
A PASCAL-LIKE BOUND FOR THE NUMBER OF

NECKLACES WITH FIXED DENSITY

I. HECKENBERGER AND J. SAWADA

Abstract. A bound resembling Pascal’s identity is presented for binary

necklaces with fixed density using Lyndon words with fixed density. The

result is generalized to k-ary necklaces and Lyndon words with fixed

content. The bound arises in the study of Nichols algebras of diagonal

type.

1. Introduction

A necklace is the lexicographically smallest word in an equivalence class of

words under rotation1. A Lyndon word is a primitive necklace, which means

that it is strictly smaller than any of its non-trivial rotations. The density

of a binary word is the number of 1s it contains. Let N(n, d) denote the

set of all binary necklaces of length n and density d. Similarly, let L(n, d)

denote the set of all binary Lyndon words of length n and density d. Let the

cardinality of these two sets be denoted by N(n, d) and L(n, d), respectively.

The following formulae are well-known for any n ≥ 1 and 0 ≤ d ≤ n (see [4]

and [10, Sect. 2]):

N(n, d) =
1

n

∑
j|gcd(n,d)

φ(j)

(
n/j

d/j

)
, L(n, d) =

1

n

∑
j|gcd(n,d)

µ(j)

(
n/j

d/j

)
,

where φ and µ denote Euler’s totient function and the Möbius function,

respectively. Note that N(n, d) = N(n, n−d) and L(n, d) = L(n, n−d). Our

main result is to prove the following Pascal’s identity-like bound on N(n, d).

Theorem 1.1. For any 0 < d < n,

N(n, d) ≤ L(n−1, d) + L(n−1, d−1).

Bounds on necklaces and Lyndon words like the one presented in the above

theorem are generally difficult to prove directly from their enumeration for-

mulae. Previous bounds on these objects used in algorithm analysis [10] use

a combinatorial-style proof, and that is the approach we follow in this pa-

per. To prove this theorem, we actually show something stronger. Let Σk =

1A necklace is often thought to be an equivalence class of words under rotation. Here

we use the term to identify each such class with its minimal word [7].
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{0, 1, 2, . . . , k − 1} denote an alphabet of size k. Let Wk(n0, n1, . . . , nk−1)

denote the set of all words over Σk where each symbol i appears precisely

ni times. Such a set is said to be a set with fixed content, as used by [1,

Sect. 18.3.3]. In a similar manner let Nk(n0, n1, . . . , nk−1) denote the set of

necklaces with the given fixed content and let Lk(n0, n1, . . . , nk−1) denote

the set of Lyndon words with the given fixed content. Let the cardinality of

these two sets be denoted by Nk(n0, n1, . . . , nk−1) and Lk(n0, n1, . . . , nk−1),

respectively. In [4] and [10, Sect. 2], explicit formulas for the number of

necklaces and Lyndon words with fixed content are given:

Nk(n0, n1, . . . , nk−1) =
1

n

∑
j|gcd(n0,...,nk−1)

φ(j)
(n/j)!

(n0/j)! · · · (nk−1/j)!
,

Lk(n0, n1, . . . , nk−1) =
1

n

∑
j|gcd(n0,...,nk−1)

µ(j)
(n/j)!

(n0/j)! · · · (nk−1/j)!
,

where n = n0 + n1 + · · ·+ nk−1. In Section 3, we prove the following more

general result.

Theorem 1.2. Let k ≥ 2 and n0, n1, . . . , nk−1 ≥ 1 be positive integers.

Then

Nk(n0, . . . , nk−1) ≤
k−1∑
i=0

Lk(n0, . . . , ni−1, ni − 1, ni+1, . . . , nk−1).

Moreover, the inequality is strict if k > 2.

Observe that when k = 2, Theorem 1.2 simplifies to Theorem 1.1. After

presenting some preliminary materials in Section 2, we prove the theorems

in Section 3. For more background on Lyndon words see [6].

1.1. An Application. The inequalities in Theorems 1.1 and 1.2 seem to

be new. They arised with the study of Nichols algebras of diagonal type in

[5] in order to determine whether such a Nichols algebra is a free algebra.

Roughly, the inequality implies that a certain rational function is in fact

a polynomial, and freeness of the Nichols algebra holds if none of these

polynomials vanish at the point of an affine space determined by the braiding

of the Nichols algebra. The calculation of the zeros of such a polynomial

simplifies significantly if the inequality is known to be strict. Strictness when

k = 2 is further discussed in Section 4.

2. Background

A word is called a prenecklace, if it is the prefix of some necklace. For any

non-empty word α let |α| denote the length of α and let lyn(α) be the length

of the longest prefix of α that is a Lyndon word. The following observation
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is applied implicitly in many necklace algorithms including the ones from [2].

It is an extension of the classical property stated by Duval [3, P. 380] that

every necklace has the form βt where β is a Lyndon word and t ≥ 1.

Lemma 2.1. Let α = a1a2 · · · an be a prenecklace with p = lyn(α). Then α

is a necklace if and only if n mod p = 0.

Proof. Suppose α is a necklace. We know that α has the form βt for some

Lyndon word β and some t ≥ 1. Since p = lyn(α), |β| ≤ p. If |β| = p then

we are done. Otherwise β = a1a2 · · · aq for some q < p. Thus a1a2 · · · ap =

(a1a2 · · · aq)ja1a2 · · · ai for some j ≥ 1 and 1 ≤ i < q. However, since β

is a Lyndon word, a1a2 · · · aq < ai+1 · · · aqa1a2 · · · ai. But this implies that

a1a2 · · · ai(a1a2 · · · aq)j < a1a2 · · · ap, which contradicts a1a2 · · · ap being a

Lyndon word. Now suppose n mod p = 0. Since a1a2 · · · ap is a Lyndon

word, we clearly have that α is less than or equal to any of its rotations,

and hence is a necklace. �

The following theorem was named the Fundamental theorem of necklaces

by Ruskey and a proof of the theorem is presented in [9] which builds on

a foundation of results from Duval [3]. There is a similar statement by

Reutenauer [8] on page 164.

Theorem 2.2. [2, Thm. 2.1] Let α = a1 · · · an−1 be a prenecklace over the

alphabet Σk, where n, k ≥ 2. Let p = lyn(α) and let b ∈ Σk. Then αb is a

prenecklace if and only if an−p ≤ b. In this case,

lyn(αb) =

{
p if b = an−p,

n if b > an−p.

Corollary 2.3. If α = a1a2 · · · an is a prenecklace and b > an, then the

word a1a2 · · · an−1b is a Lyndon word.

Proof. Since α is a prenecklace, then so is a1a2 · · · an−1. From Theorem 2.2,

we have an−p ≤ an since α is a prenecklace. Since an < b then an−p < b and

thus Theorem 2.2 implies that a1a2 · · · an−1b is a Lyndon word. �

Corollary 2.4. If α = a1a2 · · · an is a necklace and b > a1, then αb is a

Lyndon word.

Proof. Let p = lyn(α). By Lemma 2.1, n mod p = 0. Since α is a pre-

necklace, Theorem 2.2 implies that αb is a Lyndon word since b > a1 =

an+1−p. �

The following result follows from inductively applying Theorem 2.2 and

corresponds to [2, Lem. 2.3].
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Corollary 2.5. Let α = a1a2 · · · an be a prenecklace with p = lyn(α) < n,

that is, α is not a Lyndon word. Then α = (a1a2 · · · ap)ja1a2 · · · ai for some

j ≥ 1 and 1 ≤ i ≤ p.

The following remark follows directly from the definition of a necklace.

Remark 2.6. Every necklace over Σk that contains a 0 and a non-0 element

must begin with 0 and end with a non-0.

3. Proof of Main Theorems

A necklace α = a1a2 · · · an is said to be stable if a1a2 · · · an−1 is a Lyndon

word; otherwise α is unstable. We prove Theorem 1.2, which generalizes

Theorem 1.1, by partitioning Nk(n0, n1, . . . , nk−1) into two sets S and U,

which contain the stable and unstable necklaces of Nk(n0, n1, . . . , nk−1),

respectively.

Lemma 3.1. Let k ≥ 2 and n0, n1, . . . , nk−1 ≥ 1 be positive integers. Then

|S| =
k−1∑
i=1

Lk(n0, . . . , ni−1, ni−1, ni+1, . . . , nk−1).

Proof. Since each ni > 0, by Remark 2.6 every necklace in S must begin

with 0 and end with a non-0. By partitioning S by its last symbol, the

result follows from Corollary 2.4 and the definition of stable. �

It remains to show that |U| ≤ Lk(n0−1, n1, n2, . . . , nk−1). We assume

k ≥ 2 and each ni ≥ 1. Let α = a1a2 · · · an be a necklace in U. From

Remark 2.6, a1 = 0 and an > 0. Let α′ = a1a2 · · · an−1 and let x = an.

Since α is unstable, α′ is a prenecklace, but not a Lyndon word. Thus,

applying Corollary 2.5, we can write α′ as (a1a2 · · · ap)ja1a2 · · · ai where

j ≥ 1 and 1 ≤ i ≤ p. For the upcoming function f , we define z, which we

call the index of α associated with f , to be the largest index no more than

i such that az = 0. Such an index exists since a1 = 0. Thus

α = (a1a2 · · · ap)ja1a2 · · · az−1azaz+1az+2 · · · aix.

Consider the function f : U→ Lk(n0−1, n1, n2, . . . , nk−1) as follows:

f(α) =

{
(a1a2 · · · ap)ja1a2 · · · az−1x if z = i;

(a1a2 · · · ap)jxaiai−1 · · · az+2a1a2 · · · az−1az+1 if z < i.

Clearly f(α) has the required content. To see that f(α) is a Lyndon

word, consider two cases depending on z. Suppose z = i. As stated ear-

lier, (a1a2 · · · ap)ja1a2 · · · az = α′ is a prenecklace. Thus since x > az,

(a1a2 · · · ap)ja1a2 · · · az−1x is a Lyndon word by Corollary 2.3. Suppose

z < i. Note that (a1a2 · · · ap)j is a necklace and a1 = 0. Since each symbol

in xaiai−1 · · · az+2 is non-0, β = (a1a2 · · · ap)jxaiai−1 · · · az+2 is a Lyndon
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word by Corollary 2.4. Observe that βa1a2 · · · az is a prenecklace, since it

is a prefix of the necklace β2. Thus, since az+1 > 0 from the definition of

z and az = 0, Corollary 2.3 implies βa1a2 · · · az−1az+1 is a Lyndon word.

Hence f(α) is a Lyndon word.

Lemma 3.2. Let k ≥ 2 and n0, n1, . . . , nk−1 be positive integers. Then

|U| ≤ Lk(n0−1, n1, n2, . . . , nk−1).

Proof. We prove that f is one-to-one. Consider necklaces α and β in U.

Set:
α = (a1a2 · · · ap)ja1a2 · · · az−1azaz+1az+2 · · · aix,
β = (b1b2 · · · bp′)j

′
b1b2 · · · bz′−1bz′bz′+1bz′+2 · · · bi′x′,

where z (resp. z′) is the index of α (resp. of β) associated with f . Suppose

f(α) = f(β). If jp = j′p′, then p = p′ since both a1a2 · · · ap and b1b2 · · · bp′
are Lyndon words. If p = p′ then clearly α = β by the definition of f .

This means that p 6= j′p′ and p′ 6= jp. Thus, without loss of generality

assume that jp < j′p′. Suppose p < p′ < jp, which implies j > 1. But

this implies there exists 1 ≤ h < j and 0 < t ≤ p such that b1b2 · · · bp′ =

(a1a2 · · · ap)ha1a2 · · · at which contradicts b1b2 · · · bp′ being a Lyndon word.

By a similar argument we cannot have p′ < p < j′p′. Thus jp < p′, which

by the definition of f , implies j′ = 1 and a1a2 · · · ap = b1b2 · · · bp. Consider

two cases based on ` = |az+2 · · · aix|.
(i) Suppose jp+` ≥ p′ > jp. This implies ` > 0. Let `′ = |bz′+2 · · · bi′x′|.

Recall a1 = b1 = 0 and each letter of az+1 · · · aix and bz′+1 · · · bi′x′
is non-0. Thus, since f(α) = f(β), we must have jp + ` = p′ + `′,

which means z = z′. But this means x′ = ai′+1 = bi′+1, which means

that β ends with b1b2 · · · bi′+1 which is a proper prefix of b1b2 · · · bp′ .
Since i′ + 1 < p′ we have n mod p′ 6= 0 and thus Lemma 2.1 implies

that β is not a necklace, a contradiction.

(ii) Suppose jp + ` < p′. In this case, for f(α) = f(β), it must be that

some suffix of b1b2 · · · bp′ is a prefix of a1a2 · · · az−1 = b1b2 · · · bz−1
which contradicts b1b2 · · · bp′ being a Lyndon word.

�

Together Lemma 3.1 and Lemma 3.2 prove Theorem 1.1. To complete

the proof of Theorem 1.2, the following lemma proves that for k > 2 the

function f is not a bijection.

Lemma 3.3. The function f is not a surjection when k > 2.

Proof. We consider two cases depending on the parity of n0. For each case

we demonstrate a word γ in Lk(n0−1, n1, n2, . . . , nk−1) that is not in the
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range of f . Consider α ∈ U and let γ = f(α). Observe that since k > 2, the

shortest prefix u of γ = uv containing two different symbols is also a prefix

of α. Moreover, if v ends with 0jt, with j ≥ 0 and t ∈ {1, 2, . . . , k− 1}, then

0j+1t is a subword of α.

• Case 1: n0 = 2j + 1 for j ≥ 0. There is no necklace in U that maps

to the Lyndon word 0j1n12n2 · · · (k−1)nk−1−10j(k−1) because such

a necklace would have to start with 0j1 but have the subword 0j+1.

• Case 2: n0 = 2j for j ≥ 1. There is no necklace in U that maps

to the Lyndon word 0j(k−1)nk−1 · · · 3n32n21n1−10j−11 because such

a necklace would have to start with 0j(k−1) but have the subword

0j1.

�

4. Special Cases When N(n, d) = L(n−1, d) + L(n−1, d−1)

In this section we discuss when the inequality given by Theorem 1.1 is

equality. Recall that the density d of a binary word is the number of 1s it

contains.

Lemma 4.1. If d ∈ {1, 2, n−2, n−1} and 0 < d < n then N(n, d) =

L(n−1, d) + L(n−1, d−1) except for (n, d) = (2, 1).

Proof. Recall that N(n, d) = N(n, n−d) and L(n, d) = L(n, n−d). Thus it

suffices to prove the result for d = 1 and d = 2. For d = 1 and n > 2,

N(n, 1) = {0n−11}, L(n−1, 1) = {0n−21}, and L(n−1, 0) = ∅, and thus

the result holds. For d = 2, consider the parity of n. If n is even, then

L(n, 2) = {0n−j−210j1 | j ∈ {0, 1, . . . , n−22 − 1} } and N(n, 2) = L(n, 2) ∪
{0(n−2)/210(n−2)/21}. If n is odd, then N(n, d) = L(n, 2) = {0n−j−210j1 | j ∈
{0, 1, . . . , n−32 }}. Thus, N(n, 2) = bn2 c, L(n−1, 2) = bn−22 c, and L(n−1, 1) =

1, and therefore the result holds. �

We now consider the other values of d.

Lemma 4.2. If 2 < d < n− 2 then N(n, d) = L(n−1, d) + L(n−1, d−1) if

and only if (n, d) ∈ {(6, 3), (7, 3), (7, 4), (8, 4), (9, 3), (9, 6)}.

Proof. The claim can be verified directly from the enumeration formulae for

n ≤ 10. A table of relevant values for N(n, d) (resp. L(n, d)) are provided

in the left (resp. right) table below.
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n/d 3 4 5 6 7

6 4

7 5 5

8 7 10 7

9 10 14 14 10

10 12 22 26 22 12

n/d 2 3 4 5 6 7

5 2 2

6 2 3 2

7 3 5 5 3

8 3 7 8 7 3

9 4 9 14 14 9 4

For n > 10, let z = n−d (the number of 0s). Recall that N(n, d) =

N(n, n−d) and L(n, d) = L(n, n−d). Thus, if N(n, d) = L(n−1, d) +

L(n−1, d−1) then N(n, n−d) = L(n−1, n−d) + L(n−1, n−(d−1)). Thus,

we can assume 2 < z ≤ n/2. Consider three cases for z = 3, z = 4, and

z ≥ 5. Each result is proved by specifying a Lyndon word β ∈ L(n−1, d) =

L2(z−1, d) not in the range of f when the domain is the set of unstable

necklaces in N(n, d) = N2(z, d).

• Case: z = 3. Depending on the parity of n let β be either 01t01t+1

or 01t01t+2. Since n > 10, we have t ≥ 3. Consider any necklace

α in N2(3, d) which can be written as 01t101t201t3 for non-negative

integers t1, t2, t3. Note that if t2 < t1 then the the rotation of α

starting with 01t2 is less than α, a contradiction to α being a neck-

lace. Similarly for t3. Thus, t2, t3 ≥ t1. But for any such (unstable)

α, f(α) = 01t101t2+t3 6= β.

• Case: z = 4. Depending on the value of (n mod 3) let β be one of the

words 01t01t01t+1, 01t01t+101t+1, and 01t01t+101t+2. Since n > 10,

we have t ≥ 2. Consider any unstable necklace α = a1a2 · · · an in

N2(4, d) which can be written as 01t101t201t301t4 for non-negative

integers t1, t2, t3, t4. Again, observe that if t2 < t1 then the rotation

of α starting with 01t2 is less than α, a contradiction to α being a

necklace. Similarly for t3, t4. Thus, t2, t3, t4 ≥ t1. Moreover, since

n > 10, if t4 = 1 then at least one of t1 or t2 or t3 is greater than

one which similarly contradicts α being a necklace as the rotation

starting with 01t4 will be less than α. Thus t4 > 1. Recall we can

write α as (a1a2 · · · ap)ja1a2 · · · aix where x = 1, j ≥ 1, and 1 ≤ i ≤ p
where p is the length of the longest Lyndon prefix of a1a2 · · · an−1.
Since clearly a1 = 0 and ap = 1, p ∈ {t1+1, t1+t2+2, t1+t2+t3+3}.
If p = t1 + 1 then j = 3 and t1 = t2 = t3 by the definition of

p. However then f(α) = 01t101t101t1+t4 which is not equal to any

possible β. If p = t1+t2+2 then t1 = t3 and t2 > t1 by the definition

of p, and thus t2 > t3. However, then f(α) = 01t101t2+t4−101t3+1

which is not equal to any possible β. Finally, if p = t1+t2+t3+3 then

t3 > t1 by the definition of p. However, then f(α) = 01t101t201t3+t4

which is also not equal to any possible β.
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• Case: z ≥ 5. Recall n > 10 and z ≤ n/2. Consider the length n− 1

word β = 0011s01(01)t where t = z − 4 and s = n − 2t − 6. Since

z ≥ 5, we have t ≥ 1 and since z ≤ n/2, we have s > 0. Clearly β

is a Lyndon word and it has z − 1 0s. Now suppose there exists an

unstable necklace α = a1a2 · · · an in N2(z, d) such that f(α) = β.

Recall we can write α as (a1a2 · · · ap)ja1a2 · · · aix where x = 1, j ≥ 1,

and 1 ≤ i ≤ p. As noted earlier, if β begins with 001, then so must

α. Thus a1a2a3 = 001. Consider z′, the index of α associated with

f . If z′ > 2, then f(α) must have two subwords of the form 001 and

hence is not equal to β. Otherwise z′ = 2. If i = z′ then α ends with

001. In order for f(α) = β, α must begin with 0011. However this

contradicts α being a necklace because the rotation starting with its

suffix 001 will be less than α. Thus z′ = 2 < i. This means that

a1 = 0, a2 = 0, and each of a3, a4, . . . , ai, x is 1. Thus, from the

definition of f , f(α) must end 1101 which contradicts β ending with

0101.

�
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