
Universal cycles for k-subsets and k-multisets of an n-set
Colin Campbell
University of Guelph, Canada

Luke Janik-Jones
University of Guelph, Canada

Joe Sawada
University of Guelph, Canada

Abstract
A universal cycle for a set S of combinatorial objects is a cyclic sequence of length |S| that contains a representation of each element in S
exactly once as a substring. If S is the set of k-subsets of [n] = {1, 2, . . . , n}, it is well-known that universal cycles do not always exists
when applying a simple string representation, where 12 or 21 could represent the subset {1, 2}. Similarly, if S is the set of k-multisets of
[n], it is also known that universal cycles do not always exist using a similar representation, where 112, 121, or 211 could represent the
multiset {1, 1, 2}. In this paper we consider new representations for each of these sets and demonstrate the existence of universal cycles
for all n, k ≥ 2. Furthermore, we provide successor-rule algorithms to construct such universal cycles in O(n) time per symbol using
O(n) space and demonstrate that necklace concatenation algorithms allow the same sequences to be generated in O(1) amortized time
per symbol. They are the first known universal cycle constructions for k-multisets. The results are obtained by considering constructions
for bounded-weight de Bruijn sequences.

1 Introduction

A universal cycle for a set S of combinatorial objects is a cyclic sequence of length |S| that contains a
representation of each element in S exactly once as a substring. In this paper we focus on two sets: (a) Sk(n),
which denotes the set of k-subsets of [n] = {1, 2, . . . , n}, and (b) Mk(n), which denotes the set of k-multisets
of [n]. For example:

S2(3) =
{

{1, 2}, {1, 3}, {2, 3}
}

, and

M2(3) =
{

{1, 1}, {1, 2}, {1, 3}, {2, 2}, {2, 3}, {3, 3}
}

.

As we demonstrate in this paper, the choice of representation for a k-subset or k-multiset is critical to the
existence of universal cycle constructions for these sets.

Subsets. Universal cycles for Sk(n) have been studied primarily by considering a standard string representation,
i.e., the subset {1, 2} can be represented by either 12 or 21 (see [CDG92, JSH09, Lan12, Rud13]). This
representation has a major drawback as universal cycles exist only if n divides

(n
k

)
, or equivalently, if k divides(n−1

k−1
)
. When this condition is met, Chung, Diaconis, and Graham [CDG92] conjectured that universal cycles for

Sk(n) exist for sufficiently large n once k is fixed. The conjecture was verified for k = 3, 4, 6 in [Jac93, Hur94],
and universal cycles for subsets were shown not to exist when k = n − 2 [SBE+02]. Recently, this conjecture
was answered in the affirmative by Glock et al. [GJKO20] by studying Euler tours in hypergraphs. The vast
number of cases where universal cycles for Sk(n) do not exist using this standard representation has led to the
study of subset packings and coverings [CHHM09, DL16].

Another common representation for a k-subset is a length-n binary string with exactly k ones. It is straightfor-
ward to observe that non-trivial universal cycles do not exist using this representation. However, by considering
a shorthand binary string representation (one that omits the final redundant symbol), each k-subset corresponds

2 Universal cycles for k-subsets and k-multisets

to a unique length n−1 substring with either k−1 or k ones. Universal cycles for these strings, and hence k-
subsets, can be constructed via a necklace concatenation approach [RSW12] in O(1) amortized time using O(n)
space [SW13].1 The same sequence can also be generated by an O(n) time per symbol successor rule [SW23]
based on the “missing symbol register”.

In this paper, we consider a novel difference representation that represents a k-subset with a length-k string
where the first symbol is the smallest element of the subset, and each successive symbol in the string is added
to the previous symbol to obtain the next largest symbol in the subset. For example, the subset {1, 3, 4} for
n = 5 can be represented by 121. The weight of a string is the sum of its symbols. Observe that by applying the
difference representation, the set of k-subsets corresponds to all strings over the alphabet {1, 2, . . . , n−k+1} of
length k, where the weight of each string is bounded above by n. A similar notion of a difference representation
was considered previously by Hurlbert [Hur94], however, it was considered cyclically and did not fix the first
symbol.

The three different representations for k-subsets are illustrated in Table 1 for S3(5). The sequence 1101011100
is a universal cycle for S3(5) using the shorthand representation, and the sequence 1112122113 is a universal
cycle for S3(5) using the difference representation. There does not exist a universal cycle for S3(5) using the
standard representation.

Subset Shorthand Difference Standard
{1, 2, 3} 1110 (0) 111 123, 132, . . . , or 321
{1, 2, 4} 1101 (0) 112 124, 142, . . . , or 421
{1, 2, 5} 1100 (1) 113 125, 152, . . . , or 521
{1, 3, 4} 1011 (0) 121 134, 143, . . . , or 431
{1, 3, 5} 1010 (1) 122 135, 153, . . . , or 531
{1, 4, 5} 1001 (1) 131 145, 154, . . . , or 541
{2, 3, 4} 0111 (0) 211 234, 243, . . . , or 432
{2, 3, 5} 0110 (1) 212 235, 253, . . . , or 532
{2, 4, 5} 0101 (1) 221 245, 254, . . . , or 542
{3, 4, 5} 0011 (1) 311 345, 354, . . . , or 543

Table 1 Illustrating different representations for the elements of S3(5). For the shorthand representatives, the omitted
redundant symbol is highlighted in parentheses.

Multisets. Like with k-subsets, the choice of representation is critical to constructing universal cycles for
k-multisets. It is well known that |Mk(n)| =

(n+k−1
k

)
. Universal cycles for Mk(n) were first considered by

Hurlbert, Johnson, and Zahl [HJZ09] using a standard string representation, where 112, 121, or 211 could
represent the multiset {1, 1, 2}. Similar to k-subsets, they demonstrate that universal cycles for Mk(n) exists
only if n divides

(n+k−1
k

)
. Another method to represent a k-multiset is with a frequency map, which is a length-n

string f1f2 · · · fn where each fi represents the number of occurrences of i in the multiset. Note,
∑n

i=1 fi = k.
For instance, 110 is the frequency map representation for the multiset {1, 2} in M2(3). It is a simple exercise
to demonstrate that universal cycles for Mk(n) do not exist using this representation for n, k ≥ 2. However,
observe that the final symbol fn in a frequency map is redundant: its value can be determined from the previous
n − 1 values, fn = k −

∑n−1
i=1 fi. Thus, we say f1 · · · fn−1 is a shorthand frequency representation for a multiset

in Mk(n). Observe that this set corresponds to all strings over the alphabet {0, 1, . . . , k} of length n − 1, where
the weight of each string is bounded above by k.

1 The application of this universal cycle to subsets was first noted in [BG11].

3

A difference representation can also be used for k-multisets. Consider the same definition applied for k-
subsets except assign the first symbol of the difference representative to be one less than the smallest symbol
in the multiset. Equivalently, apply the original definition of a difference representative directly, but define the
k-multisets to be over the ground set {0, 1, . . . , n − 1}. Observe that by applying this difference representation,
the set of k-multisets corresponds to all strings over the alphabet {0, 1, . . . , n−1} of length k, where the weight
of each string is bounded above by n − 1.

These three different representations for k-multisets are illustrated in Table 2 for M3(3). The sequence
0011021203 is a universal cycle for M3(3) using the shorthand frequency representation, and the sequence
0001011002 is a universal cycle for M3(3) using the difference representation. There does not exist a universal
cycle for M3(3) using the standard representation.

Multiset Shorthand frequency Difference Standard
{1, 1, 1} 30 (0) 000 111
{1, 1, 2} 21 (0) 001 112, 121, or 211
{1, 1, 3} 20 (1) 002 113, 131, or 311
{1, 2, 2} 12 (0) 010 122, 212, or 221
{1, 2, 3} 11 (1) 011 123, 132, 213, 231, 312, or 321
{1, 3, 3} 10 (2) 020 133, 313, or 331
{2, 2, 2} 03 (0) 100 222
{2, 2, 3} 02 (1) 101 223, 232, or 322
{2, 3, 3} 01 (2) 110 233, 323, or 332
{3, 3, 3} 00 (3) 200 333

Table 2 Illustrating different representations for the elements of M3(3). For the shorthand frequency representatives,
the omitted redundant symbol is highlighted in parentheses.

An application of universal cycles for k-multisets to proximity sensor networks is discussed in [CWLW24].

Main Results. Recall that the difference representatives of Sk(n) and both the shorthand frequency and
difference representatives of Mk(n) are each special cases of fixed-length strings over a prescribed alphabet,
where the strings have an upper bound on their weight. Thus, known results regarding bounded-weight de Bruijn
sequences (see Section 3) can be applied to obtain the following main results of this paper.

1. We demonstrate an algorithm to construct a universal cycle S1 for Sk(n) using difference representatives that
runs in O(1) amortized time per symbol. Moreover, given any subset in Sk(n) with difference representative
d1d2 · · · dk, the symbol following this string in S1 can be computed in O(n) time.

2. We demonstrate an algorithm to construct a universal cycle M1 for Mk(n) using shorthand frequency
representatives that runs in O(1) amortized time per symbol. Moreover, given any subset in Mk(n) with
shorthand frequency representative f1f2 · · · fn−1, the symbol following this string in M1 can be computed
in O(n) time.

3. We demonstrate an algorithm to construct a universal cycle M2 for Mk(n) using difference representatives
that runs in O(1) amortized time per symbol. Moreover, given any subset in Mk(n) with difference
representative d1d2 · · · dk, the symbol following this string in M2 can be computed in O(n) time.

The last two results are the first known universal cycle constructions for k-multisets. All the algorithms require
at most O(nt) space. Implementations for many known universal cycle constructions, including the algorithms
presented in this paper, are available at http://debruijnsequence.org [dbs25].

Outline of paper. In Section 2 we present preliminary definitions, notation, and provide a brief background
on the cycle-joining process and concatenation trees. In Section 3 we describe a known algorithm to construct

http://debruijnsequence.org

4 Universal cycles for k-subsets and k-multisets

universal cycles for t-ary strings of length n with a given weight constraint and provide additional new insights
into equivalent constructions. We also introduce a new construction with interesting properties. Then in Section 4,
we apply these constructions to k-subsets and k-multisets.

2 Preliminaries

Let Σt = {0, 1, 2, . . . , t−1} and let Σt(n) denote the set of all length-n strings over Σt. Recall, the weight of a
string is the sum of its symbols. Let weight(α) denote the weight of a string α. Let Σt(n, w) denote the subset
of all strings in Σt(n) with weight at most w. Later in this paper we will be interested in strings as they are listed
in colex order, which is standard lexicographic order when the strings are read from right to left. For instance,
the following set of bounded-weight strings is listed in colex order:

Σ3(3, 2) = {000, 100, 200, 010, 110, 020, 001, 101, 011, 002}.

Consider two strings α and β. Let α · β denote the concatenation of α and β, and let βj denote j copies of β
concatenated together. The aperiodic prefix of α is the shortest string β such that α = βj for some j ≥ 1. A
string is said to be aperiodic if it is the same as its aperiodic prefix; otherwise, it is said to be periodic.

A necklace class is an equivalence class of strings under rotation. A necklace is the lexicographically smallest
string in a necklace class. Let Nt(n) denote the set of length-n necklaces over Σt. For example,

N3(3) = {000, 001, 002, 011, 012, 021, 022, 111, 112, 122, 222}.

Let Nt(n, w) denote the subset of all strings in Nt(n) with weight at most w. For example,

N3(3, 2) = {000, 001, 002, 011}.

A feedback function f maps strings from Σt(n) to Σt. A feedback shift register is a function that maps
a string α = a1a2 · · · an to a2 · · · anf(α) for a given feedback function f . The pure cycling register (PCR)
is a feedback shift register with feedback function f(a1a2 · · · an) = a1. It partitions any set closed under
rotation into necklace classes that can be represented by necklaces from Nt(n). Consider a subset S of strings
in Σt(n + 1) where each string has a unique shorthand representative like those outlined in Section 1. Let S′

denote this set of shorthand representatives. Then each string α = a1a2 · · · an ∈ S′ corresponds to a unique
string a1a2 · · · anz ∈ S. We call z the missing symbol. The missing symbol register (MSR) is a feedback shift
register for such sets S′ with feedback function f(a1a2 · · · an) = z. The MSR partitions any shorthand set S′

closed under rotation into necklace classes that can be represented by necklaces in Nt(n + 1) (see Example 2
in Section 3.2). The MSR has been applied to shorthand representatives of permutations, subsets, and more
generally, strings with fixed content in [SW23].

2.1 Cycle-joining trees and successor rules

In this section, assume that the representatives for a set of strings S is just S itself. Given a universal cycle
U = u1u2 · · · um for a set of strings S, a successor rule for U is a function that maps each string α in S to the
symbol following α in U . Thus, starting with any string in S, U (considered cyclically) can be constructed by
repeatedly applying its successor rule.

Let Ui denote a universal cycle for Si ⊆ Σt(n). Two universal cycles U1 and U2 are said to be disjoint if
S1 ∩ S2 = ∅. Let x, y be distinct symbols in Σt. If σ = xs2 · · · sn and σ̂ = ys2 · · · sn, then σ and σ̂ are said
to be conjugates of each other, and (σ, σ̂) is called a conjugate pair. Two disjoint universal cycles U1 and U2
can be joined together to form a single universal cycle by swapping the successor of each string in a conjugate

5

pair (σ, σ̂), where σ is found in U1 and σ̂ is found in U2. This is the well-known cycle-joining process where
the two cycles U1 and U2 are joined via the conjugate pair (σ, σ̂). A cycle-joining tree T is an unordered tree
where the nodes correspond to a disjoint set of universal cycles U1, U2, . . . , Uℓ and an edge between Ui and Uj is
defined by a conjugate pair (σ, σ̂) such that σ ∈ Si and σ̂ ∈ Sj . For our purposes, we consider cycle-joining
trees to be rooted. In the binary case, repeatedly joining adjacent cycles in a cycle-joining tree together yields a
unique universal cycle for S1 ∪ S2 ∪ · · · ∪ Sℓ. For non-binary alphabets, different universal cycles are possible
depending on the order that the cycles are joined [SSTW24]. Thus, the following property was introduced to
produce a generic successor rule for non-binary alphabets based on the conjugate pairs.

Chain Property: If a node in a cycle-joining tree T has two children joined via conjugate pairs
(xs2 · · · sn, ys2 · · · sn) and (x′t2 · · · tn, y′t2 · · · tn), then s2 · · · sn ̸= t2 · · · tn.

Let T be a cycle-joining tree satisfying the Chain Property for an underlying set of strings S, where the
nodes are joined by a set C of conjugate pairs. If the tree contains ℓ cycles then C contains ℓ−1 conjugate pairs,
each corresponding to an edge in T. Say γ belongs to a conjugate pair (σ, σ̂) if either γ = σ or γ = σ̂. Let
C1, C2, . . . , Cm denote a maximal length path of nodes in T such that for each 1 ≤ i < m, the node Ci is the
parent of Ci+1 and they are joined via a conjugate pair of the form (xiβ, xi+1β); β is the same in each conjugate
pair. Call such a path a chain of length m, and define g(xiβ) = xi+1 for i < m and g(xmβ) = x1 for each string
belonging to a conjugate pair. Then the following function h is a successor rule for a corresponding universal
cycle for S, where f(α) is the underlying feedback function (such as the PCR or MSR) that induces the cycles
in T:

h(α) =
{

g(α) if α belongs to a conjugate pair in C;
f(α) otherwise.

This rule corresponds to the function ↑f1(α) in [SSTW24] when f is the feedback function for the PCR.

Example 1 Consider the cycle-joining tree with nodes induced by the PCR illustrated in Figure 1. The
path of nodes 000 → 001 → 002 → 003 → 004 form a chain where β = 00. The conjugate pairs
are (000, 100), (100, 200), (200, 300), and (300, 400), respectively. Thus, h(000) = 1, h(100) = 2,
h(2000) = 3, h(300) = 4, and h(400) = 0.

Applying the rule directly requires storing all the conjugate pairs; however, in our application it is relatively
straightforward to test whether a string belongs to a conjugate pair in O(n) time using only O(n) space. In
this paper, we will define cycle-joining trees based on the PCR and MSR, and then apply h(α) to construct
corresponding universal cycles efficiently.

2.2 Concatenation trees

In this section we present a simplified presentation of “left” concatenation trees as originally defined in [SSTW24],
by adding an assumption that every non-root periodic node in a cycle-joining tree is a leaf.

A bifurcated ordered tree (BOT) is a rooted tree where each child of a node belongs to either the left-children
or the right-children, and the nodes within each group are ordered. Let T be a PCR-based cycle-joining tree
rooted at r satisfying the Chain Property. A concatenation tree based on T converts T into a BOT by ordering the
children and assigning possibly new labels to represent each node (cycle). The parent-child relationship remains

6 Universal cycles for k-subsets and k-multisets

the same and each node has a change index, which is the unique index where a node’s label differs from that of its
parent based on the conjugate pair joining the two nodes. This index is unique using our added assumption that
all non-root periodic nodes are leaves, except for the case which occurs if a node is the child of a periodic root.
We will handle that case as it arises. The root r can be assigned an arbitrary change index. If a node has change
index c, all children with a change index less than or equal to c are classified as left children and are ordered
from smallest to largest change index. All children with a change index greater than c are classified as right
children and are also ordered from smallest to largest change index. An RCL ordering traverses a concatenation
tree recursively from the root by first visiting all Right children, then the Current node, then the Left children.
For example, see Figure 1 which illustrates a cycle-joining tree, a corresponding concatenation tree, and its RCL
ordering.

Given a concatenation tree T , let UT be the sequence obtained by concatenating the aperiodic prefixes of
each node as they are visited in RCL order. The following result corresponds to Theorem 3 from [SSTW24].

▶ Theorem 1. Let T be a concatenation tree for a PCR-based cycle-joining tree with the Chain Property for
an underlying set S. Then UT is a universal cycle for S with successor rule h(α).

3 Bounded weight de Bruijn sequences

A universal cycle for Σt(n) is known as a de Bruijn sequence. A universal cycle for the subsets of Σt(n)
where there is an upper or lower bound on the weight is called a bounded weight de Bruijn sequence. The
lexicographically smallest binary de Bruijn sequence with a lower bound on the weight can be constructed in
O(1) amortized time per symbol [SWW14]. The algorithm is generalized to non-binary alphabets in [SWW16]
by providing an equivalent greedy construction. There are eight O(n) time successor-rule constructions for
bounded weight de Bruijn sequences over an arbitrary alphabet given in [GSWW20]: four with a lower bound
on the weight and four with an upper bound on the weight.2 Each of the above algorithms requires O(n) space.
We are interested in universal cycles for Σt(n, w), which are strings with an upper bound of w on the weight.

In this section we focus on one of the successor rules from [GSWW20] that constructs a universal cycle for
Σt(n, w) with interesting properties. Since Σt(n, w) is closed under rotation, the PCR partitions the set into
necklace cycles. These cycles (nodes) can be represented by the necklaces in Nt(n, w). For example, the cycles
for Σ5(3, 4) can be represented by the following necklaces as they are listed in colex order (this order will be
useful later):

N5(3, 4) = {000, 001, 011, 111, 021, 031, 002, 012, 112, 022, 003, 013, 004}.

The following parent rule3 defines a cycle-joining tree rooted at 0n for the cycles represented by the necklaces in
Nt(n, w).

First non-zero parent rule (with root 0n): the parent of non-root node a1a2 · · · an, where j denotes the
smallest index such that aj ̸= 0, is 0j−1(aj−1)aj+1 · · · an.

As an example, the cycle-joining tree for Σ5(3, 4) based on this first non-zero parent rule is shown in Figure 1.

2 Naïvely, each successor rule requires up to t necklace tests, each requiring O(n) time. However applying optimizations similar to the upcoming
proof of Theorem 6, these successor rules can be implemented with a constant number of necklace tests.

3 This rule was called first non-1 in [GSWW20] since the alphabet considered was {1, 2, . . . , t}.

7

111
4

011
3

000
1

001
2

002
7

003
11

004
13

013
12

022
10

112
9

031
6

012
8

021
5

111

011

000

001

002

003

031

012021

112 022 013 004

(a) Cycle-joining tree (b) Concatenation tree

Figure 1 (a) The first non-zero cycle-joining tree for Σ5(3, 4) where the nodes are represented by the necklaces in
N5(3, 4). (b) A corresponding concatenation tree where the change index of the root is assigned to the final symbol, as
indicated by the small box on top of the node. All children are left children, and the labels on the nodes do not need to
change. An RCL traversal of this tree visits the necklaces in colex order.

▶ Lemma 2. Let T be a PCR-based cycle-joining tree induced by the first non-zero parent rule and let
α = 0i−1xai+1 · · · an and β = 0j−1ybj+1 · · · bn be two distinct nodes (necklaces) in T where i, j ≤ n and
x, y > 0. Then the following hold.

1. If α ̸= 0n−11 then the parent of α is an aperiodic necklace. (All non-root periodic nodes are leaves.)
2. T has the Chain Property.
3. If α and β are periodic then they have different parents.

Proof. (1) Since α is a necklace, its prefix a1 · · · ai = 0i−1ai is lexicographically less than or equal to every
other substring in α of the same length when α is considered cyclically. Its parent γ has prefix 0i−1(ai −1) which
is strictly less than all other substrings in γ considered cyclically, which means γ is a necklace. Furthermore, this
also implies γ is aperiodic as long as γ ̸= 0n, which is the case only when α = 0n−11.

(2-3) Suppose α and β have the same parent γ. If i = j then α = β, a contradiction to α and β being distinct.
Since they are necklaces an, bn > 0. Without loss of generality, suppose i < j. The strings in the conjugate
pair joining α and γ have suffix an0i−1 and the strings in the conjugate pair joining β and γ have suffix bn0j−1.
Thus, the Chain Property is satisfied. Furthermore, suppose α and β are both periodic. Since β is periodic, it
must be that γ has a substring 0j−1 appearing after the j-th symbol. But this implies that α also has the same
substring since α and β share the same parent. This contradicts the fact that α is a necklace. Thus α and β have
different parents. ◀

The following successor rule based on the first non-zero cycle-joining tree corresponds to the successor
rule g4 in [GSWW20]. In its original presentation, the alphabet under consideration is {1, 2, . . . , t} whereas we
state the rule for the alphabet Σt = {0, 1, . . . , t−1}. It is also a space-efficient implementation of the generic
successor rule h(α) presented in Section 2.1 that does not require storing the set of conjugate pairs.

First non-zero (Grandmama) successor rule for α = a1a2 · · · an

Let j be the largest index of a2a3 · · · an such that aj ̸= 0 or j = 1 if no such index exists. Let x be the
largest symbol in {1, 2, . . . , t−1} such that 0n−jxa2 · · · aj is a necklace and weight(xa2a3 · · · an) ≤ w,

8 Universal cycles for k-subsets and k-multisets

or let x = −1 if no such symbol exists.

h1(α) =


0 if x ̸= −1 and a1 = x;
a1+1 if x ̸= −1 and a1 < x;
a1 otherwise.

Let Ut(n, w) denote the universal cycle for Σt(n, w) obtained by starting with 0n and repeatedly applying the
successor rule |Σt(n, w)|−n times on the last n symbols to obtain the next symbol in the sequence. For example:

U5(3, 4) = 0 · 001 · 011 · 1 · 021 · 031 · 002 · 012 · 112 · 022 · 003 · 013 · 004.

Observe that this sequence has an interesting property: it corresponds to concatenating the aperiodic prefixes
of the necklaces in N5(3, 4) as they appear in colex order. This is not surprising since when there is no bound
on the weight, i.e., w ≥ n(t−1), the first non-zero successor rule is equivalent to the successor rule for the
Grandmama de Bruijn sequence [DHS+18]. The Grandmama sequence can also be described by the following
very simple concatenation scheme:

Concatenate together the aperiodic prefixes of the necklaces in Nt(n) as they appear in colex order.

Applying Theorem 1, this concatenation construction can be generalized to the set Σt(n, w). Let T denote the
cycle-joining tree for Σt(n, w) defined by the first non-zero parent rule, where the cycles (nodes) are induced by
the PCR – they correspond to the necklaces in Nt(n, w). From Lemma 2, T satisfies the Chain Property and all
the non-root periodic nodes are leaves. Thus, let T be the concatenation tree derived from T, where the change
index of the root node 0n is the index of the rightmost symbol. Define the label of the single child of the root to
be 0n−11. This accounts for the one ambiguity in our simplified concatenation tree definition and this choice
abides by the conditions from the original definition in [SSTW24]. Recall that the labels of all other nodes are
defined recursively based on the label of their parent. It follows from Lemma 2, that the labels of all other nodes
are necklaces.

▶ Theorem 3. For n, t ≥ 1 and w ≥ 0, the universal cycle Ut(n, w) for Σt(n, w) can be constructed by
concatenating the aperiodic prefixes of the necklaces in Nt(n, w) as they appear in colex order.

Proof. By Theorem 1, the sequence obtained by concatenating the aperiodic prefixes of the nodes in T as they
appear RCL order has successor rule h1(α), which generates Ut(n, w) starting with 0n. Each child of a node
is a left child. As a result, the RCL-ordering of T corresponds to a pre-order traversal of T . Since the symbol
changed between a parent and child always increases from parent to child, this ordering will list the nodes (the
necklaces in Nt(n, w)) in colex order. ◀

By traversing the concatenation tree T in RCL order we can generate Ut(n, w). To do this efficiently, we
dynamically compute the children of each node as we traverse T , starting from the root 0n. Consider a node
α = a1a2 · · · an with change index c and weight w′. If w′ = w, then α has no children. Let αi denote the
string α with the symbol at index i incremented by 1. If αi is not a necklace for 1 < i ≤ c then clearly αi−1
is also not a necklace. If ac < k − 1, we test if αc is a necklace. If it is not a necklace, then α has no children.
Otherwise, we test αc−1, then αc−2, and so on until we find the largest index i ≤ c such that αi is not a necklace
or i = 0. The children of α are thus αi+1, · · · , αc−1, including αc if ac < k − 1. Thus, starting from the root
0n we can dynamically create the tree T and visit its nodes in RCL order. Testing if a string is a necklace
and also determining the length of the aperiodic prefix of a necklace can be computed in O(n) time [Boo80].

9

Each successful necklace test can be assigned to the corresponding child, and if there is a failed necklace test
it can be assigned to the current node. Thus, the nodes can be visited in O(n) amortized time. A complete C
implementation of this RCL traversal algorithm to construct Ut(n, w) is given in the Appendix.

▶ Theorem 4. Ut(n, w) can be constructed in O(1) amortized time per symbol using O(nt) space.

Proof. Recall from Lemma 2 that the parent of every non-root periodic necklace is both unique and aperiodic.
Discounting the root, this means that the number of periodic necklaces is less than or equal to the number of
aperiodic necklaces. Since the aperiodic prefix of each aperiodic necklace contains n symbols, this implies that
|Ut(n, w)| ≥ n

2 |Nt(n, w) − {0n}|. Since each necklace in the concatenation tree T is visited in O(n) amortized
time, this implies that Ut(n, w) can be generated in O(1) amortized time per symbol. When visiting each node
α, only a constant amount of extra memory is required if we update and restore the values in α to test if a given
αi is a necklace and to visit each child. Since the depth of the recursion is bounded by nt, this construction
requires O(nt) space for the run-time stack. ◀

3.1 Fixed weight and weight range

Some applications may require both an upper and lower bound on the weights. Binary fixed weight de Bruijn
sequences can be constructed by considering a shorthand representation [RSW12]. The shorthand strings
correspond to all binary strings of length n − 1 with weight in the range [w − 1, w]. This result is applied in
[SWW13] to construct binary weight-range de Bruijn sequences for binary strings with weight in an arbitrary
range [w1, w2]. Both constructions generate the sequences in O(1) amortized time per symbol using O(n)
space. There is no published construction for weight-range de Bruijn sequences over non-binary alphabets. As a
special case, fixed-weight de Bruijn sequences for strings in Σt(n) with weight exactly w using a shorthand
representation correspond to weight-range de Bruijn sequences for strings in Σt(n − 1) with weight in the range
[max(0, w − t + 1), w]. If w < t, then such sequences correspond to bounded weight de Bruijn sequences with
an upper bound on the weight of w.

▶ Theorem 5. The universal cycle Ut(n, w) is a fixed-weight de Bruijn sequence using shorthand representa-
tives when w < t. Moreover, the sequence Ut(n, w) with the 0n substring replaced with 0n−1 is a fixed-weight
de Bruijn sequence using shorthand representatives when w = t.

3.2 Applying the MSR

In this section, we present another bounded weight de Bruijn sequence construction for Σt(n, w) with the added
constraint that w < t. Recall, the strings in Σt(n, w) can be thought of as shorthand representatives for the
subset of Σt(n + 1) containing strings with fixed weight w < t. Thus, when considering such a set Σt(n, w),
the missing symbol z for a given string in the set is well defined. Recall also that the MSR partitions Σt(n, w)
into equivalence classes corresponding to necklaces in Nt(n + 1).

Example 2 Consider Σ5(3, 4). The MSR partitions this set of 35 strings into the following 10 equivalence
classes (columns):

000 001 010 002 011 020 003 012 021 111
004 013 103 022 112 202 031 121 211
040 130 030 220 120 310 210 110
400 300 301 200 201 100 101 102

10 Universal cycles for k-subsets and k-multisets

Each equivalence class (cycle) can be represented by a necklace in N5(4) with weight w = 4. Each necklace
is highlighted by reading the first symbol down each column.

Using the MSR, cycle-joining trees and successor rules can be created in a similar manner as we did when
applying the PCR using the first non-zero parent rule. In this case, the nodes have length n + 1. By decrementing
the first non-zero symbol the following symbol in the parent necklace is incremented based on the MSR,
maintaining the weight constraint.

First non-zero (MSR) (with root 0nw): the parent of non-root node a1a2 · · · an+1, where j denotes the
smallest index such that aj ̸= 0, is 0j−1(aj−1)(aj+1+1)aj+2 . . . an+1.

This parent rule is well-defined since the weight constraint implies that j < n + 1 and aj+1 < t − 1. As an
example, see the cycle-joining tree for Σk(n, w) in Figure 2.

0103

10

7

9

0022

0112

0202 0121

0211

1111

0031

8

0004

0013

1

2

6

4

5

3

Figure 2 The first non-zero cycle-joining tree based on the MSR for Σ5(3, 4) where the nodes are represented by
the necklaces in N5(4) with weight exactly w = 4. The labeled pre-order traversal of this tree visits the necklaces in
reverse colex order. We draw the tree in the style of a concatenation tree even though they were not formally defined for
MSR-based cycle-joining trees.

The following is a space-efficient successor rule based on the functions g(α) and h(α) (recall its definition
in Section 2.1) for this cycle-joining tree, obtained by considering the corresponding conjugate pairs.

First non-zero (MSR) successor rule for α = a1a2 · · · an with missing symbol z
Let j be the largest index of a2a3 · · · an such that aj ̸= 0 or j = 1 if no such index exists. Let x be
the largest symbol in {1, 2, . . . , t−1} such that (i) y = z − x + a1 is in Σt and (ii) 0n−jxya2 · · · aj is a
necklace, or let x = −1 if no such symbol exists.

h2(α) =


0 if x ̸= −1 and z = x;
z+1 if x ̸= −1 and z < x;
z otherwise.

11

Let Vt(n, w) denote the universal cycle for Σt(n, w) obtained by starting with 0n and repeatedly applying the
above successor rule |Σt(n, w)| − n times on the last n symbols to obtain the next symbol in the sequence.
Naïvely, in order to determine x the function h2(α) will require testing up to t strings to see whether they are a
necklace. Testing whether a string is a necklace can be done in O(n) time [Boo80]. However, with some fairly
straightforward optimizations, we can reduce the number of necklace tests to one.

▶ Theorem 6. For n, t ≥ 2 and 0 ≤ w < t, the universal cycle Vt(n, w) for Σt(n, w) can be constructed via
the successor rule h2(α) in O(n) time per symbol using O(n) space.

Proof. We demonstrate that the value x in the successor rule can be determined by performing at most one
necklace test. Let β = 0n−jxya2 · · · aj . Let x′ denote the smallest symbol following a substring 0n−j in a2 · · · aj ,
or let x′ = t − 1 if no such substring exists. In order for β to be a necklace, clearly x ≤ x′. Furthermore,
x + y = a1 + z to maintain the weight constraint, which means x ≤ a1 + z. Consider x to be the minimum of x′

and a1 + z. If this value is 0, then no necklace test is required. If β is a necklace for this value of x, no more tests
are required as it is the largest possible value for x. Otherwise, decrementing the value of x (and incrementing
y) will result in a necklace since the length n − j + 1 prefix of β will be smaller than all other substrings of β
(considered cyclically) of the same length, by the values of x′ and the fact that y ̸= 0. ◀

The following result follows from the fact that the strings in Σt(n, w) can be thought of as shorthand
representatives for the subset of Σt(n + 1) containing strings with fixed weight w < t.

▶ Theorem 7. The universal cycle Vt(n, w) is a fixed-weight de Bruijn sequence using shorthand representa-
tives when w < t. Moreover, the sequence Vt(n, w) with the 0n substring replaced with 0n−1 is a fixed-weight
de Bruijn sequence using shorthand representatives when w = t.

Interestingly, Vt(n, w) also appears to have interesting concatenation properties. Consider:

V5(3, 4) = 0004 · 0013 · 0103 · 0022 · 0112 · 02 · 0031 · 0121 · 0211 · 1.

This sequence corresponds to the concatenation of the aperiodic prefixes of the necklaces in N5(4) with
exactly weight w = 4 as they appear in reverse colex order! Moreover, observe that a preorder traversal of the
corresponding “concatenation-like tree” (see Figure 2) also corresponds to visiting the necklaces in reverse colex
order. These observations lead to the following conjecture, where V ′

t(n, w) denotes the sequence obtained by
concatenating the aperiodic prefixes of the necklaces in Nt(n + 1) with weight w as they appear in reverse colex
order.

▶ Conjecture 8. The universal cycle Vt(n, w) is equivalent to V ′
t(n, w), where n, t ≥ 2 and w < t. Moreover,

the universal cycle can be generated in O(1) amortized time per symbol.

We believe that this conjecture can be proved by generalizing the (PCR-based) concatenation tree frame-
work [SSTW24], then following a similar analysis to the one we gave for the sequence Ut(n, w) to obtain the
running time result.

4 Application to k-subsets and k-multisets

In this section, we apply the results from the previous section to k-subsets assuming n ≥ k ≥ 1, and k-multisets
assuming n, k ≥ 2. Recall the following observations made in Section 1.

When the subsets of Sk(n) are represented by their difference representatives with each symbol x mapped to
x−1, the subsets correspond to Σn−k+1(k, n − k).

12 Universal cycles for k-subsets and k-multisets

When the multisets of Mk(n) are represented by their shorthand frequency representatives, the multisets
correspond to Σk+1(n − 1, k).

When the multisets of Mk(n) are represented by their difference representatives, the multisets correspond to
Σn(k, n − 1).

These observations immediately give rise to the following three results.

▶ Theorem 9. Un−k+1(k, n − k) and Vn−k+1(k, n − k) are universal cycles for Sk(n) using difference
representatives, where each symbol x in the representative is mapped to x − 1.

Example 3 Consider two universal cycles for Σ4(3, 3):

U4(3, 3) = 0 · 001 · 011 · 1 · 021 · 002 · 012 · 003, and

V4(3, 3) = 0003 · 0012 · 0021 · 0111 · 0201.

By mapping each symbol x to x + 1 in the above sequences, we obtain universal cycles S1 and S2 for S3(6)
using difference representatives:

S1 = 1 · 112 · 122 · 2 · 132 · 113 · 123 · 114, and

S2 = 1114 · 1123 · 1132 · 1222 · 1312.

Each universal cycle above has the expected length of
(6

3
)

= 20.

▶ Theorem 10. Uk+1(n−1, k) and Vk+1(n−1, k) are universal cycles for Mk(n) using shorthand frequency
representatives.

▶ Theorem 11. Un(k, n−1) and Vn(k, n−1) are universal cycles for Mk(n) using difference representatives.

Example 4 The universal cycles U5(3, 4) and V5(3, 4) are universal cycles for M4(4) using shorthand
frequency representatives:

U5(3, 4) = 0 · 001 · 011 · 1 · 021 · 031 · 002 · 012 · 112 · 022 · 003 · 013 · 004, and

V5(3, 4) = 0004 · 0013 · 0103 · 0022 · 0112 · 02 · 0031 · 0121 · 0211 · 1.

The universal cycles U4(4, 3) and V4(4, 3) are universal cycles for M4(4) using difference representatives:

U4(4, 3) = 0 · 0001 · 01 · 0011 · 0111 · 0021 · 0002 · 0102 · 0012 · 0003, and

V4(4, 3) = 00003 · 00012 · 00102 · 00021 · 00111 · 01011 · 00201.

Each universal cycle above has the expected length of
(4+4−1

4
)

= 35.

The above three results imply that universal cycles for k-subsets and k-multisets can be constructed in O(1)
amortized time per symbol, or via an O(n) time per symbol successor rule. The latter two results are the first
known universal cycle constructions for k-multisets.

13

5 Acknowledgment

Joe Sawada (grant RGPIN-2025-03961) gratefully acknowledges research support from the Natural Sciences
and Engineering Research Council of Canada (NSERC).

References
BG11 A. Blanca and A. P. Godbole. On universal cycles for new classes of combinatorial structures. SIAM Journal

on Discrete Mathematics, 25(4):1832–1842, 2011.
Boo80 K. S. Booth. Lexicographically least circular substrings. Information Processing Letters, 10(4/5):240–242,

1980.
CDG92 F. Chung, P. Diaconis, and R. Graham. Universal cycles for combinatorial structures. Discrete Mathematics,

110(1):43–59, 1992.
CHHM09 D. Curtis, T. Hines, G. Hurlbert, and T. Moyer. Near-universal cycles for subsets exist. SIAM Journal on

Discrete Mathematics, 23(3):1441–9, 2009.
CWLW24 C. S. Chen, W. S. Wong, Y.-H. Lo, and T.-L. Wong. Multiset combinatorial Gray codes with application to

proximity sensor networks, 2024.
dbs25 De Bruijn sequence and universal cycle constructions (2025). http://debruijnsequence.org., 2025.
DHS+18 P. B. Dragon, O. I. Hernandez, J. Sawada, A. Williams, and D. Wong. Constructing de Bruijn sequences with

co-lexicographic order: The k-ary Grandmama sequence. European Journal of Combinatorics, 72:1–11, 2018.
DL16 M. Debski and Z. Lonc. Universal cycle packings and coverings for k-subsets of an n-set. Graphs and

Combinatorics, 32(6):2323–2337, Nov 2016.
GJKO20 S. Glock, F. Joos, D. Kühn, and D. Osthus. Euler tours in hypergraphs. Combinatorica, 40(5):679–690,

November 2020.
GSWW20 D. Gabric, J. Sawada, A. Williams, and D. Wong. A successor rule framework for constructing k -ary de Bruijn

sequences and universal cycles. IEEE Transactions on Information Theory, 66(1):679–687, 2020.
HJZ09 G. Hurlbert, T. Johnson, and J. Zahl. On universal cycles for multisets. Discrete Mathematics, 309(17):5321–

5327, 2009. Generalisations of de Bruijn Cycles and Gray Codes/Graph Asymmetries/Hamiltonicity Problem
for Vertex-Transitive (Cayley) Graphs.

Hur94 G. Hurlbert. On universal cycles for k-subsets of an n-set. SIAM Journal on Discrete Mathematics, 7(4):598–
604, 1994.

Jac93 B. Jackson. Universal cycles of k-subsets and k-permutations. Discrete Mathematics, 117:141–150, 07 1993.
JSH09 B. Jackson, B. Stevens, and G. Hurlbert. Research problems on Gray codes and universal cycles. Discrete

Mathematics, 309(17):5341–5348, 2009.
Lan12 M. Lanius. Universal Cycles for k-subsets of an n-set. Honors thesis, Wellesley College, 2012.
RSW12 F. Ruskey, J. Sawada, and A. Williams. De Bruijn sequences for fixed-weight binary strings. SIAM Journal on

Discrete Mathematics, 26(2):605–617, 2012.
Rud13 Y. Rudoy. An inductive approach to constructing universal cycles on the k-subsets of [n]. The Electronic

Journal of Combinatorics, 20:P18, 2013.
SBE+02 B. Stevens, P. Buskell, P. Ecimovic, C. Ivanescu, A. Malik, A. Savu, T. Vassilev, H. Verrall, B. Yang, and

Z. Zhao. Solution of an outstanding conjecture: The non-existence of universal cycles with k = n − 2. Discrete
Mathematics, 258:193–204, Dec 2002.

SSTW24 J. Sawada, J. Sears, A. Trautrim, and A. Williams. Concatenation trees: A framework for efficient universal
cycle and de Bruijn sequence constructions. arXiv preprint arXiv:2308.12405, 2024.

SW13 J. Sawada and A. Williams. A Gray code for fixed-density necklaces and Lyndon words in constant amortized
time. Theoretical Computer Science, 502:46–54, 2013. Generation of Combinatorial Structures.

14 Universal cycles for k-subsets and k-multisets

SW23 J. Sawada and A. Williams. Constructing the first (and coolest) fixed-content universal cycle. Algorithmica,
85(6):1754–1785, Jun 2023.

SWW13 J. Sawada, A. Williams, and D. Wong. Universal cycles for weight-range binary strings. In Combinatorial
Algorithms - 24th International Workshop, IWOCA 2013, Rouen, France, July 10-12, 2013, LNCS 8288, pages
388–401, 2013.

SWW14 J. Sawada, A. Williams, and D. Wong. The lexicographically smallest universal cycle for binary strings with
minimum specified weight. Journal of Discrete Algorithms, 28:31–40, 2014. StringMasters 2012, 2013 Special
Issue (Volume 1).

SWW16 J. Sawada, A. Williams, and D. Wong. Generalizing the classic greedy and necklace constructions of de Bruijn
sequences and universal cycles. Electron. J. Combin., 23(1):Paper 1.24, 20, 2016.

15

A C implementation of the bounded weight “Grandmama” de Bruijn sequence

//===
// Genereate the (upper) bounded weight "Grandmama" de Bruijn sequence
// over alphabet {0,1, ... , t-1} and upper bound on weight of w.
// It can be applied to construct a UC for k-subsets or k-multisets of [n].
//===
#include<stdio.h>
int a[100],n,t,w;

//===
// Test if a[1..n] is a necklace, if so return the length of its aperiodic
// prefix; otherwise return 0
//===
int IsNecklace(int a[]) {

int i,p=1;

for (i=1; i<=n; i++) {
if (a[i] < a[i-p]) return 0;
if (a[i] > a[i-p]) p=i;

}
if (n%p == 0) return p;
return 0;

}
//===
// Visit "first non-zero" concatenation tree in RCL order by dynamically
// generating children of the current node a[1..n] with aperiodic prefix of
// length p, change index c, and weight w2.
// This visits necklaces with bounded weight w in colex order.
//===
void RCL(int a[], int p, int c, int w2) {

int i,j;

// VISIT: Print aperiodic prefix of a[1..n]
for (i=1; i<=p; i++) printf("%d", a[i]);
if (w2 == w) return; // No children when max weight achieved

// Scan from c left to determine the first index for a child
a[c]++;
if (a[c] < t && !IsNecklace(a)) { a[c]--; return; }
a[c]--;

j=c-1;
a[j] = 1;
while (j >=1 && IsNecklace(a)) {

a[j] = 0; j--; a[j] = 1;
}
a[j] = 0;

// Visit children from left to right, handle change index separately
for (i=j+1; i<c; i++) {

a[i] = 1;
RCL(a, IsNecklace(a), i, w2+1);
a[i] = 0;

}
if (a[c] < t-1) {

a[c]++;
RCL(a, IsNecklace(a), c, w2+1);
a[c]--;

}
}
//===

16 Universal cycles for k-subsets and k-multisets

int main() {

printf("Enter n t w: "); scanf("%d %d %d", &n, &t, &w);
for (int i=1; i<=n; i++) a[i] = 0;
RCL(a,1,n,0);

}

	1 Introduction
	2 Preliminaries
	2.1 Cycle-joining trees and successor rules
	2.2 Concatenation trees

	3 Bounded weight de Bruijn sequences
	3.1 Fixed weight and weight range
	3.2 Applying the MSR

	4 Application to k-subsets and k-multisets
	5 Acknowledgment
	A C implementation of the bounded weight ``Grandmama'' de Bruijn sequence

