The statement is true for strings of
length 2 and for strings of the form 01k . All strings are derived from some string in
one of these forms, see Fig. 3.
For the induction, suppose p=R(�(p)). The application of the increment operation

obviously preserves the truth of the statement. Let exp(p) denote the expansion of p.
We have assumed that p0p1 · · ·pn−2pn−1 = (pn−1 − 1)pn−2 · · ·p1(p0 + 1).

But

exp(p) = 01p001p1 · · · 01pn−201pn−1 :

J. Ellis et al. / Theoretical Computer Science 301 (2003) 321–340 329

Hence

�(exp(p)) = 11p001p1 · · · 01pn−201pn−1−1 0:

Hence

R(�(exp(p))) = 01pn−1−1 01pn−2 · · · 01p101p0+1

= 01p001p1 · · · 01pn−201pn−1 ;

where the last equation is obtained from the Erst.

Lemma 4 implies that w=p1p2 · · ·pn−2 is a palindrome. Since we eventually show
that Euclidean strings are rational mechanical, that w is a palindrome is also implied by
the fact that the central words are palindromes [15, Corollary 2.2.9]. It also implies that
in any Euclidean string of length at least 3 there is another adjacent pair of elements,
besides those on the ends, whose exchange results in a string rotationally equivalent to
the original. This is the “curious property” noted in the Erst paragraph of this paper.
We make this explicit in the following lemma. Let swap(p) be the string obtained from
p by exchanging elements pn−d−1 and pn−d.

Lemma 5. If p is a Euclidean string with displacement d, then swap(p)= �−d(p).

Proof. From the proof of Lemma 1 we know that pn−d−1 + 1=pn−d. Hence the
exchange of those two elements is equivalent to a sequence of rotations, reversals and
a � operation as expressed in the following equation:

swap(p) = �−d(R(�(R(�d(p))))):

Thus, by Lemma 4,

swap(p) = �−d(R(�(p))):

By Lemma 4, �(p)=R(p), and thus

swap(p) = �−d(R(R(p))) = �−d(p):

In the example illustrated in Fig. 1, the second exchangeable pair is indicated by
the caret symbol.
If p is a binary string then the complement of p, denoted C(p), is the string obtained

from the morphism that sends 0 to 1, and 1 to 0. The following lemma is implicit in
[3, Corollary 3.1].

Lemma 6. If n and k are relatively prime and n¿k, then C(R(En; k))=En;n−k .

Proof. Let p be En; k , where n¿k. The weight of C(p) is n − k. By Lemma 4,
R(p)= �(p)= �d(p). We note that

�(C(R(p))) = �(C(�(p))) = C(p)

330 J. Ellis et al. / Theoretical Computer Science 301 (2003) 321–340

and that

�−d(C(R(p))) = �−d(C(�d(p))) = C(p):

Hence �(C(R(p)))= �−d(C(R(p))); i.e., C(R(p))=En;n−k .

De�nition 4. The morphism �(p) is deEned for all strings of positive integers p. It is
obtained by replacing every integer i in the string by the string 0i−11.

The following theorem shows a relationship between En; k and its “dual” Ek; n.

Theorem 2. If n and k are relatively prime and n¡k, then �(R(En; k))=Ek; n.

Proof. We observe that for any string p of positive integers

�(p) = �−1(C(exp(inc−1(p)))):

Hence,

�(R(p)) = �−1(C(exp(inc−1(R(p)))))

= �−1(C(exp(R(inc−1(p)))))

= �−1(C(�(R(exp(R(inc−1(p))))))) since exp(R(p)) = �(R(exp(p)))

=C(R(exp(inc−1(p)))):

Now, suppose p=En; k where n¡k implying that En; k is a string of positive integers.
From the discussion in Section 2, we have that inc(En; k−n)=En;k and exp(En; k−n)=
Ek; k−n. Hence exp(inc−1(En; k))=Ek; k−n. From Lemma, 6 C(R(Ek; k−n))=Ek; n. Hence
�(R(En; k))=Ek; n.

4. Lyndon words

A Lyndon word is one which is lexicographically less than all of its non-trivial
rotations (conjugates). We use the symbols ≺ and � to denote “is lexicographically
less than” and “greater than”, respectively.
We say that a length n string p is rotationally monotone if there exists an integer

e such that

p≺ �e(p)≺ �2e(p)≺ · · · ≺�(n−1)e(p):

For example, 01011 is rotationally monotone with e=3, since 01011≺ 01101≺ 10101
≺ 10110≺ 11010.

Lemma 7. Every Euclidean string is rotationally monotone.

J. Ellis et al. / Theoretical Computer Science 301 (2003) 321–340 331

Proof. Let p be a Euclidean string of length n and displacement d. Note that

�i(p) = pn−i · · ·pn−2 pn−1 p0︸ ︷︷ ︸p1 · · ·pn−i−1:

If i �=0, then

�i+d(p) = �i(�d(p))

= �i(�(p))

= �i(pn−1p1 · · ·pn−2p0)

=pn−i · · ·pn−2 p0pn−1︸ ︷︷ ︸p1 · · ·pn−i−1:

Since p0 ≺pn−1 we have �i+d(p)≺ �i(p). Thus

�d(p)� �2d(p)� · · ·��(n−1)d(p)� �nd(p) = p

and so p is rotationally monotone with e=−d.

A partial converse of Lemma 7 is also true: every binary string that is rotationally
monotone is a Euclidean string. This can be proven by the same sort of reasoning used
in the proof of Lemma 1.
It follows from Lemma 7 that every Euclidean string is a Lyndon word. This result

was proven earlier in [3, Theorem 3.2] by a di9erent technique.

Corollary 2. Every Euclidean string is a Lyndon word.

De�nition 5. The content of a string is the multiset of characters that occur in the
string. In other words, for the string p=p0p1 · · ·pn−1, the content of p, denoted
content(p), is the multiset {p0; : : : ; pn−1}.

The following lemma is an immediate consequences of the deEnitions of the incre-
ment and expand functions, denoted inc and exp, respectively.

Lemma 8. If p and q are strings, where p≺ q, then exp(p)≺ exp(q) and inc(p)≺
inc(q).

Lemma 9. Among all numeric Lyndon words with the same length n and weight k,
where n¿1 and gcd(n; k)= 1, the lexicographically largest has exactly two symbol
types, �k=n� and
k=n�.

Proof. Every Lyndon word with n¿1 has at least two symbols, and must start with
the smallest symbol in its content. Since gcd(n; k)= 1, the values �k=n� and
k=n�
are distinct. The string �k=n�s
k=n�t , with s+ t= n and t= k mod n, is a Lyndon word,
because it is smaller than any of its non-trivial conjugates. Clearly, no length n Lyndon
word with weight k could have a Erst symbol larger than �k=n�.

332 J. Ellis et al. / Theoretical Computer Science 301 (2003) 321–340

Lemma 10. If q is a binary Lyndon word di6erent from 1, then exp−1 is well de8ned
and exp−1(q) is a Lyndon word.

Proof. It is well deEned since a binary Lyndon word starts with a 0 and ends with a
1 (except for the single character strings 1 and 0; string 1 was excluded, and 0 is a
Exed-point of exp−1).
Now suppose that exp−1(q)= uv, where vu≺ uv. By Lemma 8, we have exp(vu)≺ q.

But this is a contradiction since exp(vu)= exp(v) exp(u) is a rotation of q.

Theorem 3. If p is a Euclidean string and q is a di6erent Lyndon word with the same
length and weight, then q≺ p.

Proof. We argue by induction on the sum of the length and weight of the string.
The theorem is obviously true for strings of length one or two. By Lemma 9, we
may assume that content(p)= content(q), and that content consists of two consecutive
non-negative integers.
If p and q are not binary, then inductively inc−1(q)≺ inc−1(p), from which Lemma 8

gives q≺ p.
If p and q are both binary strings, then by Lemma 10 exp−1(q) exists and is a

Lyndon word. If content(exp−1(q)) �= content(exp−1(p)), then by Lemma 9 exp−1(q)≺
exp−1(p). If content(exp−1(q))= content(exp−1(p)), then inductively, exp−1(q)≺
exp−1(p). Thus, in either case, by Lemma 8, q≺ p.

Lyndon words are counted by length and “weight” in [17]. For example, the number
of q-ary Lyndon words of length n and weight equal to tmod q is

Lq(n; t) =
1
qn

∑
d|n

gcd(d;q)|t

gcd(d; q)#(d)qn=d:

5. Stern–Brocot strings

In this section we demonstrate an interesting correspondence between the Stern–
Brocot tree of reduced fractions and the set of all binary Euclidean strings.
The Stern–Brocot tree [11] is an inEnite construction of the set of all non-negative

fractions k=n between 0 and 1 where k and n are relatively prime. The tree is a rooted
binary tree in which each node in the tree is constructed by using its nearest left
ancestor (L), and nearest right ancestor (R). A nearest left ancestor of a node u is the
ancestor v such that the length of the path v to u is minimum and contains exactly one
right child. A nearest right ancestor of a node u is the ancestor v such that the length
of the path v to u is minimum and contains exactly one left child. If a node x has
L= k ′=n′ and R= k ′′=n′′ then x=(k ′+k ′′)=(n′+n′′). To start this recursive construction,
L is initialized to 0/1 and R is initialized to 1/1. The Stern–Brocot tree is illustrated
in Fig. 4. Traversing the tree “in-order” produces a Farey series [12].

J. Ellis et al. / Theoretical Computer Science 301 (2003) 321–340 333

Fig. 4. The Stern–Brocot tree of reduced fractions.

We now construct an equivalent tree composed of binary strings where each fraction
k=n in the Stern–Brocot corresponds to a length n binary string with k ones. In this
new tree, each string � is the concatenation of its nearest left ancestor L and its nearest
right ancestor R. If L and R are initially assigned the characters 0 and 1, respectively,
then we obtain the corresponding Stern–Brocot fraction by computing the number of
ones in the string along with the length. This tree of strings, denoted S, is illustrated
in Fig. 5. Interestingly, this tree includes all and only the binary Euclidean strings.

Theorem 4. The length n binary string � is Euclidean if and only if � is in S.
Furthermore, if n¿1 where �=LR, then �(LR)= �|L|(LR).

Proof. We proceed by induction on the length of the string. Suppose the length n
binary string � is in S. In the base cases, strings 0, 1 and 01 are Euclidean and
�(01)= 10= �(01).
Now consider two cases depending on whether � is a left child or a right child.
If � is a left child then by construction R=LR′ where R′ is the nearest right ancestor

of R. By induction �(LR′)= �|L|(LR′) which implies that �(LLR′)= �|L|(LLR′). Thus
by deEnition � is Euclidean and �(LR)= �|L|(LR).
If � is a right child then by construction L=L′R where L′ is the nearest left ancestor

of L. By induction �(L′R)= �|L
′|(L′R) which implies that �(L′RR)= �|L|(L′RR). Thus

by deEnition � is Euclidean and �(LR)= �|L|(LR).
Thus every string in S is Euclidean. Since this tree corresponds to the Stern–Brocot

tree, there exists a length n string in S with k ones whenever k and n are relatively
prime. By Theorem 1, this implies that if � is a binary Euclidean string, then it is
in S.

334 J. Ellis et al. / Theoretical Computer Science 301 (2003) 321–340

Fig. 5. The Stern–Brocot tree of Euclidean strings.

Theorem 4 implies that every Euclidean string of length greater than or equal to
two is the concatenation of two shorter Euclidean strings. We note that this result is
similar to Exercise 2.2.3 of [15].

Corollary 3. Every binary Euclidean string En; k where n¿2 and with displacement d
and cost c is the concatenation of the Euclidean strings Ed; c and En−d; k−c.

Proof. By Theorem 4, the displacement of the binary Euclidean string � is |L| where
� is the concatenation of L and R. Since L is binary, the cost of � is the weight
of L.

The tree of binary Euclidean strings, Fig. 5, suggests yet another way of generating
any such string, i.e., by way of a sequence of string concatenations, deEned by a path
down the tree to the node corresponding to the fraction k=n. Corollary 3 implies that
the displacement and cost can be computed simultaneously.
The algorithm uses global variables for current left ancestor L=En1 ; k1 , for the current

right ancestor R=En2 ; k2 and for n and k. The variable L should be initialized to “0”
and R to “1”. The initial call to generate En; k is STERN–BROCOT(0,0,0,1).

procedure STERN–BROCOT (n1; k1; n2; k2: Z+);
local n3; k3 :Z+;

n3 := n1 + n2; k3 := k1 + k2;
if k3=n3¡k=n→R :=LR; STERN–BROCOT(n1; k1; n3; k3);
[] k3=n3 = k=n→ print(LR; n1; k1);
[] k3=n3¿k=n→L :=LR; STERN–BROCOT(n3; k3; n2; k2);
�

J. Ellis et al. / Theoretical Computer Science 301 (2003) 321–340 335

There are exactly n−1 concatenations. Hence, if the strings are represented by linked
lists, the time complexity of the algorithm is linear.
All the ancestors of En; k can be generated by removing the k3=n3 = k=n clause and

placing the print statement after the update to n3 and k3. By Lemma 1(c), the Euclidean
string En; k where n¡k, can be obtained from the binary string En; k mod n by replacing
the zeros by �k=n� and the ones by
k=n�. The displacement is unchanged, and if the
cost of En; k mod n is c then the cost of En; k is d�k=n�+ c.

6. Fibonacci strings

We go on to show a relationship between Fibonacci and Euclidean strings.

De�nition 6. A Fibonacci string is deEned by the morphism b �→ a; a �→ ab.

For example, the Erst seven Fibonacci strings are:

b; a; ab; aba; abaab; abaababa; abaababaabaab:

Let Fi denote the ith Fibonacci string with length fi. It is known that, Fi =Fi−1Fi−2

and hence that fi is the ith Fibonacci number. Fibonacci strings occur as the worst
case inputs to certain algorithms and they possess many interesting properties [6, 10,
13, 14, 18].
Let G=G1; G2; G3; : : : be an inEnite sequence of Euclidean strings where each Gi is

deEned as follows:

Gi =




1 if i = 1;

0 if i = 2;

right(Gi−1) if i ¿ 2 and i odd;

left(Gi−1) if i ¿ 2 and i even;

where right(�) is the right child of � in the Stern–Brocot tree of strings S and left(�)
is the left child of � in the tree S. This construction implies that Gi =Gi−2Gi−1 when
i¿2 and i is even; if i¿2 and i odd, then Gi =Gi−1Gi−2.

Lemma 11. Every Fibonacci string is conjugate to a Euclidean string. If a=0 and
b=1, then

Fi =




Gi if i 6 2;

�−(fi−2+1)(Gi) if i ¿ 2 and i odd;

�−(Gi) if i ¿ 2 and i even:

336 J. Ellis et al. / Theoretical Computer Science 301 (2003) 321–340

Proof. This result is easy to verify for i¡5. For i¿5,

Fi = Fi−1Fi−2

= Fi−2Fi−3Fi−2

= Fi−3Fi−4Fi−3Fi−3Fi−4:

We now consider two cases depending on the parity of i.
If i is odd then since i − 3 is even, Fi−3 = xa for some string x. If we let Fi−4 =y

then we have:

Fi = xayxaxay:

Now, by induction Fi−1 = xayxa= �−1(Gi−1), which implies that Gi−1 = axayx. Sim-
ilarly, Fi−2 = xay= �−(fi−4+1)(Gi−2), which implies that Gi−2 = ayx. Since i is odd,
Gi =Gi−1Gi−2 = axayxayx and �−(fi−2+1)(Gi)= xayxaxay=Fi.
If i is even then since i− 4 is even, Fi−4 = xa for some string x. If we let Fi−3 =y

then we have:

Fi = yxayyxa:

Now, by induction Fi−1 = yxay= �−(fi−3+1)(Gi−1), which implies that Gi−1 = ayyx.
Similarly, Fi−2 =yxa= �−1(Gi−2), which implies that Gi−2 = ayx. Since i is even,
Gi =Gi−2Gi−1 = ayxayyx and �(Gi)= yxayyxa=Fi.

From Lemmas 11 and 2, we see that we can construct the Lyndon word correspond-
ing to any Fibonacci word. One of the referees has pointed out that the results of this
section can be generalized to Sturmian words.

7. Beatty sequences

In this section, we show that Euclidean strings are related to Beatty sequences. A
Beatty sequence is a sequence of the form aj = ��j + �� where �¿1 and j∈Z. See
for example [2,9]. Generally, � and � can be rational or irrational but we will only be
concerned with the case where � is rational and �=0.

Lemma 12. Consider the Beatty sequence comprising the elements in the set aj =
{�(n=k)j� : j∈Z}, where gcd(n; k)= 1. For each integer j there exists an i where
06i6k − 1 such that

id+
⌊n
k
j
⌋
≡ 0mod n;

where d is the multiplicative inverse of k, modulo n.

Proof. Since dk ≡ 1mod n, for any z; z≡ zdk mod n. Hence, for any j

−
⌊n
k
j
⌋
≡

(
nj − k

⌊n
k
j
⌋)

dmod n:

J. Ellis et al. / Theoretical Computer Science 301 (2003) 321–340 337

Consider the term in parentheses, which is a way of writing njmod k. Because n and k
are relatively prime, so also are nmod k and k. Hence the term in parentheses can take
on any integer value in the interval [0; k − 1]. Thus for any j there exists i∈ [0; k − 1]
such that

id+
⌊n
k
j
⌋
≡ 0mod n:

Similarly for any i∈ [0; k − 1] there exists j satisfying this congruence.

Corollary 4. The string p0p1 · · ·pn−1 is En; k where pi = |{j : n−�(n=k)j�−1= i; 06
j¡k}|.

Proof. By Lemma 1(c), pi = |{j : n − 1 + jd≡ imod n; 0 6 j¡k}|, where d is the
displacement of the string. By Lemma 1(d), dk ≡ 1mod n. Hence, by Lemma 12, the
set on the right-hand side of the equation is identical to the set {j : (n − �(n=k)j� −
1)= i; 06j¡k}.

This gives us one more algorithm for computing a Euclidean string. First, initialize
p0p1 · · ·pn−1 to be all zeros. Then execute the following line of code, which uses the
C increment operator.

for j = 0; 1; : : : ; k − 1 do ++pn−�(n=k)j�−1

That is, a Euclidean string is the reversal of the histogram of a rational Beatty sequence.
As previously noted, it is faster to reduce an (n; k) instance where k¿n to the

instance (n; k mod n). After the application of Corollary 4, we construct the correct
string by replacing the 1’s by
k=n� and the 0’s by �k=n�.

8. Relationships with Sturmian sequences

Following [15, p. 59], we deEne the rational mechanical words, for the rational
number 06p=q61 with gcd(p; q)= 1, as the Enite words

tp;q = a0a1 · · · aq−1; t′p;q = a′0a
′
1 · · · a′q−1;

where

ai =
⌊
(i + 1)

p
q

⌋
−
⌊
i
p
q

⌋
; a′i =

⌈
(i + 1)

p
q

⌉
−
⌈
i
p
q

⌉
:

These words are also known as Christo6el words and as characteristic words [1].

Theorem 5. Let n and k be relatively prime with 0¡k¡n. Then En; k = tk; n.

Proof. Recall Corollary 4. If n¿k¿0 then for all indices i, where i∈{n−�(n=k)j�−
1 : 06j6k − 1}, in the Euclidean word En; k we have pi =1, and pi =0 for all other
indices.

338 J. Ellis et al. / Theoretical Computer Science 301 (2003) 321–340

Suppose that pi =0. Then there exists j; 06j¡k − 1 such that

n−
⌊n
k
j
⌋
− 1 ¿ i ¿ n−

⌊n
k
(j + 1)

⌋
− 1:

That is,

n−
⌊n
k
j
⌋
− 1 ¿ i and i ¿ n−

⌊n
k
(j + 1)

⌋
− 1

⇒ n− 1− i ¿
⌊n
k
j
⌋

and
⌊n
k
(j + 1)

⌋
¿ n− i

⇒ n− 1− i ¿
n
k
j and

n
k
(j + 1)¿ n− i

⇒ k − k
n
− ik

n
¿ j and j + 1¿ k − ik

n

⇒ k − j ¿
k
n
(1 + i) and

k
n
i ¿ k − j − 1

⇒
⌊
k
n
(1 + i)

⌋
=

⌊
k
n
i
⌋

⇒
⌊
k
n
(1 + i)

⌋
−
⌊
k
n
i
⌋
= 0:

Thus ai =0 in tk; n. The implications may all be reversed yielding ai =1 in tk; n if
and only if pi =1 is in the Euclidean word En; k . Thus the words are the same.

9. An application

The original motivation for studying these strings came from a graph embedding
problem, in particular, the problem of many-to-one mappings from the nodes of a
two-dimensional grid onto the nodes of a torus and thence into a hypercube. Here we
require that the size of the grid is maximum with respect to the size of the torus and
some speciEed “load”, i.e., the maximum number of grid nodes that can be mapped
onto a single torus node. We ask whether there exists a mapping with dilation one,
i.e., in which any pair of grid nodes connected by an edge are either mapped to the
same torus node, or to the ends of an edge in the torus. A solution to this problem
which uses the analysis of Euclidean strings is given in [7], for loads ¿4.
We give a very informal description of why the Euclidean strings are useful. Consider

Fig. 6. This diagram deEnes a mapping from part of a 13 × 21 grid onto an 8 × 13
torus with load 2, dilation 1. For each element in the grid, the number at each grid
position speciEes the torus row onto which the grid node is to be mapped. The shading
distinguishes torus columns, numbered across the top. Thus for example, the second
grid element in the top row of the grid is to be mapped to row 8, column 1 of the
torus.

J. Ellis et al. / Theoretical Computer Science 301 (2003) 321–340 339

Fig. 6. Grid to torus mapping.

Note that row 1 of the torus is adjacent to row 8 and that column 1 is adjacent
to column 13. In the mapping deEned in Fig. 6, no torus (row, column) pair appears
more than once, so the mapping is load 2. Note also that adjacent grid nodes are either
mapped to the same row in adjacent torus columns, or to adjacent rows in the same
torus column. Hence the mapping is a dilation 1 mapping.
Suppose we chop o9 the “steps” at the right-hand end, as indicated by the “cut” and

insert the detached piece at the left end. Note that the shapes at the ends “match”. If
the numbers also matched (a separate problem) we would have a load 2, dilation 1
embedding of the 13× 16 grid into the 8× 13 torus with load 2, dilation 1.
We may deEne the left and right “proEles” of a torus column in the diagram to be

the sequence of step heights on the left or right of the column taken circularly. For
example, the left proEle of column 2 is (3, 2, 3, 2, 3). Note that each successive proEle
is a rotation of its predecessor. For the cut and paste method to work we want the left
proEle of the leftmost column to match the right proEle of the rightmost column.
The Euclidean string analysis permits us to argue that it is always possible to End a

proEle such that left and right end proEles of the pattern match. The proEle pattern in
Fig. 6 is periodic with period 13. In general, the width of the grid is not a multiple of
this period. Further, it is necessary to “drop” one of more torus nodes from the pattern
because the number of nodes in the grid is usually strictly less than the number of
nodes in the torus times the load.

340 J. Ellis et al. / Theoretical Computer Science 301 (2003) 321–340

Consider the e9ect of dropping one torus node from the proEle. For example, let
us drop the circled element from column 1. One element in the proEle is incremented
and one is decremented by one. The resulting proEle is now (3, 2, 3, 3, 2), which is
a rotation of the unmodiEed proEle and which matches the left proEle of column 6.
The analysis of Euclidean strings establishes that we can always End a proEle with

the properties we need, namely that the result of dropping an element is a proEle that
is rotationally equivalent to the original.

Acknowledgements

The authors are grateful to the referees for carefully reading the paper and point-
ing out that Euclidean strings are related to Sturmian sequences. To our chagrin, we
then discovered that there is a sizeable literature on Sturmian sequences, and on the
Christo9el words in particular, and that some of what we thought we had discovered
was already known, if in a slightly di9erent form. We also thank Je9 Shallit for helpful
discussion.

References

[1] J.-P. Allouche, J.O. Shallit, Automatic Sequences, Cambridge University Press, Cambridge, 2002.
[2] S. Beatty, Problem 3173, Amer. Math. Monthly 33 (1926) 159.
[3] J. Berstel, A. de Luca, Sturmian words, Lyndon words and trees, Theoret. Comput. Sci. 178 (1997)

171–203.
[4] N. Calkin, H.S. Wilf, Recounting the rationals, Amer. Math. Monthly 107 (2000) 360–363.
[5] T.H. Corman, C.E. Leiserson, R.L. Rivest, Introduction to Algorithms, McGraw-Hill, New York, 1990.
[6] X. Droubay, Palindromes in the Fibonacci word, Inform. Process. Lett. 55 (1995) 217–221.
[7] J. Ellis, S. Chow, D. Manke, Embedding grids into cylinders, tori and hypercubes, SIAM J. Comput.,

to appear.
[8] J. Ellis, F. Ruskey, J. Sawada, Euclidean strings, in: L. Brankovic, J. Ryan (Eds.), Proc. Eleventh

Australian Workshop on Combinatorial Algorithms, University of Newcastle, Australia, 2000, pp.
87–92.

[9] A.S. Fraenkel, The bracket function and complementary sets of integers, Canad. J. Math. 21 (1967)
6–27.

[10] A.S. Fraenkel, J. Simpson, The exact number of squares in Fibonacci words, Theoret. Comput. Sci. 218
(1999) 95–106.

[11] R.L. Graham, D.E. Knuth, O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 1989.
[12] G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers, Clarendon Press, Oxford, 1960.
[13] C.S. Iliopoulos, D. Moore, W.F. Smyth, A characterization of the squares in a Fibonacci string, Theoret.

Comput. Sci. 172 (1–2) (1997) 281–291.
[14] C.S. Iliopoulos, D. Moore, W.F. Smyth, The covers of a circular Fibonacci string, J. Combin. Math.

Combin. Comput. 26 (1998) 227–236.
[15] M. Lothaire, Algebraic Combinatorics on Words, Cambridge University Press, Cambridge, 2002.
[16] A. de Luca, F. Mignosi, Some combinatorial properties of Sturmian words, Theoret. Comput. Sci. 136

(1994) 361–385.
[17] F. Ruskey, C.R. Miers, J. Sawada, The number of Lyndon words and irreducible polynomials of given

trace, SIAM J. Discrete Math. 14 (2001) 240–245.
[18] W. Zhi-Xiong, W. Zhi-Ying, Some properties of the singular words of the Fibonacci word, STeminaire

Lotharingien de Combinatoire, 30, 1993.

	Euclidean strings
	Introduction
	Definitions
	Organization

	Characterization and generation
	Some properties of Euclidean strings
	Lyndon words
	Stern--Brocot strings
	Fibonacci strings
	Beatty sequences
	Relationships with Sturmian sequences
	An application
	Acknowledgements
	References

