
Ranking and Unranking Fixed-Density Necklaces and Lyndon
Words

Patrick Hartman1 and Joe Sawada2

1 School of Computer Science, University of Guelph, Canada,
2 School of Computer Science, University of Guelph, Canada, jsawada@uoguelph.ca

Abstract. We present the first polynomial-time ranking and unranking algorithms for fixed-density necklaces and Lyn-
don words. Using the unit-cost RAM model, the ranking algorithm runs in O(n3) time and the unranking algorithm runs
in O(n4) time. By applying the ranking algorithms, the number of fixed-density necklaces and Lyndon words with a
given prefix can also be computed in O(n3) time.

1 Introduction

Given a list of distinct combinatorial objects α1, α2, . . . , αm the rank of αi is i. The process of deter-
mining the rank of an object in a specific listing is called ranking. The process of determining αi for a
given i is called unranking. For both problems, it is assumed that the actual objects and their listings
are not stored in memory. Thus, the discovery of polynomial-time ranking and unranking algorithms is
a fundamental pursuit within combinatorics. Indeed, for most elementary combinatorial objects, there
exist exhaustive listings for which efficient ranking and unranking algorithms are known [6]. Only re-
cently, however, were such algorithms discovered for listings of necklaces [5] and Lyndon words [4]
of length n. The results were discovered independently and they each apply a similar strategy that re-
quires the construction of a finite automaton to enumerate a related object. This enumeration step was
simplified in [9] using a partition-based approach, giving rise to a more practical implementation.

The main result of this paper is the first polynomial-time ranking and unranking algorithms for bi-
nary necklaces and Lyndon words of length n and a fixed-density (the number of 1s) d. The algorithms
we present will apply to these objects when they are listed in lexicographic order. The algorithms
follow the same strategy used in both [4, 5], but applying the partition-based approach from [9].

Example 1 The lexicographic listing of the 14 binary necklaces with length n = 9 and density d = 4:

1. 000001111 6. 000101011 11. 001001011
2. 000010111 7. 000101101 12. 001001101
3. 000011011 8. 000110011 13. 001010011
4. 000011101 9. 000110101 14. 001010101.
5. 000100111 10. 000111001

A ranking algorithm to determine the rank of 001001011 will return 11. An unranking algorithm to determine the necklace at
rank 11 will return 001001011.

Previously, several papers focussed on the efficient generation of fixed-density necklaces and Lyn-
don words but without any related ranking or unranking results [7, 8, 10, 11]. Enumeration results with
respect to fixed-density necklaces and Lyndon words were studied in [2].

2

In the next subsection we provide the formal definitions of our primary objects, fixed-density neck-
laces and Lyndon words, along with some related notation. In Section 2 we present a practical O(n3)-
time algorithm to rank fixed-density necklaces and Lyndon words. Through repeated application of the
ranking algorithm, an O(n4)-time algorithm to unrank fixed-density necklaces and Lyndon words is
presented in Section 3. In Section 4 anO(n3)-time algorithm is presented to count the number of fixed-
density necklaces or Lyndon words with a given prefix. A complete C implementation of the algorithms
is available in the appendix. For all algorithms, the unit-cost RAM model is assumed. For a word-RAM
implementation, the reader is encouraged to consider the techniques used in [4] to potentially obtain a
more efficient algorithm than the one presented in this paper.

1.1 Background and Notation

All strings in this paper are considered to be binary. A string a1a2 · · · an is lexicographically less than
a string b1b2 · · · bm if either:

1. a1a2 · · · aj−1 = b1b2 · · · bj−1 and aj < bj for some j ≤ n and j ≤ m where j ≥ 1, or
2. a1a2 · · · an = b1b2 · · · bn and n < m.

A necklace is defined as the lexicographically smallest string in an equivalence class of strings under
rotation. The necklace representative of a string α, denoted neck(α), is its lexicographically smallest
rotation. Since every rotation of a necklace α is greater than or equal to α, we obtain the following
remark that will be used later.

Remark 1. If α = a1a2 · · · an is a necklace where aj = 0 for some 1 ≤ j ≤ n, then aiai+1 · · · aj−11 >
α for 1 ≤ i ≤ j.

The following property of necklaces will also be applied later, in Section 2.1.

Lemma 1. Let α = a1a2 · · · an be a necklace where aj = 1 for some 1 ≤ j ≤ n and let β =
b1b2 · · · bia1a2 · · · aj−10 where b1b2 · · · bi ≤ a1a2 · · · ai for some i < n. If i + j ≤ n then β < α and if
i+ j > n then the length n prefix of β is less than or equal to α.

Proof. Suppose i + j ≤ n. If b1b2 · · · bi < a1a2 · · · ai then the result is trivially true. If b1b2 · · · bi =
a1a2 · · · ai then because α is a necklace a1a2 · · · aj ≤ ai+1ai+2 · · · aj+i. Thus, a1a2 · · · aj−10 <
ai+1ai+2 · · · aj+i and hence β < α. If i + j > n then from the previous arguments either β < α
or α is a prefix of β. Together this implies that the length n prefix of β is less than or equal to α.

A string α = a1a2 · · · an is periodic if there exists a string β such that α = βj (where exponentiation
denotes repetition) for some j > 1; otherwise we say α is aperiodic (or primitive). A Lyndon word is
an aperiodic necklace. The density of a string α, denoted den(α), is the number of 1s in α. Let N(n, d)
denote the set of necklaces of length n and density d, and let L(n, d) denote the set of Lyndon words of
length n and density d. Let the cardinality of these sets be denoted byN(n, d) and L(n, d) respectively.

From [2], the number of fixed-density necklaces and Lyndon words are given by the following
formulae:

N(n, d) =
1

n

∑
i

∣∣gcd(n,d) φ(i)
(
n/i

d/i

)
,

L(n, d) =
1

n

∑
i

∣∣gcd(n,d) µ(i)
(
n/i

d/i

)
,

3

where φ(i) denotes Euler’s totient function and µ(i) is the Möbius function. The first formula is a direct
result of Burnside’s Lemma, and the latter result applies Möbius inversion. For these formulae, the
underlying objects in question are all

(
n
d

)
binary strings with length n and density d. Similar formulae

can also be derived for subsets of these strings that are closed under rotation, such as the ones we define
in the following section.

2 Ranking Fixed-Density Necklaces and Lyndon Words

In this section, polynomial-time ranking algorithms are developed for N(n, d) and L(n, d) when listed
in lexicographic order.

Given a binary string α = a1a2 · · · an, let Tα(n, d) denote the set of all fixed-density binary strings
of length n and density d whose necklace representatives are less than or equal to α. Note that α itself
is not required to have density d. This set is closed under rotation. Let the cardinality of Tα(n, d) be
denoted by Tα(n, d).

Example 2 Let α = 011110 and consider Tα(6, 3) grouped by rotational equivalence:

000111 001011 001101 010101
100011 100101 100110 101010
110001 110010 010011
111000 011001 101001
011100 101100 110100
001110 010110 011010

Note that Tα(6, 3) = 20. The first string in each column (highlighted) is a necklace. Note that
010101 is periodic and hence not a Lyndon word.

Remark 2. Let α be an arbitrary binary string of length n. Let β be the largest binary necklace of length
n that is less than or equal to α. Let γ be the largest necklace in N(n, d) that is less than or equal to β.
Then Tα(n, d) = Tβ(n, d) = Tγ(n, d).

Let Nα(n, d) and Lα(n, d) denote the set of necklaces and Lyndon words of length n and density d,
respectively, that are lexicographically less than or equal to α. Let RankN α(n, d) and RankLα(n, d)
denote the cardinality of these sets. By applying Burnside’s Lemma and Möbius inversion, these values
can be computed using the following formulae when α ∈ N(n, d):

RankN α(n, d) =
1

n

∑
i

∣∣gcd(n,d) φ(i) Ta1a2···an/i(
n
i
, d
i
), (1)

RankLα(n, d) =
1

n

∑
i

∣∣gcd(n,d) µ(i) Ta1a2···an/i(
n
i
, d
i
). (2)

The rank of a necklace α in N(n, d), with respect to lexicographic order, is given by RankN α(n, d).
Similarly, the rank of a Lyndon word α in L(n, d), with respect to lexicographic order, is given by
RankLα(n, d).

4

Example 3 Consider a necklace α = 010101. Observe from Example 2 that RankN α(6, 3) =
4 and RankLα(6, 3) = 3. Given that T01(2, 1) = {01,10}, the calculations from their formulae
in (1) and (2) are as follows:

RankNα(6, 3) =
1

6
(φ(1) · Tα(6, 3) + φ(3) · T01(2, 1)) =

1

6
(1 · 20 + 2 · 2) = 4,

RankLα(6, 3) =
1

6
(µ(1) · Tα(6, 3) + µ(3) · T01(2, 1)) =

1

6
(1 · 20 + (−1) · 2) = 3.

The following lemma proves that the formulae in equations (1) and (2) also hold if α is an arbitrary
necklace.

Lemma 2. Let α be a binary necklace of length n. Then RankN α(n, d) is given by equation (1) and
RankLα(n, d) is given by equation (2).

Proof. Let α = a1a2 · · · an be a binary necklace and let β = b1b2 · · · bn be the largest necklace
in N(n, d) that is less than or equal to α. From Remark 2, RankN α(n, d) = RankN β(n, d) and
RankLα(n, d) = RankLβ(n, d). Now, suppose there exists an i that divides n such that Tβi(

n
i
, d
i
) 6=

Tαi(
n
i
, d
i
), where αi = a1a2 · · · an/i and βi = b1b2 · · · bn/i. Then there must exist some necklace γ of

length n/i and density d/i that is greater than βi but less than or equal to αi. But then γi is a necklace
of length n and density d that is greater than β and less than or equal to α (since γi is the lexicograph-
ically least necklace of length n with prefix γ), a contradiction. Thus for each i that divides n we have
Tβi(

n
i
, d
i
) = Tαi(

n
i
, d
i
). Therefore the formula for equation (1) will produce the same results for both α

and β respectively, as desired. The same holds for equation (2).

The formulae in equations (1) and (2) may not hold if α is an arbitrary string. To see this consider
α = 010000. The formula from (1) yields

1

6
(φ(1) · Tα(6, 3) + φ(3) · T01(2, 1)) =

1

6
(1 · 18 + 2 · 2) = 22/6,

instead of 3. However, from Remark 2, we can compute RankN α(n, d) for an arbitrary binary string α
by computing RankN β(n, d), where β is the largest necklace of length n that is less than or equal to
α. A similar method holds for RankLα(n, d).

Let α = a1a2 · · · an. Let the function LARGESTNECKLACE(α, n) return the largest binary necklace
β of length n that is less than or equal to α (such a necklace always exists since 0n is a necklace). Based
on the previous discussion, Algorithm 1 will compute the values RankN α(n, d) and RankLα(n, d),
respectively, for an arbitrary binary string α of length n.

Theorem 1. The rank of a fixed-density necklace (or Lyndon word) α = a1a2 · · · an in the lexico-
graphic ordering of N(n, d) (or L(n, d)) can be determined in O(n3) time.

The proof of this theorem relies on the following results:

– The function LARGESTNECKLACE(α, n) can be implemented in O(n2) time [9].
– In Section 2.1 an O(n3) algorithm is developed to compute Tα(n, d).
– For any real number r > 1 we have

∑
d|n d

r = O(nr), see e.g. [4].
– The functions φ(n) and µ(n) can be computed in O(n) time, see e.g. [3].

Together, these three results imply that the functions RANKN(α, n, d) and RANKL(α, n, d) run in
O(n3) time.

5

Algorithm 1 Computing the number of necklaces (Lyndon words) of length n and density d that are
less than or equal to α = a1a2 · · · an.
1: function RANKN(α, n, d) returns integer
2: r ← 0
3: b1b2 · · · bn ← LARGESTNECKLACE(α, n)
4: for i ∈ divisors of gcd(n, d) do r ← r + φ(i) · Tb1b2···bn/i

(n
i
, d
i
)

5: return r/n

6: function RANKL(α, n, d) returns integer
7: r ← 0
8: b1b2 · · · bn ← LARGESTNECKLACE(α, n)
9: for i ∈ divisors of gcd(n, d) do r ← r + µ(i) · Tb1b2···bn/i

(n
i
, d
i
)

10: return r/n

2.1 Computing Tα(n, d)

In this subsection we present an efficient algorithm to compute Tα(n, d) for an arbitrary binary string
α of length n. Recall that LARGESTNECKLACE(α, n) computes the lexicographically largest necklace
β that is less than or equal to α. From Remark 2, Tα(n, d) = Tβ(n, d). Thus, for the discussion in the
remainder of this section, we make the assumption that α is a necklace.

The partition-based approach we present is similar to the one used in [9], but in our case we have
an added density constraint. Before presenting the algorithm, we first study a special set.

A Special Set Bα(t, j, d) Let α = a1a2 · · · an be a necklace. Let Bα(t, j, d) denote the set of binary
strings of length t with prefix a1a2 · · · aj , density d, and no suffix that is less than or equal to α. Let the
cardinality of this set be denoted Bα(t, j, d). When j = 0, observe that there is no prefix restriction on
the string. In the cases that d < den(a1a2 · · · aj) or d > t−j+den(a1a2 · · · aj), the density constraint
is not attainable and thus Bα(t, j, d) = 0. This includes the case when d is negative.

Example 4 Let α = 00010011. Consider the set Bα(6, 1, 3) partitioned at the (j+1)st = 2nd

element (underlined):
000111 010011
001011 010101
001101 011001

Notice that no string ending with a 0 is in Bα(6, 1, 3) since its length 1 suffix is lexicographically
less than α. Observe that the contents of the first column correspond to the set Bα(6, 2, 3), and the
contents of the second column following the underlined element correspond to the set Bα(4, 0, 2).
Thus,

Bα(6, 1, 3) = Bα(6, 2, 3) ∪ 01 ·Bα(4, 0, 2),

where the notation α · S denotes the set obtained by prepending the string α to each string in the
set S. From this it follows that:

Bα(6, 1, 3) = Bα(6, 2, 3) +Bα(4, 0, 2).

Based on the recursive structure observed in the above example, we present an enumeration formula
for Bα(t, j, d) where 0 ≤ j ≤ t ≤ n and 0 ≤ d ≤ t. For t=j=d=0, we define Bε(0, 0, 0) = 1 by

6

accounting for the empty string. For t > 0, Bα(t, t, d) = 0 since the suffix a1a2 · · · at is a prefix of
α and hence is less than or equal to α. In the remaining case where t > j, consider a partition of
Bα(t, j, d) based on the symbol in position j+1. For any string in this set the (j+1)st symbol must be
greater than or equal to aj+1 because otherwise the suffix starting from the first index would be less
than α. Now observe that:

– If the j+1st symbol is aj+1, then the number of such strings in Bα(t, j, d) is Bα(t, j+1, d).
– If the j+1st symbol is greater than aj+1 (which will be possible only if aj+1 = 0), then any suffix

starting at index 1, 2, . . . , j + 1 is larger than α from Remark 1. Thus, the length t− j − 1 suffix of
such a string in Bα(t, j, d) can be an arbitrary element of Bα(t−j−1, 0, d−den(a1 · · · aj)−1).

Thus, for 0 ≤ j ≤ t ≤ n and d ≤ n:

Bα(t, j, d) =


1 if t=j=d=0,
0 if (t=j and t > 0) or (t=j=0 and d 6= 0),
Bα(t, j+1, d) if 0 ≤ j < t and aj+1 = 1,
Bα(t, j+1, d) +Bα(t−j−1, 0, d−den(a1 · · · aj)−1) if 0 ≤ j < t and aj+1 = 0.

By applying dynamic programming, these values can easily be computed in O(n3) time as presented
in Algorithm 2. In this algorithm, the last two cases of the recurrence are combined. As an additional
simplification, when d−den(a1a2 · · · aj)−1 < 0 note that repeated application of the recurrence yields
Bα(t, j, d) = 0.

Partitioning Tα(n, d) Recall our goal is to compute Tα(n, d) where α is a necklace. Our first step
is to partition the strings ω = w1w2 · · ·wn ∈ Tα(n, d) into subsets based on the smallest index t such
that

wtwt+1 · · ·wnw1w2 · · ·wt−1 ≤ α.

Such an index t exists since neck(ω) ≤ α by the definition of Tα(n, d). We further partition
each of these subsets based on the largest integer 0 ≤ j ≤ n such that a1a2 · · · aj is a prefix of
wtwt+1 · · ·wnw1w2 · · ·wt−1. We denote the set of strings in each subpartition by Aα(t, j, d), and the
cardinality of Aα(t, j, d) by Aα(t, j, d). Thus,

Tα(n, d) =
n∑
t=1

n∑
j=0

Aα(t, j, d).

Example 5 Let α = 0010101. The Tα(7, 3) = 35 strings can be partitioned into subsets
Aα(t, j, 3) for 0 ≤ j ≤ 7 and 1 ≤ t ≤ 7. Each respective substring a1a2 · · · aj is underlined.

Aα(t, j, 3) t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

00 00111 1 00 0011 11 00 001 111 00 00 0111 00 0 00111 00 0 01011 0
j = 2 00 01011 1 00 0101 11 00 010 011 00 01 1011 00 0 01011 00 0 01101 0

00 01101 1 00 0110 01 00 011 101 00 01 1101 00 0 01101 00
00 01110

j = 4 0010 011 1 0010 01 11 0010 0 011 0010 0 011 001 10 011 00 010 011 0

j = 7 0010101 1 001010 01 00101 101 0010 0101 001 10101 00 010101 0

For j ∈ {0, 1, 3, 5, 6} note that Aα(t, j, 3) = ∅.

7

We have reduced the problem of computing Tα(n, d) to that of computing Aα(t, j, d). When j = n,
the set Aα(1, n, d) ∪ Aα(2, n, d) ∪ · · · ∪ Aα(n, n, d) contains the unique rotations of α when α has
density d; otherwise it is empty. The size of this set can easily be computed inO(n)-time using standard
methods [1]. For j < n, each set Aα(t, j, d) falls into one of the following two cases depending on
whether the symbol x following the substring a1a2 · · · aj in question is involved in the wraparound. By
the definition of T(α, n, d), for each string ω ∈ Aα(t, j, d) we have neck(ω) < α. Thus x must be less
than aj+1 and hence x = 0 and aj+1 = 1.

Case 1 (t+ j ≤ n). Each ω ∈ Aα(t, j, d) is of the form σ a1a2 · · · aj 0 τ where:

– σ ∈ Σt−1 such that every non-empty suffix is larger than α (by Lemma 1 and definition of t)3,
– τ ∈ Σn−t−j .

To satisfy the density constraint d, the density of the strings σ and τ when added together must be
d−den(a1 · · · aj). Recall from Section 2.1 that the number of possibilities for σ with density i is given
by Bα(t−1, 0, i). Thus, in this case, we have:

Aα(t, j, d) =

d−den(a1···aj)∑
i=0

Bα(t−1, 0, i) ·
(

n− t− j
d−den(a1 · · · aj)− i

)
.

Recall that if i < 0 or if i > t− 1, then by definition Bα(t−1, 0, i) = 0.

Case 2 (t+ j > n). Each ω ∈ Aα(t, j, d) is of the form an−t+2 · · · aj−1aj 0σ a1a2 · · · an−t+1 where:

– σ ∈ Σn−j−1, and
– an−t+2 · · · aj−1aj 0σ has every non-empty suffix larger than α (by Lemma 1 and definition of t)4.

Let δ = an−t+2 · · · aj−1aj . Since δ is a substring of the necklace α, any suffix of δ must be larger
than or equal to the prefix of α with the same length (by the definition of a necklace). Therefore we
determine the longest suffix of δ that is equal to the prefix of α with the same length. If this suffix
has length s, then aj−s+1 · · · aj−1aj = a1a2 · · · as. This means any suffix of ω starting from an index
less than or equal to |δ| − s is larger than α. Now, if as+1 = 1, then aj−s+1 · · · aj−1aj0 < α, which
contradicts the definition of t in Aα(t, j, d). Otherwise, if as+1 = 0, then a1a2 · · · as0σ ∈ Bα(n− j +
s, s+1, d−den(a1 · · · aj)+den(a1 · · · as)). Thus, since we already determined that aj+1 = 1, we have:

Aα(t, j, d) =

{
Bα(n− j + s, s+ 1, d−den(a1 · · · aj)+den(a1 · · · as)) if aj+1 > as+1,

0 otherwise.

An O(n3)-time Algorithm to Compute Tα(n, d) Given an arbitrary binary string α = a1a2 · · · an,
the function T(α, n, d) in Algorithm 2 computes Tα(n, d) in O(n3) time. The first step is to re-assign
α to LARGESTNECKLACE(α, n). Given that α is a now a necklace, we can apply the formulae derived
in the previous subsection. Let suf α(i, j) denote the length of the longest suffix of aiai+1 · · · aj that is
equal to a prefix of α. The algorithm includes precomputation of the values suf α(i, j) for 2 ≤ i ≤ j ≤
n as well as the values Bα(t, j, d) using a standard dynamic programming approach. Note the values
den(a1a2 · · · aj) for each 1 ≤ j ≤ n can be precomputed in O(n) time.

Lemma 3. Tα(n, d) can be computed in O(n3) time for any binary string α of length n.

This completes the proof of Theorem 1.
3 Note that no suffix will equal α since t− 1 < n.
4 Note that no suffix will equal α since |an−t+2 · · · aj−1aj 0σ| < n.

8

Algorithm 2 Computing Tα(n, d) for a given binary string α = a1a2 · · · an.

1: function T(α, n, d) returns integer

2: α← LARGESTNECKLACE(α, n)

3: . Precompute Bα(t, j, d) using dynamic programming
4: Bα(0, 0, 0)← 1
5: for t from 1 to n do
6: for i from 0 to n do
7: Bα(t, t, i)← 0
8: for j from t− 1 down to 0 do
9: if i− den(a1 · · · aj)− 1 < 0 then Bα(t, j, i)← 0

10: else Bα(t, j, i)← Bα(t, j+1, i) + (1− aj+1) ·Bα(t−j−1, 0, i−den(a1 · · · aj)−1)

11: . Precompute suf α(i, j) for 2 ≤ i ≤ j ≤ n
12: for i from 2 to n do
13: z ← i
14: for j from i to n do
15: if aj > aj−z+1 then z ← j + 1

16: suf α(i, j)← j − z + 1

17: . Compute Tα(n, d)
18: if den(α) = d then total← the number of unique rotations of α . The case when j = n
19: else total← 0
20: for t from 1 to n do
21: for j from 0 to n−1 do
22: if j + t ≤ n then
23: if aj+1 > 0 then
24: for i from 0 to d− den(a1 · · · aj) do total← total +Bα(t− 1, 0, i) ·

(
n−t−j

d−den(a1···aj)−i

)
25: else
26: if n−t+2 > j then s← 0
27: else s← suf α(n−t+2, j)

28: d′ ← d−den(a1 · · · aj)+den(a1 · · · as)
29: if aj+1 > as+1 and d′ ≥ 0 then total← total +Bα(n−j+s, s+1, d′)

30: return total

3 Unranking Necklaces and Lyndon Words

The unranking problem for fixed-density necklaces is to find the necklace α in the lexicographic or-
dering of N(n, d) with rank r, where 1 ≤ r ≤ N(n, d). Let UNRANK(n, d, r) denote this necklace.
Starting from 1n successive calls to RANKN(α, n, d) can be used to determine each bit of α as illus-
trated in Algorithm 3. A similar approach works for Lyndon words using RANKL(α, n, d) instead of
RANKN(α, n, d).

Algorithm 3 An O(n4)-time unranking algorithm for fixed-density necklaces.
1: function UNRANK(n, d, r) returns fixed-density necklace
2: α = a1a2 · · · an ← 1n

3: for i from 1 to n do
4: ai ← 0
5: if r > RANKN(α, n, d) then ai ← 1

6: return α

9

Theorem 2. The fixed-density necklace (Lyndon word) at rank r in the lexicographic order of fixed-
density necklaces (Lyndon words) of length n respectively can be determined in O(n4) time.

4 Fixed-Density Necklaces (Lyndon Words) with a Given Prefix

Consider a binary string α = a1a2 · · · aj for 1 ≤ j ≤ n and assume 0 ≤ d ≤ n. Let preN α(n, d)
denote the number of necklaces in N(n, d) with prefix α and let preLα(n, d) denote the number of
Lyndon words in L(n, d) with prefix α. In this section we describe a polynomial-time algorithm to
compute preN α(n, d) and preLα(n, d).

First, consider the special case when j = n. If α ∈ N(n, d) then preN α(n, d) = 1; otherwise
preN α(n, d) = 0. Similarly, if α ∈ L(n, d) then preLα(n, d) = 1; otherwise preLα(n, d) = 0. Testing
whether or not a string is a necklace or a Lyndon word can be determined in O(n) time using standard
techniques [1]. Therefore this case can be resolved in O(n) time.

Now assume that j < n. If d = 0, then preLα(n, d) = 0. Also preN α(n, d) = 0, unless α = 0j in
which case preN α(n, d) = 1. Otherwise assume that 1 ≤ d ≤ n. The largest binary string of length n
with α as a prefix is δ = α1n−j . The smallest binary string of length n with α as a prefix is γ = α0n−j .
Since d ≥ 1, γ is not a necklace. Thus,

preN α(n, d) = RankNδ(n, d)−RankNγ(n, d).

Similarly, for Lyndon words we have:

preLα(n, d) = RankLδ(n, d)−RankLγ(n, d).

Theorem 3. preN α(n, d) and preLα(n, d) can be computed in O(n3) time for 0 ≤ d ≤ n.

5 Summary and Future Work

We have presented the first polynomial-time algorithms to rank and unrank binary fixed-density neck-
laces and Lyndon words of length n listed in lexicographic order. By applying a similar enumeration
framework, it appears that binary unlabeled necklaces, which are strings with equivalence classes un-
der both rotation and complementing of the alphabet symbols, can also efficiently be ranked/unranked.
It remains an open problem to efficiently rank/unrank bracelets, which are strings with equivalence
under both rotation and string reversal.

A C implementation of our algorithms for n up to 66 is provided in the appendix. When n = 66,
the largest integer computed will be stored in the variable r in the RANK function when d = 33. It
will have value equal to n times N(66, 33). This number is less than the largest available integer of
263 using the long long int data type to store the integers. For simplicity, the values of φ(n) and
µ(n) are pre-computed for n up to 66.

6 Acknowledgements

We would like to commend the anonymous reviewers who have helped improve the accuracy and
presentation of this paper. Joe Sawada is supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC) grant RGPIN 298335-2012

10

References
1. K. S. Booth. Lexicographically least circular substrings. Information Processing Letters, 10(4/5):240–242, 1980.
2. E. N. Gilbert and J. Riordan. Symmetry types of periodic sequences. Illinois J. Math., 5(4):657–665, 12 1961.
3. R. Graham, D. Knuth, and O. Patashnik. Concrete Mathematics: A Foundation for Computer Science. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 2nd edition, 1994.
4. T. Kociumaka, J. Radoszewski, and W. Rytter. Efficient ranking of Lyndon words and decoding lexicographically minimal de Bruijn

sequence. SIAM J. Discrete Math, 30(4):2027–2046, 2016.
5. S. Kopparty, M. Kumar, and M. Saks. Efficient indexing of necklaces and irreducible polynomials over finite fields. Theory of

Computing, 12(7):1–27, 2016.
6. F. Ruskey. Combinatorial generation. Preliminary working draft. University of Victoria, Victoria, BC, Canada, 11:20, 2003.
7. J. Sawada and F. Ruskey. An efficient algorithm for generating necklaces with fixed density. SIAM J. Comput, 29:671–684, 1999.
8. J. Sawada and A. Williams. A Gray code for fixed-density necklaces and Lyndon words in constant amortized time. Theoretical

Computer Science, 502:46 – 54, 2013. Generation of Combinatorial Structures.
9. J. Sawada and A. Williams. Practical algorithms to rank necklaces, Lyndon words, and de Bruijn sequences. Journal of Discrete

Algorithms, 43:95–110, 2017.
10. T. Ueda. Gray codes for necklaces. Discrete Math., 219:235–248, 2000.
11. T. M. Wang and C. D. Savage. A gray code for necklaces of fixed density. SIAM J. Discrete Math, 9:654–673, 1997.

11

Appendix - C code

//===
// Ranking and unranking algorithms for binary fixed-density necklaces and
// Lyndon words
//
// Program by Patrick Hartman and Joe Sawada 2016, updated Oct 2017
//===
#include <stdio.h>
#include <string.h>
#define MAX 67 /* max length of string (-1) */

// Precomputed values up to n=66
int mu[MAX] = { 0,1,-1,-1,0,-1,1,-1,0,0,1,-1,0,-1,1,1,0,-1,0,-1,0,

1,1,-1,0,0,1,0,0,-1,-1,-1,0,1,1,1,0,-1,1,1,0,-1,
-1,-1,0,0,1,-1,0,0,0,1,0,-1,0,1,0,1,1,-1,0,-1,1,0,
0,1,-1};

int phi[MAX] = { 0,1,1,2,2,4,2,6,4,6,4,10,4,12,6,8,8,16,6,18,8,12,
10,22,8,20,12,18,12,28,8,30,16,20,16,24,12,36,18,
24,16,40,12,42,20,24,22,46,16,42,20,32,24,52,18,
40,24,36,28,58,16,60,30,36,32,48,20};

long long int choose[MAX][MAX], B[MAX][MAX][MAX];
int D[MAX],suf[MAX][MAX], NECKLACE=0, LYNDON=0;

//===
void PrintString(int a[], int n) {

for (int i=1; i<=n; i++) printf("%d", a[i]);
printf("\n");

}
//=================================
// Compute (n choose r) up to n=max
//=================================
void ComputeChoose(int max) {

int n,r;

for (n=0; n<=max; n++) {
for (r=0; r<=max; r++) {

if (r > n) choose[n][r] = 0;
else if (n == r || r == 0) choose[n][r] = 1;
else choose[n][r] = choose[n-1][r-1] + choose[n-1][r];

}
}

}
//=======================================
// Compute D[i] = den(a[1..i]) for i=1..n
//=======================================
void ComputeD(int a[], int n) {

D[0] = 0;
for (int i=1; i<=n; i++) {

if (a[i] > 0) D[i] = D[i-1] + 1;
else D[i] = D[i-1];

}
}
//==
// Compute B[t][j][d] for 0<=j<=t<=n and 0<=d<=t
//==
void ComputeB(int a[], int n) {

B[0][0][0] = 1;
for (int t=1; t<=n; t++) {

for (int d=0; d<=n; d++) {
B[t][t][d] = 0;
for (int j=t-1; j>=0; j--) {

if (d - D[j] - 1 < 0) B[t][j][d] = 0;
else B[t][j][d] = B[t][j+1][d] + (1 - a[j+1]) * B[t-j-1][0][d-D[j]-1];

12

}
}

}
}
//===
// Compute suffix function suf[i][j] for 2<=i<=j<=n
//===
void ComputeSuf(int a[], int n) {

int p;

for (int i=2; i<=n; i++) {
p = i - 1;
for (int j=i; j<=n; j++) {

if (a[j] > a[j-p]) p = j;
suf[i][j] = j - p;

}
}

}
//===
// Find the longest prefix of a[1..n] that is a Lyndon word
//===
int Lyn(int a[], int n) {

int i,p=1;

for (i=2; i<=n; i++) {
if (a[i] < a[i-p]) return p;
if (a[i] > a[i-p]) p = i;

}
return p;

}
//===
// Determine whether or not a[1..n] is a necklace
//===
int IsNecklace(int a[], int n) {

int p=1;

for (int i=2; i<=n; i++) {
if (a[i] < a[i-p]) return 0;
if (a[i] > a[i-p]) p = i;

}
if (n%p == 0) return 1;
return 0;

}
//===
// Compute the largest necklace neck[1..n] <= a[1..n]
//===
void LargestNecklace(int a[], int n, int neck[]) {

int i,p;

for (i=1; i<=n; i++) neck[i] = a[i];
while (!IsNecklace(neck,n)) {

p = Lyn(neck,n);
neck[p]=0;
for (i=p+1; i<=n; i++) neck[i]=1;

}
}
//==
// Precompute D, B, and suf. Compute cardinality of T_a(n,d)
//==
long long int T(int a[], int n, int d) {

long long int total=0;
int i,j,s,t,neck[MAX];

LargestNecklace(a,n,neck);
ComputeD(neck,n);
ComputeB(neck,n);
ComputeSuf(neck,n);

if (D[n] != d) total = 0;

13

else total = Lyn(neck, n);

for (t=1; t<=n; t++) {
for (j=0; j<=n-1; j++) {

if (t+j <= n) {
if (neck[j+1] > 0) {

for (i=0; i<=d-D[j]; i++) total += B[t-1][0][i] * choose[n-t-j][d-D[j]-i];
}

}
else{

if (n-t+2 > j) s = 0;
else s = suf[n-t+2][j];
if (neck[j+1] > neck[s+1] && d-D[j]+D[s] >=0) total += B[n-j+s][s+1][d-D[j]+D[s]];

}
}

}
return total;

}
//===
// Compute the number of fixed-density necklaces or Lyndon words <= a[1..n]
//===
long long int Rank(int a[], int n, int d) {

long long int r=0;
int neck[MAX];

LargestNecklace(a,n,neck);

for (int i=1; i<=n; i++) {
if (n % i == 0 && d % i == 0) {

if (NECKLACE) r += phi[i] * T(neck, n/i, d/i);
else if (LYNDON) r += mu[i] * T(neck, n/i, d/i);

}
}
return r/n;

}
//==
// Return the fixed-density necklace or Lyndon word a[1..n] at rank r in lex order
//==
int Unrank(long long int r, int n, int d, int a[]) {

// Start with string with largest rank
for (int j=1; j<=n; j++) a[j] = 1;

// Determine a[j] from left to right
for (int j=1; j<=n; j++) {

a[j] = 0;
if (r > Rank(a,n,d)) a[j] = 1;

}
if (r == Rank(a,n,d)) return 1;
return 0; // Invalid rank r

}
//===
// Count number of necklaces or Lyndon words of length n and density d with prefix a[1..pn]
//===
long long int NumPrefix(int n, int d, int a[], int pn) {

long long int max, min;
int pd=0, i;

// Special cases when pn = n and d = 0
if (pn == n || d == 0) {

for (i=1; i<=pn; i++) if (a[i] == 1) pd++;
if (pd == d && ((NECKLACE && IsNecklace(a,pn)) || (LYNDON && Lyn(a,pn) == n))) return 1;
else return 0;

}

for (i=pn+1; i<=n; i++) a[i] = 0;
min = Rank(a,n,d);
for (i=pn+1; i<=n; i++) a[i] = 1;
max = Rank(a,n,d);

14

return max-min;
}
//===
int main() {

char input[MAX];
long long int r,i;
int n,j,d,option,a[MAX];

printf("----------------------------\n");
printf(" Fixed-density necklaces\n");
printf("----------------------------\n");
printf(" 1. Rank \n");
printf(" 2. Unrank \n");
printf(" 3. Count with given prefix\n");
printf(" 4. Exhaustive generation\n");
printf("----------------------------\n");
printf(" Fixed-density Lyndon words\n");
printf("----------------------------\n");
printf(" 5. Rank \n");
printf(" 6. Unrank \n");
printf(" 7. Count with given prefix \n");
printf(" 8. Exhaustive generation\n\n");

printf("Enter option: "); scanf("%d", &option);

if (option < 1 || option > 8) return 0;
if (option == 1 || option == 2 || option == 3 || option == 4) NECKLACE = 1;
else LYNDON = 1;

printf("Enter length N (< %d): ", MAX); scanf("%d", &n);
printf("Enter density D: "); scanf("%d", &d);
if (d > n) { printf("Invalid density\n"); return 0; }

ComputeChoose(n); // Pre-compute binomial co-efficients

// RANK
if (option == 1 || option == 5) {

printf("Enter necklace/Lyndon word (eg. 001101): "); scanf("%s", input);
if (strlen(input) != n) { printf("Invalid length\n"); return 0; }
j = strlen(input);
for (i=1; i<=j; i++) a[i] = input[i-1] - ’0’;
printf("Rank = %lld\n", Rank(a, n, d));

}
// UNRANK
else if (option == 2 || option == 6) {

printf("Enter rank: "); scanf("%lld", &r);
if (!Unrank(r, n, d, a)) printf("Invalid rank\n");
else PrintString(a, n);

}
// COUNT w given prefix
else if (option == 3 || option == 7) {

printf("Enter prefix (eg. 0010): "); scanf("%s", input);
j = strlen(input);
for (i=1; i<=j; i++) a[i] = input[i-1] - ’0’;
printf("%lld\n", NumPrefix(n, d, a, strlen(input)));

}
// GENERATE ALL USING RANK/UNRANK
else {

i = 1; printf("\n");
while (Unrank(i,n,d,a)) {

r = Rank(a,n,d);
if (i != r) { printf("Broken at rank %lld\n", i); return 0; }
PrintString(a, n);
i++;

}
printf("\nTotal = %lld\n", i-1);

}
}

