
Intel® Integrated Performance
Primitives for Linux* OS on IA-32
Architecture
User’s Guide

March 2009

Document Number: 320271-003US

World Wide Web: http://developer.intel.com

http://developer.intel.com/software/products/perflib/index.htm

ii

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IM-
PLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT
AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSO-
EVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR IN-
FRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use
in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.
Intel may make changes to specifications and product descriptions at any time, without notice.
Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined."
Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising
from future changes to them.
The software described in this document may contain software defects which may cause the product to deviate from published
specifications. Current characterized software defects are available on request.
This document as well as the software described in it is furnished under license and may only be used or copied in accordance
with the terms of the license. The information in this manual is furnished for informational use only, is subject to change without
notice, and should not be construed as a commitment by Intel Corporation. Intel Corporation assumes no responsibility or lia-
bility for any errors or inaccuracies that may appear in this document or any software that may be provided in association with
this document.
Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means without the express written consent of Intel Corporation.
Developers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined."
Improper use of reserved or undefined features or instructions may cause unpredictable behavior or failure in developer's soft-
ware code when running on an Intel processor. Intel reserves these features or instructions for future definition and shall have
no responsibility whatsoever for conflicts or incompatibilities arising from their unauthorized use.
BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Atom, Centrino Inside, Centrino logo, Core Inside, FlashFile, i960,
InstantIP, Intel, Intel logo, Intel386, Intel486, IntelDX2, IntelDX4, IntelSX2, Intel Atom, Intel Core, Intel Inside, Intel Inside
logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel SingleDriver, Intel
SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel XScale, Itanium, Itanium Inside, MCS, MMX, Oplus, OverDrive, PDC-
harm, Pentium, Pentium Inside, skoool, Sound Mark, The Journey Inside, Viiv Inside, vPro Inside, VTune, Xeon, and Xeon Inside
are trademarks of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2008-2009, Intel Corporation. All rights reserved.

Version Version Information Date

-001 Intel® Integrated Performance Primitives (Intel® IPP) for Linux* OS on IA-32
Architecture User’s Guide. Documents Intel IPP 6.0 release.

 September 2008

-002 Documents Intel IPP 6.1 beta release January 2009

-003 Documents Intel IPP 6.1 release March 2009

iii

Contents

Chapter 1 Overview
Technical Support ... 1-2
About This Document .. 1-2

Purpose... 1-2
Audience ... 1-3

Document Organization ... 1-4
Notational Conventions.. 1-5

Chapter 2 Getting Started with Intel® IPP
Intel IPP Basics .. 2-1

Cross-Architecture Alignment ... 2-2
Types of Input Data .. 2-2
Domains.. 2-4
Function Naming .. 2-5

Checking Your Installation.. 2-9
Obtaining Version Information .. 2-9

Building Your Application.. 2-9
Setting Environment Variables .. 2-9
Including Header Files ... 2-10
Calling IPP Functions ... 2-10

Before You Begin Using Intel IPP... 2-11

Chapter 3 Intel® IPP Structure
High-level Directory Structure .. 3-1
Supplied Libraries ... 3-2

iv

Intel® IPP User’s Guide

Using Intel IPP Shared Object Libraries (SO) 3-2
Using Intel IPP Static Libraries ... 3-3

Contents of the Documentation Directory 3-4

Chapter 4 Configuring Your Development Environment
Configuring Eclipse CDT to Link with Intel IPP................................. 4-1

Configuring Eclipse CDT 4.0 ... 4-1
Configuring Eclipse CDT 3.x ... 4-2

Chapter 5 Linking Your Application with Intel® IPP
Dispatching ... 5-1

Processor Type and Features .. 5-2
Selecting Between Linking Methods... 5-4

Dynamic Linking... 5-5
Static Linking (with Dispatching) .. 5-6
Static Linking (without Dispatching) .. 5-7
Building a Custom SO ... 5-9
Comparison of Intel IPP Linkage Methods................................. 5-10

Selecting the Intel IPP Libraries Needed by Your Application 5-10
Dynamic Linkage.. 5-12
Static Linkage with Dispatching .. 5-12
Library Dependencies by Domain (Static Linkage Only).............. 5-13

Linking Examples ... 5-14

Chapter 6 Supporting Multithreaded Applications
Intel IPP Threading and OpenMP* Support 6-1

Setting Number of Threads .. 6-1
Using Shared L2 Cache ... 6-2
Nested Parallelization .. 6-2
Disabling Multithreading .. 6-2

Chapter 7 Managing Performance and Memory
Memory Alignment ... 7-1
Thresholding Data .. 7-4
Reusing Buffers.. 7-4
Using FFT .. 7-5

Contents

v

Running Intel IPP Performance Test Tool .. 7-6
Examples of Using Performance Test Tool Command Lines............ 7-7

Chapter 8 Using Intel® IPP with Programming Languages
Language Support .. 8-1
Using Intel IPP in Java* Applications ... 8-1

Appendix A Performance Test Tool Command Line Options

Appendix B Intel® IPP Samples
Types of Intel IPP Sample Code .. B-1
Source Files of the Intel IPP Samples .. B-2
Using Intel IPP Samples .. B-4

System Requirements ... B-4
Building Source Code .. B-5
Running the Software ... B-6

Known Limitations .. B-6

Index

1-1

Overview 1
Intel® Integrated Performance Primitives (Intel® IPP) is a software library that provides a
broad range of functionality. This functionality includes general signal and image
processing, computer vision, speech recognition, data compression, cryptography, string
manipulation, audio processing, video coding, realistic rendering and 3D data processing.
It also includes more sophisticated primitives for construction of audio, video and speech
codecs such as MP3 (MPEG-1 Audio, Layer 3), MPEG-4, H.264, H.263, JPEG, JPEG2000,
GSM-AMR, G.723.

By supporting a variety of data types and layouts for each function and minimizing the
number of data structures used, the Intel IPP library delivers a rich set of options for
developers to choose from when designing and optimizing an application. A variety of data
types and layouts are supported for each function. Intel IPP software minimizes data
structures to give the developer the greatest flexibility for building optimized applications,
higher level software components, and library functions.

Intel IPP for Linux* OS is delivered in separate packages for:

• Users who develop on 32-bit Intel architecture (Intel IPP for the Linux* OS on IA-32
Intel® Architecture)

• Users who develop on Intel® 64-based (former Intel EM64T) architecture (Intel IPP for
the Linux* OS on Intel® 64 Architecture)

• Uusers who develop on Intel® Itanium® 2 processor family (Intel IPP for the Linux*
OS on IA-64 architecture)

• Users who develop on Intel® Atom™ processor (Intel IPP for the Linux* OS on low
power Intel® Architecture)

1-2

1 Intel® IPP User’s Guide

Technical Support
Intel IPP provides a product web site that offers timely and comprehensive product
information, including product features, white papers, and technical articles. For the latest
information, see http://developer.intel.com/software/products/.

Intel also provides a support web site that contains a rich repository of self-help
information, including getting started tips, known product issues, product errata, license
information, and more (visit http://support.intel.com/support/).

Registering your product entitles you to one-year technical support and product updates
through Intel® Premier Support. Intel Premier Support is an interactive issue management
and communication web site providing the following services:

• Submit issues and review their status.

• Download product updates anytime of the day.

To register your product, or contact Intel, or seek product support, please visit

http://www.intel.com/software/products/support/ipp.

About This Document
This User's Guide provides information about how to make the most of Intel® IPP routines
using Linux* applications running on IA-32 architecture. It describes features specific to
this platform, as well as features that do not depend upon a particular architecture.

After installation, you can find this document in the <install path>/doc directory (see
Contents of the Documentation Directory).

Purpose
This document:

• Helps you start using the library by describing the steps you need to follow after
installation of the product.

• Shows how to configure the library and your development environment to use the
library.

• Acquaints you with the library structure.

• Explains in detail how to select the best linking method, how to link your application to
the library, and it provides simple usage examples.

• Explains how to thread your application using IPP software.

• Describes how to code, compile, and run your application with Intel IPP.

http://www.intel.com/software/products/support/ipp

Overview 1

1-3

• Provides information about how to accomplish Intel IPP functions performance tests by
using Intel IPP Performance Test Tool.

• Describes types of Intel IPP sample code available for developers to learn how to use
Intel IPP and it explains how to run the samples.

Audience
This guide is intended for Linux programmers with beginner to advanced software
development experience.

1-4

1 Intel® IPP User’s Guide

Document Organization
The document contains the following chapters and appendices.

Chapter 1 Overview describes the document purpose and organization as well
as explains notational conventions.

Chapter 2 Getting Started with Intel® IPP describes necessary steps and
gives basic information needed to start using Intel IPP after its
installation.

Chapter 3 Intel® IPP Structure describes the structure of the Intel IPP
directory after installation and discusses the library types supplied.

Chapter 4 Configuring Your Development Environment explains how to
configure Intel IPP and how to configure your environment for use
with the library.

Chapter 5 Linking Your Application with Intel® IPP compares linking methods,
helps you select a linking method for a particular purpose,
describes the general link line syntax to be used for linking with the
Intel IPP libraries, and discusses how to build custom dynamic
libraries.

Chapter 6 Supporting Multithreaded Applications helps you set the number of
threads in multithreaded applications, get information on the
number of threads, and disable multithreading.

Chapter 7 Managing Performance and Memory discusses ways of improving
Intel IPP performance and tells you how to create Intel IPP
functions performance tests by using the Intel IPP Performance
Test Tool.

Chapter 8 Using Intel® IPP with Programming Languages discusses some
special aspects of using Intel IPP with different programming
languages and Linux development environments.

Appendix A Performance Test Tool Command Line Options gives brief
descriptions of possible performance test tool command line
options.

Appendix B Intel® IPP Samples describes types of sample code available to
demonstrate how to use Intel IPP, presents the source code
example files by categories with links to view the sample code, and
explains how to run the samples.

The document also includes an Index.

Overview 1

1-5

Notational Conventions
The document usess the following font conventions and symbols:

Table 1-1 Notational conventions

Italic Italic is used for emphasis and also indicates document names in
body text, for example, see Intel IPP Reference Manual

Monospace lowercase Indicates filenames, directory names, and pathnames, for example:
tools/env/ippvars32.csh

Monospace lowercase
mixed with uppercase

Indicates code, commands, and command-line options, for example:
export LIB=$IPPROOT/lib:$LIB

UPPERCASE MONOSPACE Indicates system variables, for example, LD_LIBRARY_PATH

Monospace italic Indicates a parameter in discussions, such as function parameters,
for example, lda; makefile parameters, for example,
functions_list; and so on.
When enclosed in angle brackets, indicates a placeholder for an
identifier, an expression, a string, a symbol, or a value:
 <ipp directory>.

[items] Square brackets indicate that the items enclosed in brackets are
optional.

{ item | item } Braces indicate that only one of the items listed between braces can
be selected. A vertical bar (|) separates the items

2-1

Getting Started with
Intel® IPP 2

This chapter helps you start using Intel® IPP by providing basic information you need to
know and describing the necessary steps you need to follow after installation of the
product.

Intel IPP Basics
Intel IPP is a collection of high-performance code that provides a broad range of
functionality. This functionality includes general signal and image processing, computer
vision, speech recognition, data compression, cryptography, string manipulation, audio
processing, video coding, realistic rendering and 3D data processing, matrix math. It also
includes more sophisticated primitives for construction of audio, video and speech codecs
such as MP3 (MPEG-1 Audio, Layer 3), MPEG-4, H.264, H.263, JPEG, JPEG2000, GSM-AMR,
G.723.

Based on experience in developing and using the Intel Performance Libraries, Intel IPP has
the following major distinctive features:

• Intel IPP provides basic low-level functions for creating applications in several different
domains, such as signal processing, audio coding, speech recognition and coding,
image processing, video coding, operations on small matrices, and realistic rendering
functionality and 3D data processing. See detailed information in the section Domains.

• The Intel IPP functions follow the same interface conventions including uniform naming
rules and similar composition of prototypes for primitives that refer to different
application domains. For information on function naming, see Function Naming.

• The Intel IPP functions use abstraction level which is best suited to achieve superior
performance figures by the application programs.

To speed up performance, Intel IPP functions are optimized to use all benefits of Intel®
architecture processors. Besides, most of Intel IPP functions do not use complicated data
structures, which helps reduce overall execution overhead.

2-2

2 Intel® IPP User’s Guide

Intel IPP is well-suited for cross-platform applications. For example, the functions
developed for IA-32 architecture-based platforms can be readily ported to Intel®
Itanium®-based platforms (see Cross-Architecture Alignment).

Cross-Architecture Alignment
Intel IPP is designed to support application development on various Intel® architectures.
This means that the API definition is common for all processors, while the underlying
function implementation takes into account the variations in processor architectures.

By providing a single cross-architecture API, Intel IPP allows software application
repurposing and enables developers to port to unique features across Intel®
processor-based desktop, server, and mobile platforms. Developers can write their code
once in order to realize the application performance over many processor generations.

Types of Input Data
Intel IPP operations are divided into several groups in dependence on the types of input
data on which the operation is performed. The types for these groups are:

One-Dimensional Arrays and Signals

This group includes most functions operating on one-dimensional arrays of data. In many
cases these array are signals and many of the operations are signal-processing operations.
Examples of one-dimensional array operations include:

vectorized scalar arithmetic, logical, statistical operations

digital signal processing

data compression

audio processing and audio coding

speech recognition and speech coding

cryptography and data integrity

string operations

Images

An image is an two-dimensional array of pixels. Images have some specific features that
distinguishes them from general two-dimensional array. Examples of image operations
include:

arithmetic, logical, statistical operations

color conversion

image filtering

image linear and geometric transformations

Getting Started with Intel® IPP 2

2-3

morphological operations

computer vision

image compression

video coding

Matrices

This group includes functions operating on matrices and vectors that are one- and
two-dimensional arrays, and on arrays of matrices and vectors. These arrays are treated as
linear equations or data vectors and subjected to linear algebra operations. Examples of
matrix operations include:

vector and matrix algebra

solving systems of linear equations

solving least squares problem

computing eigenvalue problem

3D objects

This group includes functions operating with 3D objects. In this case input data depends on
the used techniques. Examples of 3D operations include:

realistic rendering

resizing and affine transforming

The Intel IPP functions are primarily grouped according to the input data types listed
above. Each group has its own prefix in the function name (see Function Naming).

Core Functions

A few service functions in Intel IPP do not operate on one of these input data type. Such
functions are used to detect and set system and Intel IPP configuration. Examples of such
operations include getting the type of CPU, aligning pointers to the specified number of
bytes, controlling the dispatcher of the merged static libraries and so on. These functions
are called core functions and have its own header file, static libraries and SOs.

 here *.* refers to the product version number, for example 6.1

Table 2-1

Code Header File Static Libraries SO

Prefix in
Functio
n Name

ippCore ippcore.h libippcore.a

libippcore_t.a

libippcore.so.*.* ipp

2-4

2 Intel® IPP User’s Guide

Domains
For organizational purposes Intel IPP is internally divided into subdivisions of related
functions. Each subdivision is called domain, (or functional domain) and generally has its
own header file, static libraries, DLLs, and tests. These domains map easily to the types of
input data and the corresponding prefixes. The Intel IPP Manual indicates in which header
file each function can be found. The table below lists each domain's code, header and
library names, and functional area.

Table 2-2

Code Header file Static
Libraries

SO Prefix Description

ippAC ippac.h libippac*.a libippac**.so.**
*

ipps audio coding

ippCC ippcc.h libippac*.a libippac**.so.**
*

ippi color
conversion

ippCH ippch.h libippac*.a libippac**.so.**
*

ipps string
operations

ippCP ippcp.h libippac*.a libippac**.so.**
*

ipps cryptography

ippCV ippcv.h libippac*.a libippac**.so.**
*

ippi computer
vision

ippDC ippdc.h libippac*.a libippac**.so.**
*

ipps data
compression

ippDI ippdi.h libippac*.a libippac**.so.**
*

ipps data integrity

ippGEN ipps.h libippac*.a libippac**.so.**
*

ippg generated
functions

ippIP ippi.h libippac*.a libippac**.so.**
*

ippi image
processing

ippJP ippj.h libippac*.a libippac**.so.**
*

ippi image
compression

ippMX ippm.h libippac*.a libippac**.so.**
*

ippm small matrix
operations

ippRR ippr.h libippac*.a libippac**.so.**
*

ippr realistic
rendering and
3D data
processing

Getting Started with Intel® IPP 2

2-5

* - refers to one of the following: emerged, merged, merged_t

** - refers to the processor-specific code, for example, s8

*** - refers to the version number, for example, 6.1

Function Naming
Function names in Intel IPP are structured in order to simplify their identification and use.
Understanding Intel IPP naming conventions can save you a lot of time and effort in
figuring out what the purpose of a specific function is and in many cases you can derive
this basic information straight from the function's self-explanatory name.

Naming conventions for the Intel IPP functions are similar for all covered domains.

Intel IPP function names include a number of fields that indicate the data domain,
operation, data type, and execution mode. Each field can only span over a fixed number of
pre-defined values.

Function names have the following general format:

ipp<data-domain><name>[_<datatype>][_<descriptor>](<parameters>);

The elements of this format are explained in the sections that follow.

Data-Domain

The data-domain is a single character indicating type of the input data. The current

ippSC ippsc.h libippac*.a libippac**.so.**
*

ipps speech coding

ippSP ipps.h libippac*.a libippac**.so.**
*

ipps signal
processing

ippSR ippsr.h libippac*.a libippac**.so.**
*

ipps speech
recognition

ippVC ippvc.h libippac*.a libippac**.so.**
*

ippi video coding

ippVM ippvm.h libippac*.a libippac**.so.**
*

ipps vector math

Table 2-2

Code Header file Static
Libraries

SO Prefix Description

2-6

2 Intel® IPP User’s Guide

version of Intel IPP supports the following data-domains:

s for signals (expected data type is a 1D array)

g for signals of the fixed length (expected data type is a 1D array)

i for images and video (expected data type is a 2D array of pixels)

m for vectors and matrices (expected data type is a matrix or vector)

r for realistic rendering functionality and 3D data processing (expected data type
depends on supported rendering techniques)

The core functions in Intel IPP do not operate on one of these types of the input data (see
Core Functions). These functions have ipp as a prefix without data-domain field, for
example, ippGetStatusString.

Name

The name identifies the algorithm or operation that the function does. It has the following
format:

<name> = <operation>[_modifier]

The operation field is one or more words, acronyms, and abbreviations that identify the
base operation, for example Set, Copy. If the operation consists of several parts, each part
starts with an uppercase character without underscore, for example, HilbertInitAlloc.

The modifier, if present, denotes a slight modification or variation of the given function.
For example, the modifier CToC in the function ippsFFTInv_CToC_32fc signifies that the
inverse fast Fourier transform operates on complex data, performing complex-to-complex
(CToC) transform. Functions for matrix operation have and object type description as a
modifier, for example, ippmMul_mv - multiplication of a matrix by a vector.

Data Types

The datatype field indicates data types used by the function in the following format:

<datatype> = <bit_depth><bit_interpretation> ,

where

bit_depth = <1|8|16|32|64>

and

bit_interpretation = <u|s|f>[c].

Here u indicates “unsigned integer”, s indicates “signed integer”, f indicates “floating

point”, and c indicates “complex”.

For functions that operate on a single data type, the datatype field contains only one
value.

Getting Started with Intel® IPP 2

2-7

If a function operates on source and destination objects that have different data types, the
respective data type identifiers are listed in the function name in order of source and
destination as follows:

 <datatype> = <src1Datatype>[src2Datatype][dstDatatype].

For example, the function ippsDotProd_16s16sc computes the dot product of 16-bit
short and 16-bit complex short source vectors and stores the result in a 16-bit complex
short destination vector. The dstDatatype modifier is not present in the name because the
second operand and the result are of the same type.

Descriptor

The optional descriptor field describes the data associated with the operation. It can
contain implied parameters and/or indicate additional required parameters.

To minimize the number of code branches in the function and thus reduce potentially
unnecessary execution overhead, most of the general functions are split into separate
primitive functions, with some of their parameters entering the primitive function name as
descriptors.

However, where the number of permutations of the function becomes large and
unreasonable, some functions may still have parameters that determine internal operation
(for example, ippiThreshold).

The following descriptors are used in Intel IPP:

A Image data contains an alpha channel as the last channel, requires C4, alpha
channel is not processed.

A0 Image data contains an alpha channel as the first channel, requires C4, alpha
channel is not processed.

Axx Specifies the bits of accuracy of the result for advanced arithmetic operations.

C The function operates on a specified channel of interest (COI) for each source
image.

Cn Image data is made of n discrete interleaved channels (n= 1, 2, 3, 4).

Dx Signal is x-dimensional (default is D1).

I The operation is performed in-place (default is not-in-place).

L Layout description of the objects for matrix operation, or indicates that one
pointer is used for each row in D2 array for signal processing.

M The operation uses a mask to determine pixels to be processed.

P Pointer description of the objects for matrix operation, or specified number of
vectors to be processed for signal processing.

Pn Image data is made of n discrete planar (non-interleaved) channels (n= 1, 2,
3, 4) with separate pointer to each plane.

2-8

2 Intel® IPP User’s Guide

The descriptors in function names are always presented in alphabetical order.

Some data descriptors are implied when dealing with certain operations. For example, the
default for image processing functions is to operate on a two-dimensional image and to
saturate the results without scaling them. In these cases, the implied abbreviations D2
(two-dimensional signal) and s (saturation and no scaling) are not included in the function
name.

Parameters

The parameters field specifies the function parameters (arguments).

The order of parameters is as follows:

1. All source operands. Constants follow arrays

2. All destination operands. Constants follow arrays

3. Other, operation-specific parameters

The parameters name has the following conventions.

Arguments defined as pointers start with p, for example, pPhase, pSrc, pSeed;
arguments defined as double pointers start with pp, for example, ppState; and
arguments defined as values start with a lowercase letter, for example, val, src,
srcLen.

Each new part of an argument name starts with an uppercase character, without
underscore, for example, pSrc, lenSrc, pDlyLine.

Each argument name specifies its functionality. Source arguments are named
pSrc or src, sometimes followed by names or numbers, for example, pSrc2,
srcLen. Output arguments are named pDst or dst followed by names or
numbers, for example, pDst1, dstLen. For in-place operations, the input/output
argument contains the name pSrcDst.

Examples:

ippsIIR_32f_I(Ipp32f* pSrcDst, int len, IppsIIRState_32f* pState);

ippiConvert_8u1u_C1R(const Ipp8u* pSrc, int srcStep, Ipp8u* pDst, int
dstStep, int dstBitOffset, IppiSize roiSize, Ipp8u threshold);

ippmSub_vac_32f(const Ipp32f* pSrc, int srcStride0, int srcStride2,
Ipp32f val, Ipp32f* pDst, int dstStride0, int dstStride2, int len, int
count).

R The function operates on a defined region of interest (ROI) for each source
image.

S Standard description of the objects for matrix operation.

Sfs Saturation and fixed scaling mode (default is saturation and no scaling).

s Saturation and no scaling.

Getting Started with Intel® IPP 2

2-9

Checking Your Installation
Once you complete the installation of Intel IPP, it is useful to follow these steps that
confirm proper installation and configuration of the library.

1. Check that the directory you chose for installation has been created: <installation
path>/intel/ipp/6.1.x.xxx/ia32. The default installation directory is
opt/intel/ipp/6.1.x.xxx/ia32.

2. Check that file ippvars32.sh is placed in the tools/env directory. You can use this
file to set the environment variables LD_LIBRARY_PATH, LIB, and INCLUDE in the user
shell.

3. Check that the dispatching and processor-specific libraries are on the path.

4. If you receive the error message “No shared object library was found in the Waterfall
procedure", this means that the Linux is unable to determine the location of the Intel
IPP shared object libraries. To solve this issue:

• Ensure that the Intel IPP directory is in the path. Before using the Intel IPP
shared object libraries, add path to the shared object libraries to the system
variable LD_LIBRARY_PATH as described in Using Intel IPP Shared Object
Libraries (SO) in Chapter 3;

Obtaining Version Information
To obtain information about the active library version including the version number,
package ID, and the licensing information, call the ippGetLibVersion function. See the
”Support Functions” chapter in the ”Intel IPP Reference Manual” (v.1) for the function
description and calling syntax.

You may also get the version information in the ippversion.h file located in the include
directory.

Building Your Application
Follow the procedures described below to build the application.

Setting Environment Variables
The shell script ippvars32.sh in the tools/env directory sets your LD_LIBRARY_PATH,
LIB, and INCLUDE environment variables for Intel IPP.

2-10

2 Intel® IPP User’s Guide

To set environment variables manually, add the path to the shared object libraries to the
LD_LIBRARY_PATH variable as described in Using Intel IPP Shared Object Libraries (SO) in
Chapter 3. You will also need to specify the location for the Intel IPP header and library files
with the following commands:

export INCLUDE=$IPPROOT/include:$INCLUDE (bash),
setenv INCLUDE=$IPPROOT/include:${INCLUDE} (csh)- for header files;

export LIB=$IPPROOT/lib:$LIB (bash),
setenv LIB=$IPPROOT/lib:${LIB} (csh)- for library files.

For information on how to set up environment variables for threading, refer to Supporting
Multithreaded Applications.

Including Header Files
Intel IPP functions and types are defined in several header files that are organized by the
function domains and located in the include directory. For example, the ippac.h file
contains declarations for all audio coding and processing functions.

The file ipp.h includes all Intel IPP header files. For forward compatibility, include only
ipp.h in your program.

Calling IPP Functions
Due to the shared library dispatcher and merged static library mechanisms described in
Linking Your Application with Intel® IPP, calling Intel IPP functions is as simple as calling
any other C function.

To call an Intel IPP function, do the following:

1. Include the ipp.h header file

2. Set up the function parameters

3. Call the function

The multiple versions of optimized code for each function are concealed under a single
entry point. Refer to the “Intel IPP Reference Manual” for function descriptions, lists of
required parameters, return values and so on.

Getting Started with Intel® IPP 2

2-11

Before You Begin Using Intel IPP
Before you start using Intel IPP, it is helpful to understand some basic concepts.

Table 2-3 summarizes important things to consider before you start using Intel IPP.

Table 2-3 What you need to know before you get started

Function domains Identify the Intel IPP function domain that meets your needs.
Reason: If you know function domain you intend to use will
narrow the search in the Reference Manuals for specific routines
you need.
Besides, you may easily find a sample you would like to run from
http://www.intel.com/software/products/ipp/samples.htm.
Refer to Table 5-9 to understand what function domains are and
what libraries are needed, and to Table 5-10 to understand what
kind of cross-domain dependency is introduced.

Linking method Decide what linking method is appropriate for linking.
Reason: If you choose a linking method that suits, you will get
the best linking results. For information on the benefits of each
linking method, linking command syntax and examples, as well
as on other linking topics, such as how to create a custom
dynamic library, see Linking Your Application with Intel® IPP

Threading model Select among the following options to determine how you are
going to thread your application:
• Your application is already threaded.
• You may want to use the Intel® threading capability, that is,

Compatibility OpenMP* run-time library (libiomp), or a
threading capability provided by a third-party compiler.

• You do not want to thread your application.
Reason: By default, Intel IPP uses the OpenMP* software to set
the number of threads that will be used. If you need a different
number, you have to set it yourself using one of the available
mechanisms. For more information, see Supporting
Multithreaded Applications.

http://www.intel.com/software/products/ipp/samples.htm

2-12

2 Intel® IPP User’s Guide

3-1

Intel® IPP Structure 3
This chapter discusses the structure of Intel IPP after installation as well as the library
types supplied.

High-level Directory Structure
Table 3-1 shows the high-level directory structure of Intel IPP after installation.

Table 3-1 High-level directory structure

Directory File types

<ipp directory> Main directory (by default:
/opt/intel/ipp/6.1.x.xxx/ia32)

<ipp directory>/ippEULA.txt End User License Agreement for Intel IPP

<ipp directory>/doc Intel IPP documentation files

<ipp directory>/include Intel IPP header files

<ipp directory>/lib Intel IPP static libraries

<ipp directory>/sharedlib Intel IPP shared object libraries

<ipp directory>/tools Intel IPP Performance Test tool, linkage tools, and tool
to set environment variables

3-2

3 Intel® IPP User’s Guide

Supplied Libraries
Table 3-2 lists the types of libraries in Intel IPP and shows examples of the library files
supplied:

*) non-PIC libraries are suitable for kernel-mode and device-driver use.

Using Intel IPP Shared Object Libraries (SO)
Intel IPP comes with the shared object libraries (SO) and soft links to them in the
ia32/sharedlib directory.

Before using the shared object libraries, add a path to the libraries to the system variable
LD_LIBRARY_PATH by using the shell script ippvars32.sh in the tools/env directory.

Table 3-2 Types of Libraries of Intel IPP

Library types Description Folder location Example

Dynamic Shared object libraries
include both processor
dispatchers and function
implementations

ia32/sharedlib libipps.so.6.1,
libippst7.so.6.1

Soft links to the shared
object libraries

ia32/sharedlib libipps.so

libippst7.so

Static merged Contain function
implementations for all
supported processor
types:

libraries with position
independent code (PIC)

ia32/lib libippsmerged.a

non-PIC)* libraries ia32/lib/nonpic libippsmerged.a

Threaded static
merged

Contain threaded function
implementations

ia32/lib libippsmerged_t.a

Static emerged Contain dispatchers for
the merged libraries:

libraries with position
independent code (PIC)

ia32/lib libippsemerged.a

non-PIC*) libraries ia32/lib/nonpic libippsemerged.a

Intel® IPP Structure 3

3-3

Alternatively you can set the variable LD_LIBRARY_PATH manually. For example, if the
libraries are in the /opt/intel/ipp/6.1.x.xxx/ia32/sharedlib directory, to set the
environment variable manually, enter the following command line for bash:

 export LD_LIBRARY_PATH=
 /opt/intel/ipp/6.1.x.xxx/ia32/sharedlib:$LD_LIBRARY_PATH

 or for csh:

 setenv LD_LIBRARY_PATH=
 /opt/intel/ipp/6.1.x.xxx/ia32/sharedlib:${LD_LIBRARY_PATH}

The shared libraries libipp*.so.6.1 (* denotes the appropriate function domain) are
"dispatcher" dynamic libraries. At run time, they detect the processor and load the correct
processor-specific shared libraries. This allows you to write code to call the Intel IPP functions
without worrying about which processor the code will execute on - the appropriate version is
automatically used. These processor-specific libraries are named libipp*px.so.6.1,
libipp*w7.so.6.1, libipp*t7.so.6.1, libipp*v8.so.6.1, and libipp*p8.so.6.1
(see Table 5-4). For example, in the ia32/sharedlib directory, libippiv8.so.6.1 reflects
the imaging processing libraries optimized for the Intel® CoreTM 2 Duo processors.

Include in the project soft links to the shared libraries instead of the shared libraries
themselves. These soft links are named as the corresponding shared libraries without version
indicator: libipp*-6.1.so, libipp*px-6.1.so, libipp*w7-6.1.so,
libipp*t7-6.1.so, libipp*v8-6.1.so, and libipp*p8-6.1.so.

See also Selecting the Intel IPP Libraries Needed by Your Application.

Using Intel IPP Static Libraries
The Intel IPP comes with "merged" static library files that contain every processor version of
each function. These files reside in the ia32/lib directory (see Table 3-1).

Just as with the dynamic dispatcher, the appropriate version of a function is executed when
the function is called. This mechanism is not as convenient as the dynamic mechanism, but it
can result in a smaller total code size in spite of the big size of the static libraries.

NOTE. You must include the appropriate libiomp5.so in your
LD_LIBRARY_PATH environment variable. Include the directory sharelib
when running on a system with IA-32 architecture.

3-4

3 Intel® IPP User’s Guide

To use these static libraries, link to the appropriate files libipp*merged.a in the lib
directory. Then follow the directions in Intel IPP Linkage Samples and create the
dispatching stubs for just the functions that you need. You will either need to set your LIB
environment variable using the shell script file ippvars32.sh or refer to these files using
their full path.

See also Selecting the Intel IPP Libraries Needed by Your Application.

Contents of the Documentation Directory
Table 3-3 shows the content of the /doc subdirectory in the Intel IPP installation directory.

Table 3-3 Contents of the /doc Directory

File name Description Notes

ipp_documentation.htm Documentation index. Lists the principal
Intel IPP documents with appropriate links
to the documents

ReleaseNotes.pdf General overview of the product and
information about this release. These files can be

viewed prior to the
product installation

README.txt Initial User Information

INSTALL.htm Installation guide

ThreadedFunctionsList.
txt

List of all Intel IPP functions threaded with
OpenMP*

userguide_lnx_ia32.pdf Intel® Integrated Performance Primitives
User’s Guide, this document

Intel IPP Reference Manual (in four volumes):

ippsman.pdf Signal Processing (vol.1) - contains
detailed descriptions of Intel IPP functions
and interfaces for signal processing, audio
coding, speech recognition and coding,
data compression and integrity, string
operations and vector arithmetic.

ippiman.pdf Image and Video Processing (vol.2) -
contains detailed descriptions of Intel IPP
functions and interfaces for image
processing and compression, color and
format conversion, computer vision, video
coding.

http://www.intel.com/software/products/ipp/samples.htm

Intel® IPP Structure 3

3-5

ippmman.pdf Small Matrices, Realistic Rendering (vol.3)
- contains detailed descriptions of Intel IPP
functions and interfaces for vector and
matrix algebra, linear system solution,
least squares and eigenvalue problems as
well as for realistic rendering and 3D data
processing.

ippcpman.pdf Cryptography (vol.4) - contains detailed
descriptions of Intel IPP functions and
interfaces for cryptography.

Table 3-3 Contents of the /doc Directory

File name Description Notes

4-1

Configuring Your
Development Environment 4

This chapter explains how to configure your development environment for the use with
Intel® IPP.

Configuring Eclipse CDT to Link with Intel IPP
After linking your CDT with Intel IPP, you can benefit from the Eclipse-provided code assist
feature. See Code/Context Assist description in Eclipse Help.

Configuring Eclipse CDT 4.0
To configure Eclipse CDT 4.0 to link with Intel IPP, follow the instructions below:

1. If the tool-chain/compiler integration supports include path options, go to the
Includes tab of the C/C++ General > Paths and Symbols property page and set
the Intel IPP include path, for example, the default value is
opt/intel/ipp/6.1.x.xxx/include, where x.xxx is the Intel IPP package number.

2. If the tool-chain/compiler integration supports library path options, go to the Library
Paths tab of the C/C++ General > Paths and Symbols property page and set a
path to the Intel IPP libraries, depending upon the target architecture, for example,
with the default installation, opt/intel/ipp/6.1.x.xxx/lib/ia32.

3. For a particular build, go to the Tool Settings tab of the C/C++ Build > Settings
property page and specify names of the Intel IPP libraries to link with your application.
See section Selecting the Intel IPP Libraries Needed by Your Application in chapter 5 on
the choice of the libraries. The name of the particular setting where libraries are
specified depends upon the compiler integration.

Note that the compiler/linker will automatically pick up the include and library paths
settings only in case the automatic makefile generation is turned on, otherwise, you will
have to specify the include and library paths directly in the makefile to be used.

4-2

4 Intel® IPP User’s Guide

Configuring Eclipse CDT 3.x
To configure Eclipse CDT 3.x to link with Intel IPP, follow the instructions below:

For Standard Make projects:
1. Go to C/C++ Include Paths and Symbols property page and set the Intel IPP

include path, for example, the default value is
opt/intel/ipp/6.1.x.xxx/include where x.xxx is the Intel IPP package number.

2. Go to the Libraries tab of the C/C++ Project Paths property page and set the Intel
IPP libraries to link with your applications, See section Selecting the Intel IPP Libraries
Needed by Your Application in chapter 5 on the choice of the libraries.

Note that with the Standard Make, the above settings are needed for the CDT internal
functionality only. The compiler/linker will not automatically pick up these settings and you
will still have to specify them directly in the makefile.

For Managed Make projects:

Specify settings for a particular build. To do this,

1. Go to the Tool Settings tab of the C/C++ Build property page. All the settings you
need to specify are on this page. Names of the particular settings depend upon the
compiler integration and therefore are not given below.

2. If the compiler integration supports include path options, set the Intel IPP include
path, for example, the default value is opt/intel/ipp/6.1.x.xxx/include.

3. If the compiler integration supports library path options, set a path to the Intel IPP
libraries, depending upon the target architecture, for example, with the default
installation, opt/intel/ipp/6.1.x.xxx/lib/ia32.

4. Specify names of the Intel IPP libraries to link with your application. See section
Selecting the Intel IPP Libraries Needed by Your Application in chapter 5 on the choice
of the libraries.

Make sure that your project that uses Intel IPP is open and active.

5-1

Linking Your Application
with Intel® IPP 5

This chapter discusses linking Intel IPP to an application, considers differences between the
linking methods regarding development and target environments, installation
specifications, run-time conditions, and other application requirements to help the user
select the linking method that suits him best, shows linking procedure for each linking
method, and gives linking examples.

Dispatching
Intel IPP uses codes optimized for various central processing units (CPUs). Dispatching
refers to detection of your CPU and selecting the Intel IPP binary that corresponds to the
hardware that you are using. For example, in the ia32/sharedlib directory, file
libippiv8.so.6.1 reflects the optimized imaging processing libraries for Intel® Core™ 2
Duo processors.

A single Intel IPP function, for example ippsCopy_8u(), may have many versions, each
one optimized to run on a specific Intel® processor with specific architecture, for example:
the version of this function optimized for the Pentium® 4 processor is w7_ippsCopy_8u().

Table 5-1 shows processor-specific codes used in Intel IPP.

Table 5-1 Identification of Codes Associated with Processor-Specific Libraries

Abbreviation Meaning

 IA-32 Intel® architecture

px C-optimized for all IA-32 processors

w7 Optimized for processors with Intel® Streaming SIMD Extensions 2 (Intel
SSE2)

t7 Optimized for processors with Intel® Streaming SIMD Extensions 3 (Intel
SSE3)

v8 Optimized for processors with Intel® Supplemental Streaming SIMD
Extensions 3 (Intel SSSE3)

5-2

5 Intel® IPP User’s Guide

Processor Type and Features

Processor Features

To obtain information about the features of the processor used in your computer system,
use function ippGetCpuFeatures, which is declared in the ippcore.h file. This function
retrieves main CPU features returned by the function CPUID.1 and stores them
consecutively in the mask that is returned by the function. Table 5-2 lists all CPU features
that can be retrieved (see more details in the description of the function
ippGetCpuFeatures in the Intel IPP Refrence Manual, vol.1).

p8 Optimized for processors with Intel® Streaming SIMD Extensions 4.1 (SSE4.1)

s8 Optimized for the Intel® AtomTM processor.

Table 5-2 Processor Features

Mask Value Name Feature

1 ippCPUID_MMX MMXTM technology

2 ippCPUID_SSE Intel® Streaming SIMD Extensions

4 ippCPUID_SSE2 Intel® Streaming SIMD Extensions 2

8 ippCPUID_SSE3X Intel® Streaming SIMD Extensions 3

16 ippCPUID_SSSE3 Supplemental Intel® Streaming SIMD
Extensions

32 ippCPUID_MOVBE MOVBE instruction is supported

64 ippCPUID_SSE41 Intel® Streaming SIMD Extensions 4.1

128 ippCPUID_SSE42 Intel® Streaming SIMD Extensions 4.2

256 ippCPUID_AVXX Intel® Advanced Vector Extensions
(Intel AVX) instruction set is supported

512 ippAVX_ENABLEDBYOS The operating system supports Intel

AVX

1024 ippCPUID_AES AES instruction is supported

2048 ippCPUID_CLMUL PCLMULQDQ instruction is supported

Table 5-1 Identification of Codes Associated with Processor-Specific Libraries

Abbreviation Meaning

Linking Your Application with Intel® IPP 5

5-3

Processor Type

To detect the processor type used in your computer system, use function ippGetCpuType,
which is declared in the ippcore.h file. It returns an appropriate IppCpuType variable
value. All of the enumerated values are given in the ippdefs.h header file. For example,
the return value ippCpuCoreDuo means that your system uses Intel® Core™ Duo
processor.

Table 5-3 shows possible values of ippGetCpuType and their meaning.

Table 5-3 Detecting processor type. Returned values and their meaning

Returned Variable Value Processor Type

ippCpuPP Intel® Pentium® processor

ippCpuPMX Pentium® processor with MMX™ technology

ippCpuPPR Pentium® Pro processor

ippCpuPII Pentium® II processor

ippCpuPIII Pentium® III processor and Pentium® III Xeon® processor

ippCpuP4 Pentium® 4 processor and Intel® Xeon® processor

ippCpuP4HT Pentium® 4 processor with Hyper–Threading Technology

ippCpuP4HT2 Pentium® Processor with Intel® Streaming SIMD Extensions 3

ippCpuCentrino Intel® Centrino™ mobile Technology

ippCpuCoreSolo Intel® Core™ Solo processor

ippCpuCoreDuo Intel® Core™ Duo processor

ippCpuITP Intel® Itanium® processor

ippCpuITP2 Intel® Itanium® 2 processor

ippCpuEM64T Intel® 64 Instruction Set Architecture (ISA)

ippCpuC2D Intel® Core™ 2 Duo Processor

ippCpuC2Q Intel® Core™ 2 Quad processor

ippCpuPenryn
Intel® Core™ 2 processor with Intel® Streaming SIMD
Extensions 4.1 instruction set

ippCpuBonnell Intel® AtomTM processor

ippCpuNehalem Intel® Core™ i7 processor

ippCpuSSE Processor with Intel® Streaming SIMD Extensions instruction set

ippCpuSSE2 Processor with Intel® Streaming SIMD Extensions 2 instruction
set

5-4

5 Intel® IPP User’s Guide

Selecting Between Linking Methods
You can use different linking methods for Intel IPP:

• Dynamic linking using the run-time shared object libraries (SOs)

• Static linking with dispatching using emerged and merged static libraries

• Static linking without automatic dispatching using merged static libraries

• Dynamic linking with your own - custom - SO.

Answering the following questions helps you select the linking method which best suites
you:

• Are there limitations on how large the application executable can be? Are
there limitations on how large the application installation package can be?

• Is the Intel IPP-based application a device driver or similar “ring 0” software
that executes in the kernel mode at least some of the time?

• Will various users install the application on a range of processor types, or is
the application explicitly supported only on a single type of processor? Is the
application part of an embedded computer where only one type of processor is
used?

• What resources are available for maintaining and updating customized Intel
IPP components? What level of effort is acceptable for incorporating new
processor optimizations into the application?

ippCpuSSE3 Processor with Intel® Streaming SIMD Extensions 3 instruction
set

ippCpuSSSE3 Processor with Supplemental Intel® Streaming SIMD Extensions 3
instruction set

ippCpuSSE41 Processor with Intel® Streaming SIMD Extensions 4.1 instruction
set

ippCpuSSE42 Processor with Intel® Streaming SIMD Extensions 4.2 instruction
set

ippCpuAVX Processor supports Intel® Advanced Vector Extensions instruction
set

ippCpuX8664 Processor supports 64 bit extension

ippCpuUnknown Unknown Processor

Table 5-3 Detecting processor type. Returned values and their meaning (continued)

Returned Variable Value Processor Type

Linking Your Application with Intel® IPP 5

5-5

• How often will the application be updated? Will application components be
distributed independently or will they always be packaged together?

Dynamic Linking
The dynamic linking is the simplest method and the most commonly used. It takes full
advantage of the dynamic dispatching mechanism in the shared object libraries (SOs) (see
also Intel® IPP Structure). The following table summarizes the features of dynamic linking
to help you understand trade-offs of this linking method.

To dynamically link with Intel IPP, follow these steps:

1. Add ipp.h, which includes the header files of all IPP domains.

2. Use the normal IPP function names when calling IPP functions.

3. Link corresponding domain soft links. For example, if you use the ippsCopy_8u
function, link against libipps.so.

4. Make sure that you run <install path>/tools/env/ippvars32.sh shell script
before using Intel IPP libraries in the current session, or set LD_LIBRARY_PATH
correctly. For example,
export LD_LIBRARY_PATH =$IPPROOT/sharedlib:$LD_LIBRARY_PATH (bash), or
setenv LD_LIBRARY_PATH =$IPPROOT/sharedlib:${LD_LIBRARY_PATH} (csh).

Table 5-4 Summary of Dynamic Linking Features

Benefits Considerations

• Automatic run-time dispatch of
processor-specific optimizations

• Enabling updates with new processor
optimizations without recompile/relink

• Reduction of disk space requirements for
applications with multiple Intel IPP-based
executables

• Enabling more efficient shared use of
memory at run-time for multiple Intel
IPP-based applications

• Application executable requires access to
Intel IPP run-time shared object libraries
(SOs) to run

• Not appropriate for
kernel-mode/device-driver/ring-0 code

• Not appropriate for web applets/plug-ins
that require very small download

• There is a one-time performance penalty
when the Intel IPP SOs are first loaded

5-6

5 Intel® IPP User’s Guide

Static Linking (with Dispatching)
Some applications use only a few Intel® IPP functions and require a small memory
footprint. Using the static link libraries via the emerged and merged libraries offers both
the benefits of a small footprint and optimization on multiple processors. The emerged
libraries (such as libippsemerged.a) provide an entry point for the non-decorated (with
normal names) IPP functions, and the jump table to each processor-specific
implementation. When linked with your application, the function calls corresponding
functions in the merged libraries (such as libippsmerged.a) in accordance with the CPU
setting detected by functions in libippcore.a. The emerged libraries do not contain any
implementation code.

The emerged libraries must be initialized before any non-decorated functions can be called.
One may choose the function ippStaticInit() that initializes the library to use the best
optimization available, or the function ippStaticInitCpu() that lets you specify the CPU.
In any case, one of these functions must be called before any other IPP functions.
Otherwise, a "px" version of the IPP functions will be called, which can decrease the
performance of your application. Example 5-1 illustrates the performance difference. This
example appears in the t2.cpp file:

Example 5-1 Performance difference with and without calling StaticInit

#include <stdio.h>
#include <ipp.h>

int main() {
const int N = 20000, loops = 100;
Ipp32f src[N], dst[N];
unsigned int seed = 12345678, i;
Ipp64s t1,t2;
/// no StaticInit call, means PX code, not optimized
ippsRandUniform_Direct_32f(src,N,0.0,1.0,&seed);
t1=ippGetCpuClocks();
for(i=0; i<loops; i++)

ippsSqrt_32f(src,dst,N);
t2=ippGetCpuClocks();
printf("without StaticInit: %.1f clocks/element\n",

(float)(t2-t1)/loops/N);
ippStaticInit();
t1=ippGetCpuClocks();
for(i=0; i<loops; i++)

ippsSqrt_32f(src,dst,N);
t2=ippGetCpuClocks();
printf("with StaticInit: %.1f clocks/element\n",

(float)(t2-t1)/loops/N);
return 0;

}

t2.cpp

Linking Your Application with Intel® IPP 5

5-7

When you perform static linking via the emerged libraries, there are things you should
consider. Table 5-5 summarizes the pros and cons of this type of static linking.

Follow these steps to use static linking with dispatching:

1. Include ipp.h in your code.

2. Before calling any Intel IPP functions, initialize the static dispatcher using either the
function ippStaticInit() or ippInitCpu(), which are declared in the header file
ippcore.h.

3. Use the normal IPP function names to call IPP functions.

4. Link corresponding emerged libraries followed by merged libraries, and then
libippcore.a. For example, if the function ippsCopy_8u() is used, the linked
libraries are libippsemerged.a, libippsmerged.a, and libippcore.a.

Static Linking (without Dispatching)
This method uses linking directly with the merged static libraries. You may want to use
your own static dispatcher instead of the provided emerged dispatcher. The IPP sample
mergelib demonstrates how to do this.

Please refer to the latest updated sample from the Intel IPP samples directory:
/ipp-samples/advanced-usage/linkage/mergelib at
http://www.intel.com/software/products/ipp/samples.htm.

When a self-contained application is needed, only one processor type is supported and
there are tight constraints on the executable size. One common use for embedded
applications is when the application is bundled with only one type of processor.

cmdlinetest>t2
without StaticInit: 61.3 clocks/element
with StaticInit: 4.5 clocks/element

Table 5-5 Summary of Features of the Static Linking (with Dispatching)

Benefits Considerations

• Dispatches processor-specific
optimizations during run-time

• Creates a self-contained application
executable

• Generates a smaller footprint than the full
set of Intel IPP SOs

• Intel IPP code is duplicated for multiple
Intel IPP-based applications because of
static linking

• An additional function call for dispatcher
initialization is needed (once) during
program initialization

Example 5-1 Performance difference with and without calling StaticInit

http://www.intel.com/software/products/ipp/samples.htm
http://www.intel.com/software/products/ipp/samples.htm

5-8

5 Intel® IPP User’s Guide

Table 5-6 summarizes basic features of this method of linking.

*) for not-threaded non-PIC libraries only

You can use alternatives to the above procedure. The Intel IPP package includes a set of
processor-specific header files (such as ipp_w7.h). You can use these header files instead
of the IPPCALL macro. Refer to Static linking to Intel® IPP Functions for One Processor in
ia32/tools/staticlib/readme.htm.

Table 5-6 Summary of Features of the Static Linking (without dispatching)

Benefits Considerations

• Small executable size with support for
only one processor type

• An executable suitable for
kernel-mode/device-driver/ring-0 use*)

• An executable suitable for a Web applet or
a plug-in requiring very small file
download and support for only one
processor type

• Self-contained application executable that
does not require the Intel IPP run-time
SOs to run

• Smallest footprint for application package
• Smallest installation package

• The executable is optimized for only one
processor type

• Updates to processor-specific
optimizations require rebuild and/or relink

Linking Your Application with Intel® IPP 5

5-9

Building a Custom SO
Some applications have few internal modules and the Intel IPP code needs to be shared by
these modules only. In this case, you can use dynamic linking with the customized shared
object library (SO) containing only those Intel IPP functions that the application uses.
Table 5-7 summarizes features of the custom SOs.

To create a custom SO, you need to create a separate build step or project that generates
the SO and stubs. The specially developed sample demonstrates how it can be done.
Please refer to the latest updated custom so sample from the Intel IPP samples directory:
ipp-samples/advanced-usage/linkage/customso at
http://www.intel.com/software/products/ipp/samples.htm.

Table 5-7 Custom SO Features

Benefits Considerations

• Run-time dispatching of
processor-specific optimizations

• Reduced hard-drive footprint compared
with a full set of Intel IPP SOs

• Smallest installation package to
accommodate use of some of the same
Intel IPP functions by multiple
applications

• Application executable requires access to
the Intel compiler specific run-time
libraries that are delivered with Intel IPP.

• Developer resources are needed to create
and maintain the custom SOs

• Integration of new processor-specific
optimizations requires rebuilding the
custom OSs

• Not appropriate for
kernel-mode/device-driver/ring-0 code

http://www.intel.com/software/products/ipp/samples.htm

5-10

5 Intel® IPP User’s Guide

Comparison of Intel IPP Linkage Methods
Table 5-8 gives a quick comparison of the IPP linkage methods.

Selecting the Intel IPP Libraries Needed by Your
Application

Table 5-9 shows functional domains and the relevant header files and libraries used for
each linkage method.

Table 5-8 Intel IPP Linkage Method Summary Comparison

Feature Dynamic Linkage Static Linkage
with Dispatching

Static Linkage
without
Dispatching

Using Custom
SO

Processor
Updates

Automatic Recompile &
redistribute

Release new
processor-specific
application

Recompile &
redistribute

Optimization All processors All processors One processor All processors

Build Link to stub static
libraries

Link to static
libraries and
static
dispatchers

Link to merged
libraries or
threaded merged
libraries

Build separate
SO

Calling Regular names Regular names Processor-specific
names

Regular names

Total Binary
Size

Large Small Smallest Small

Executable Size Smallest Small Small Smallest

Kernel Mode No Yes Yes No

Table 5-9 Libraries Used for Each Linkage Method

Domain
Description Header Files Dynamic Linking

Static Linking with
Dispatching and
Custom Dynamic
Linking

Static Linking without
Dispatching

Audio Coding ippac.h libippac.so libippacemerged.
a

libippacmerged.a

libippacmerged_t.a

Linking Your Application with Intel® IPP 5

5-11

Color
Conversion

ippcc.h libippcc.so libippccemerged.
a

libippccmerged.a

libippccmerged_t.a

String
Processing

ippch.h libippch.so libippchemerged.
a

libippchmerged.a

libippchmerged_t.a

Cryptography ippcp.h libippcp.so libippcpemerged.
a

libippcpmerged.a

libippcpmerged_t.a

Computer
Vision

ippcv.h libippcv.so libippcvemerged.
a

libippcvmerged.a

libippcvmerged_t.a

Data
Compression

ippdc.h libippdc.so libippdcemerged.
a

libippdcpmerged.a

libippdcmerged_t.a

Data Integrity ippdi.h libippdi.so libippdipemerged
.a

libippdimerged.a

libippdimerged_t.a

Generated
Functions

ipps.h libippgen.so libippgenemerged
.a

libippgenmerged.a

libippgenmerged_t.a

Image
Processing

ippi.h libippi.so libippiemerged.a libippimerged.a

libippimerged_t.a

Image
Compression

ippj.h libippj.so libippjemerged.a libippjmerged.a

libippjmerged_t.a

Realistic
Rendering and
3D Data
Processing

ippr.h libippr.so libippremerged.a libipprmerged.a

libipprmerged_t.a

Small Matrix
Operations

ippm.h libippm.so libippmemerged.a libippmmerged.a

libippmmerged_t.a

Signal
Processing

ipps.h libipps.so libippsemerged.a libippsmerged.a

libippsmerged_t.a

Speech
Coding

ippsc.h libippsc.so libippscpemerged
.a

libippscmerged.a

libippscpmerged_t.a

Speech
Recognition

ippsr.h libippsr.so libippsremerged.
a

libippsrmerged.a

libippsrmerged_t.a

Table 5-9 Libraries Used for Each Linkage Method (continued)

Domain
Description Header Files Dynamic Linking

Static Linking with
Dispatching and
Custom Dynamic
Linking

Static Linking without
Dispatching

5-12

5 Intel® IPP User’s Guide

Dynamic Linkage
To use the shared objects, you must use the soft link libipp*.so files in the sharedlib
directory, where * denotes the appropriate function domain. You must also link to all
corresponding domain libraries used in your applications plus the libraries libipps.so,
libippcore.so, and libiomp.so.

For example, consider that your application uses three Intel IPP functions
ippiCopy_8u_C1R, ippiCanny_16s8u_C1R, and ippmMul_mc_32f. These three
functions belong to the image processing, computer vision, and small matrix operations
domains, respectively. To include these functions into your application, you must link to the
following Intel IPP libraries:

libippi.so

libippcv.so

libippm.so

libippcore.so

libiomp.so

Static Linkage with Dispatching
To use the static linking libraries, you need to link to lib*emerged.a, lib*merged.a,
libsemerged.a, libsmerged.a, and libcore.a. The * denotes the appropriate function
domain.

If you want to use the Intel IPP functions threaded with the OpenMP*, you need to link to
lib*emerged.a, lib*merged_t.a, libsemerged.a, libsmerged_t.a, libcore_t.a,
and libiomp5.a.

Video Coding ippvc.h libippvc.so libippvcemerged.
a

libippvcmerged.a

libippvcmerged_t.a

Vector Math ippvm.h libippvm.so libippvmemerged.
a

libippvmmerged.a

libippvmmerged_t.a

Core Functions ippcore.h libippcore.so libippcore.a libippcore.a

libippcore_t.a

Table 5-9 Libraries Used for Each Linkage Method (continued)

Domain
Description Header Files Dynamic Linking

Static Linking with
Dispatching and
Custom Dynamic
Linking

Static Linking without
Dispatching

Linking Your Application with Intel® IPP 5

5-13

All these libraries are located in the lib directory containing domain-specific functions.
Note that both merged and emerged libraries for all domains plus the signal processing
domain must be linked to your application.

For example, consider that your application uses three Intel IPP functions
ippiCopy_8u_C1R, ippiCanny_16s8u_C1R, and ippmMul_mc_32f. These three functions
belong to the image processing, computer vision, and small matrix operations domains
respectively. Note the order in which libraries are linked must correspond to the library
dependencies by domain (see below). If you want to use the threaded functions, you must
link the following libraries to your application:

libcvemerged.a and libcvmerged_t.a

libmemerged.a and libmmerged_t.a

libiemerged.a and libimerged_t.a

libsemerged.a and libsmerged_t.a

libcore_t.a

libiomp5.a

Library Dependencies by Domain (Static Linkage Only)
Table 5-10 lists library dependencies by domain. When you link to a certain library (for
example, data compression domain), you must link to the libraries on which it depends (in
our example, the signal processing and core functions).

Note when you link libraries, the library in the Library column must precede the libraries in
the Dependent on column.

Table 5-10 Library Dependencies by Domain

Domain Library Dependent on

Audio Coding ippac ippdc, ipps, ippcore

Color Conversion ippcc ippi, ipps, ippcore

Cryptography ippcp ippcore

Computer Vision ippcv ippi, ipps, ippcore

Data Compression ippdc ipps, ippcore

Data Integrity ippdi ippcore

Generated Functions ippgen ipps, ippcore

Image Processing ippi ipps, ippcore

Image Compression ippj ippi, ipps, ippcore

5-14

5 Intel® IPP User’s Guide

Refer to Intel IPP Reference Manuals to find which domain your function belongs to.

Linking Examples
For more linking examples, please go to
http://www.intel.com/software/products/ipp/samples.htm

For information on using sample code, please see “Intel® IPP Samples”.

Small Matrix Operations ippm ippi, ipps, ippcore

Realistic Rendering and 3D
Data Processing

ippr ippi, ipps, ippcore

Signal Processing ipps ippcore

Speech Coding ippsc ipps, ippcore

Speech Recognition ippsr ipps, ippcore

String Processing ippch ipps, ippcore

Video Coding ippvc ippi, ipps, ippcore

Vector Math ippvm ippcore

Table 5-10 Library Dependencies by Domain

Domain Library Dependent on

http://www.intel.com/software/products/ipp/samples.htm

6-1

Supporting Multithreaded
Applications 6

This chapter discusses the use of Intel® IPP in multithreading applications.

Intel IPP Threading and OpenMP* Support
All Intel IPP functions are thread-safe in both dynamic and static libraries and can be used in
the multithreaded applications.

Some Intel IPP functions contain OpenMP* code that increases significantly performance on
multi-processor and multi-core systems. These functions include color conversion, filtering,
convolution, cryptography, cross correlation, matrix computation, square distance, and bit
reduction, etc.

Refer to the ThreadedFunctionsList.txt document to see the list of all threaded functions in
the doc directory of the Intel IPP installation.

See also http://www.intel.com/software/products/support/ipp for more topics related to Intel
IPP threading and OpenMP* support, including older Intel IPP versions of threaded API.

Setting Number of Threads
The default number of threads for Intel IPP threaded libraries is equal to the number of
processors in the system and does not depend on the value of the OMP_NUM_THREADS
environment variable.

To set another number of threads used by Intel IPP internally, call the function
ippSetNumThreads(n)at the very beginning of an application. Here n is the desired number
of threads (1,...). If internal parallelization is not desired, call ippSetNumThreads(1).

http://www.intel.com/software/products/support/ipp

6-2

6 Intel® IPP User’s Guide

Using Shared L2 Cache
Some functions in the signal processing domain are threaded on two threads intended for
the Intel® Core™2 processor family, and exploit the advantage of a merged L2 cache.
These functions (single and double precision FFT, Div, Sqrt, and so on) achieve the
maximum performance if both two threads are executed on the same die. In this case,
these threads work on the same shared L2 cache. For processors with two cores on the die,
this condition is satisfied automatically. For processors with more than two cores, a special
OpenMP environmental variable must be set:

KMP_AFFINITY=compact

Otherwise, the performance may degrade significantly.

Nested Parallelization
If the multithreaded application created with OpenMP uses the threaded Intel IPP function,
this function will operate in a single thread because the nested parallelization is disabled in
OpenMP by default.

If the multithreaded application created with other tools uses the threaded Intel IPP
function, it is recommended that you disable multithreading in Intel IPP to avoid nested
parallelization and to avoid possible performance degradation.

Disabling Multithreading
To disable multi-threading, call function ippSetNumThreads with parameter 1, or link your
application with IPP non-threaded static libraries.

7-1

Managing Performance and
Memory 7

This chapter describes ways you can get the most out of the Intel® IPP software such as
aligning memory, thresholding denormal data, reusing buffers, and using Fast Fourier
Transform (FFT) for algorithmic optimization (where appropriate). Finally, it gives
information on how to accomplish the Intel IPP functions performance tests by using the
Intel IPP Performance Test Tool and it gives some examples of using the Performance Tool
Command Lines.

Memory Alignment
The performance of Intel IPP functions can be significantly different when operating on
aligned or misaligned data. Access to memory is faster if pointers to the data are aligned.

Use the following Intel IPP functions for pointer alignment, memory allocation and
deallocation:

void* ippAlignPtr(void* ptr, int alignBytes)

Aligns a pointer, can align to 2/4/8/16/…

void* ippMalloc(int length)

32-byte aligned memory allocation. Memory can be freed only with the
function ippFree.

void ippFree(void* ptr)

Frees memory allocated by the function ippMalloc.

Ipp<datatype>* ippsMalloc_<datatype>(int len)

32-byte aligned memory allocation for signal elements of different data types.
Memory can be freed only with the function ippsFree.

void ippsFree(void* ptr)

Frees memory allocated by ippsMalloc.

Ipp<datatype>* ippiMalloc_<mod>(int widthPixels, int
heightPixels, int* pStepBytes)

32-byte aligned memory allocation for images where every line of the image is

7-2

7 Intel® IPP User’s Guide

padded with zeros. Memory can be freed only with the function ippiFree.

void ippiFree(void* ptr)

Frees memory allocated by ippiMalloc.

Example 7-1 demonstrates how the function ippiMalloc can be used. The amount of
memory that can be allocated is determined by the operating system and system
hardware, but it cannot exceed 2GB.

NOTE. Intel IPP memory functions are wrappers of the standard malloc
and free functions that align the memory to a 32-byte boundary for
optimal performance on the Intel architecture.

NOTE. The Intel IPP functions ippFree, ippsFree, and ippiFree can
only be used to free memory allocated by the functions ippMalloc,
ippsMalloc and ippiMalloc, respectively.

NOTE. The Intel IPP functions ippFree, ippsFree, and ippiFree
cannot be used to free memory allocated by standard functions like
malloc or calloc; nor can the memory allocated by the Intel IPP
functions ippMalloc, ippsMalloc, and ippiMalloc be freed by the
standard function free.

Managing Performance and Memory 7

7-3

Example 7-1 Calling the ippiMalloc function

#include <stdio.h>
#include "ipp.h"

void ipView(Ipp8u* img, int stride, char* str)
{
 int w, h;
 printf("%s:\n", str);
 Ipp8u* p = img;
 for(h=0; h<8; h++) {
 for(w=0; w<8*3; w++) {
 printf(" %02X", *(p+w));
 }
 p += stride;
 printf("\n");
 }
}

int main(int argc, char *argv[])
{
 IppiSize size = {320, 240};

 int stride;
 Ipp8u* pSrc = ippiMalloc_8u_C3(size.width, size.height, &stride);
 printf("pSrc=%p, stride=%d\n", pSrc, stride);
 ippiImageJaehne_8u_C3R(pSrc, stride, size);
 ipView(pSrc, stride, "Source image");

 int dstStride;
 Ipp8u* pDst = ippiMalloc_8u_C3(size.width, size.height, &dstStride);
 printf("pDst=%p, dstStride=%d\n", pDst, dstStride);
 ippiCopy_8u_C3R(pSrc, stride, pDst, dstStride, size);
 ipView(pDst, dstStride, "Destination image 1");

 IppiSize ROISize = { size.width/2, size.height/2 };
 ippiCopy_8u_C3R(pSrc, stride, pDst, dstStride, ROISize);
 ipView(pDst, dstStride, "Destination image, small");

 IppiPoint srcOffset = { size.width/4, size.height/4 };
 ippiCopy_8u_C3R(pSrc + srcOffset.x*3 + srcOffset.y*stride, stride, pDst,
dstStride, ROISize);
 ipView(pDst, dstStride, "Destination image, small & shifted");

 ippiFree(pDst);
 ippiFree(pSrc);

 return 0;
}

7-4

7 Intel® IPP User’s Guide

Thresholding Data
Denormal numbers are the border values in the floating-point format and special case
values for the processor. Operations on denormal data make processing slow, even if
corresponding interrupts are disabled. Denormal data occurs, for example, in filtering by
Infinite Impulse Response (IIR) and Finite Impulse Response (FIR) filters of the signal
captured in fixed-point format and converted to the floating-point format. To avoid the
slowdown effect in denormal data processing, the Intel IPP threshold functions can be
applied to the input signal before filtering. For example:

if (denormal_data)

ippsThreshold_LT_32f_I(src, len, 1e-6f);

ippsFIR_32f(src, dst, len, st);

The 1e-6 value is the threshold level; the input data below that level are set to zero.
Because the Intel IPP threshold function is very fast, the execution of two functions is
faster than execution of one if denormal numbers meet in the source data. Of course, if the
denormal data occurs while using the filtering procedure, the threshold functions do not
help.

In this case, for Intel processors beginning with the Intel® Pentium® 4 processor, it is
possible to set special computation modes - flush-to-zero (FTZ) and the
denormals-are-zero (DAZ). You can use functions ippsSetFlushToZero and
ippsSetDenormAreZeros to enable these modes. Note that this setting takes effect only
when computing is done with the Intel® Streaming SIMD Extensions (Intel® SSE) and
Intel Streaming SIMD Extensions 2 (Intel SSE2) instructions.

Table 7-1 illustrates how denormal data may affect performance and it shows the effect of
thresholding denormal data. As you can see, thresholding takes only three clocks more. On
the other hand, denormal data can cause the application performance to drop 250 times.

Reusing Buffers
Some Intel IPP functions require internal memory for various optimization strategies. At
the same time, you should be aware that memory allocation inside of the function may
have a negative impact on performance in some situations, such as in the case of cache

Table 7-1 Performance Resulting from Thresholding Denormal Data

Data/Method Normal Denormal
Denormal +
Threshold

CPU cycles per element 46 11467 49

Managing Performance and Memory 7

7-5

misses. To avoid or minimize memory allocation and keep your data in warm cache, some
functions, for example, Fourier transform functions, can use or reuse memory given as a
parameter to the function.

If you have to call a function, for example, an FFT function, many times, the reuse of an
external buffer results in better performance. A common example of this kind of processing
is to perform filtering using FFT, or to compute FFT as two FFTs in two separate threads:

ippsFFTInitAlloc_C_32fc(&ctxN2, order-1, IPP_FFT_DIV_INV_BY_N,
ippAlgHintAccurate);

ippsFFTGetBufSize_C_32fc(ctxN2, &sz);

buffer = sz > 0 ? ippsMalloc_8u(sz) : 0;

int phase = 0;

/// prepare source data for two FFTs

ippsSampleDown_32fc(x, fftlen, xleft, &fftlen2, 2, &phase);

phase = 1;

ippsSampleDown_32fc(x, fftlen, xrght, &fftlen2, 2, &phase);

ippsFFTFwd_CToC_32fc(xleft, Xleft, ctxN2, buffer);

ippsFFTFwd_CToC_32fc(xrght, Xrght, ctxN2, buffer);

The external buffer is not necessary. If the pointer to the buffer is 0, the function allocates
memory inside.

Using FFT
Fast Fourier Transform (FFT) is a universal method to increase performance of data
processing, especially in the field of digital signal processing where filtering is essential.

The convolution theorem states that filtering of two signals in the spatial domain can be
computed as point-wise multiplication in the frequency domain. The data transformation to
and from the frequency domain is usually performed using the Fourier transform. You can
apply the Finite Impulse Response (FIR) filter to the input signal by using Intel IPP FFT
functions, which are very fast on Intel® processors. You can also increase the data array
length to the next greater power of two by padding the array with zeroes and then applying
the forward FFT function to the input signal and the FIR filter coefficients. Fourier

7-6

7 Intel® IPP User’s Guide

coefficients obtained in this way are multiplied point-wise and the result can easily be
transformed back to the spatial domain. The performance gain achieved by using FFT may
be very significant.

If the applied filter is the same for several processing iterations, then the FFT of the filter
coefficients needs to be done only once. The twiddle tables and the bit reverse tables are
created in the initialization function for the forward and inverse transforms at the same
time. The main operations in this kind of filtering are presented below:

ippsFFTInitAlloc_R_32f(&pFFTSpec, fftord, IPP_FFT_DIV_INV_BY_N,
ippAlgHintNone);

/// perform forward FFT to put source data xx to frequency domain

ippsFFTFwd_RToPack_32f(xx, XX, pFFTSpec, 0);

/// perform forward FFT to put filter coefficients hh to frequency domain

ippsFFTFwd_RToPack_32f(hh, HH, pFFTSpec, 0);

/// point-wise multiplication in frequency domain is convolution

ippsMulPack_32f_I(HH, XX, fftlen);

/// perform inverse FFT to get result yy in time domain

ippsFFTInv_PackToR_32f(XX, yy, pFFTSpec, 0);

/// free FFT tables

ippsFFTFree_R_32f(pFFTSpec);

Another way to significantly improve performance is by using FFT and multiplication for
processing large size data. Note that the zeros in the example above could be pointers to
the external memory, which is another way to increase performance. Note that the Intel
IPP signal processing FIR filter is implemented using FFT and you do not need to create a
special implementation of the FIR functions.

Running Intel IPP Performance Test Tool
The Intel IPP Performance Test Tool is available for Windows* operating systems based on
Intel® Pentium® processors and Intel® Itanium® processors. It is a fully-functioned
timing system designed to do performance testing for Intel IPP functions on the same
hardware platforms that are valid for the related Intel IPP libraries. It contains command
line programs for testing the performance of each Intel IPP function in various ways.

Managing Performance and Memory 7

7-7

You can use comand line options to control the course of tests and generate the results in a
desirable format. The results are saved in a .csv file. The course of timing is displayed on
the console and can be saved in a .txt file. You can create a list of functions to be tested
and set required parameters with which the function should be called during the
performance test. The list of functions to be tested and their parameters can either be
defined in the .ini file, or entered directly from the console.

In the enumeration mode, the Intel IPP performance test tool creates a list of the timed
functions on the console and in the .txt or .csv files.

Additionally, this performance test tool provides all performance test data in the .csv
format. It contains data covering all domains and CPU types supported in Intel IPP. For
example, you can read that reference data in sub-directory tools/perfsys/data.

Once the Intel IPP package is installed, you can find the performance test files located in
the ia32/tools/perfsys directory. For example, ps_ipps is a tool to measure
performance of the Intel IPP signal processing functions. Similarly, there are the
appropriate executable files for each Intel IPP functional domain.

The command line format is:

<ps_FileName> [option_1] [option_2] … [option_n]

A short reference for the command line options can be displayed on the console. To invoke
the reference, just enter -? or -h in the command line:

ps_ipps -h

The command line options can be divided into six groups by their functionality. You can
enter options in an arbitrary order with at least one space between each option name.
Some options (like –r, -R, -o, -O) may be entered several times with different file names,
and option -f may be entered several times with different function patterns. For detailed
descriptions of the performance test tool command line options, see Appendix A,
“Performance Test Tool Command Line Options”.

Examples of Using Performance Test Tool Command Lines
The following examples illustrate how you can use common command lines for the
performance test tool to generate IPP function performance data.

Example 1. Running in the standard mode:
ps_ippch –B –r

This command causes all Intel IPP string functions to be tested by the default
timing method on standard data (-B option). The results will be generated in
file ps_ippch.csv (-r option).

7-8

7 Intel® IPP User’s Guide

Example 2. Testing selected functions:
ps_ipps -fFIRLMS_32f -r firlms.csv

This command tests the FIR filter function FIRLMS_32f (-f option), and
generates a .csv file named firlms.csv (-r option).

Example 3. Retrieving function lists:
ps_ippvc -e –o vc_list.txt

This comand causes the output file vc_list.txt (-o option) to list all Intel IPP
video coding functions (-e option).

ps_ippvc -e -r H264.csv -f H264

This comand causes the list of functions with names containing H264 (-f
option) that can be tested (-e option) to be displayed on the console and
stored in file H264.csv (-r option).

Example 4. Launching performance test tool with the .ini file:
ps_ipps –B –I

This comand causes the .ini file ps_ipps.ini to be created after the first
run (-I option) to test all signal processing functions using the default timing
method on standard data (-B option).

ps_ippi –i –r

This comand causes the second run to test all functions usung the timing
procedure and all function parameters values specified in the ps_ipps.ini file
(-i option) and genarates the output file ps_ipps.csv (-r option).

For detailed descriptions of performance test tool command line options, see Appendix A,
“Performance Test Tool Command Line Options”.

8-1

Using Intel® IPP with
Programming Languages 8

This chapter describes how to use Intel IPP with different programming languages in the
Windows*OS development environments, and gives information on relevant samples.

Language Support
In addition to the C programming language, Intel IPP functions are compatible with the
following languages (download the samples from
http://www.intel.com/software/products/ipp/samples.htm):

Using Intel IPP in Java* Applications
You can call Intel IPP functions in your Java application by using the Java* Native Interface
(JNI*). There is some overhead associated with JNI use, especially when the input data
size is small. Combining several functions into one JNI call and using managed memory will
help improve the overall performance.

Table 8-1 Language support

Language Environment The Sample Description

C++ Makefile,
Intel C++ compiler,
GNU C/C++ compiler

The sample shows how Intel IPP C-library
functions can be overloaded in the C++
interface to create classes for easy signal and
image manipulation.

Fortran Makefile N/A

Java* Java Development Kit
1.5.0

The sample shows how to use the Intel IPP
image processing functions in a Java wrapper
class.

http://www.intel.com/software/products/ipp/samples.htm

A-1

Performance Test Tool
Command Line Options A

Table A-1 gives brief descriptions of possible command line options for the performance
test tool (PTT).

Table A-1 Performance Test Tool Command Line Options

Groups Options Descriptions

1. Adjusting
Console Input

-A Ask parameters before every test from
console

-B Batch mode

-r[<file-name>] Create .csv file and write PS results

-R[<file-name>] Add test results to .csv file

-H[ONLY] Add 'Interest' column to table file [and
run only hot tests]

2. Managing
Output

-o[<file-name>] Create .txt file and write console output

-O[<file-name>] Add console output to .txt file

-L<ERR|WARN|PARM|INFO|TRACE> Set detail level of the console output

-u[<file-name>] Create .csv file and write summary
table ('_sum' is added to default title
name)

-U[<file-name>] Add summary table to .csv file ('_sum'
is added to default title name)

-e Enumerate tests and exit

-g[<file-name>] Signal file is created just at the end of
the whole testing

-s[-] Sort or don't sort functions (sort mode
is default)

3. Selecting
Functions for
Testing

-f <or-pattern> Run tests of functions with pattern in
name, case sensitive

-f-<not-pattern> Do not test functions with pattern in
name, case sensitive

A-2

A Intel® IPP User’s Guide

-f+<and-pattern> Run only tests of functions with pattern
in name, case sensitive

-f=<eq-pattern> Run tests of functions with this full
name, case sensitive

-F<func-name> Start testing from function with this full
name, case sensitive

4. Operation
with .ini Files

-i[<file-name>] Read PTT parameters from .ini file

-I[<file-name>] Write PTT parameters to .ini file and exit

-P Read tested function names from .ini
file

5. Adjust default
directories and file
names for input &
output

-n<title-name> Set default title name for .ini file and
output files

-p<dir-name> Set default directory for .ini file and
input test data files

-l<dir-name> Set default directory for output files

6. Direct Data
Input

-d<name>=<value> Set PTT parameter value

7. Process priority -Y<HIGH/NORMAL> Set high or normal process prioritY
(normal is default)

8. Setting
environment

-N<num-threads> Call ippSetNumThreads(<num-treads>)

9. Getting help -h Type short help and exit

-hh Type extended help and exit

-h<option> Type extended help for the specified
option and exit

Table A-1 Performance Test Tool Command Line Options (continued)

Groups Options Descriptions

B-1

Intel® IPP Samples B
This appendix describes the types of Intel® IPP sample code available for developers to
learn how to use Intel IPP, gives the source code example files by categories with links to
view the sample code, and explains how to build and run the sample applications.

Types of Intel IPP Sample Code
There are three types of Intel IPP sample code available for developers to learn how to use
the Intel Integrated Performance Primitives. Each type is designed to demonstrate how to
build software with the Intel IPP functions. All types are listed in Table B-1.

Table B-1 Types of Intel IPP Sample Code

Type Description

Application-level samples These samples illustrate how to build a wide variety of
applications such as encoders, decoders, viewers, and players
using the Intel IPP APIs.

Source Code Samples These platform independent examples show basic techniques for
using Intel IPP functions to perform such operations as
performance measurement, time-domain filtering, affine
transformation, canny edge detection, and more. Each example
consists of 1-3 source code files (.cpp).

Code examples These code examples (or code snippets) are very short programs
demonstrating how to call a particular Intel IPP function.
Numerous code examples are contained in the Intel IPP Manual
(.pdf) as part of the function descriptions.

B-2

B Intel® IPP User’s Guide

Source Files of the Intel IPP Samples
Table B-2 presents the list of files with source code for the Intel IPP samples. All these
samples are created for Windows* OS, but they can be easily adapted for Linux* OS.

NOTE. Intel IPP samples are intended only to demonstrate how to use
the APIs and how to build applications in different development
environments.

Table B-2 Source Files of the Intel IPP Sample Code

Category Summary Description and Links

Basic Techniques Introduction to programming with
Intel IPP functions

• Performance measurement
GetClocks.cpp

• Copying data: Copy.cpp
• Optimizing table-based

functions: LUT.cpp

Digital Filtering Fundamentals of signal processing • Executing the DFT: DFT.cpp
• Filtering with FFT: FFTFilter.cpp
• Time-domain filtering: FIR.cpp

Audio Processing Audio signal generation and
manipulation

• Generating DTMF tones:
DTMF.cpp

• Using IIR to create an echo:
IIR.cpp

• Using FIRMR to resample a
signal: Resample.cpp

Image Processing Creating and processing a whole
image or part of an image

• Allocating, initializing, and
copying an image: Copy.cpp

• Rectangle of interest sample
wrapper: ROI.h ROI.cpp
ROITest.cpp

• Mask image sample wrapper:
Mask.h Mask.cpp
MaskTest.cpp

http://download.intel.com/support/performancetools/libraries/ipp/webExamples/usingipp/dynamic.cpp
http://download.intel.com/support/performancetools/libraries/ipp/webExamples/usingipp/staticdispatch.cpp
http://download.intel.com/support/performancetools/libraries/ipp/webExamples/usingipp/mydll.h
http://download.intel.com/support/performancetools/libraries/ipp/webExamples/usingipp/mydll.cpp
http://download.intel.com/support/performancetools/libraries/ipp/webExamples/usingipp/customdynamictest.cpp
http://download.intel.com/support/performancetools/libraries/ipp/webExamples/usingipp/static.cpp
http://download.intel.com/support/performancetools/libraries/ipp/webExamples/basictech/GetClocks.cpp
http://download.intel.com/support/performancetools/libraries/ipp/webExamples/basictech/Copy.cpp
http://download.intel.com/support/performancetools/libraries/ipp/webExamples/basictech/LUT.cpp
http://download.intel.com/support/performancetools/libraries/ipp/webExamples/digfilter/DFT.cpp
http://download.intel.com/support/performancetools/libraries/ipp/webExamples/digfilter/FFTFilter.cpp
http://download.intel.com/support/performancetools/libraries/ipp/webExamples/digfilter/FIR.cpp
http://download.intel.com/support/performancetools/libraries/ipp/webExamples/audio/DTMF.cpp
http://download.intel.com/support/performancetools/libraries/ipp/webExamples/audio/IIR.cpp
http://download.intel.com/support/performancetools/libraries/ipp/webExamples/audio/Resample.cpp
http://download.intel.com/support/performancetools/libraries/ipp/webExamples/imageproc/Copy.cpp
http://download.intel.com/support/performancetools/libraries/ipp/webExamples/imageproc/ROI.h
http://download.intel.com/support/performancetools/libraries/ipp/webExamples/imageproc/ROI.cpp
http://download.intel.com/support/performancetools/libraries/ipp/webExamples/imageproc/ROITest.cpp
http://download.intel.com/support/performancetools/libraries/ipp/webExamples/imageproc/Mask.h
http://download.intel.com/support/performancetools/libraries/ipp/webExamples/imageproc/Mask.cpp
http://download.intel.com/support/performancetools/libraries/ipp/webExamples/imageproc/MaskTest.cpp

Intel® IPP Samples B

B-3

Image Filtering and
Manipulation

General image affine
transformations

• Wrapper for resizing an image:
Resize.h Resize.cpp
ResizeTest.cpp

• Wrapper for rotating an image:
Rotate.h Rotate.cpp
RotateTest.cpp

• Wrapper for doing an affine
transform on an image: Affine.h
Affine.cpp AffineTest.cpp

Graphics and Physics Vector and small matrix arithmetic
functions

• ObjectViewer application:
ObjectViewerDoc.cpp
ObjectViewerDoc.h
ObjectViewerView.cpp
ObjectViewerView.h

Transforming vertices
and normals:
CTestView::OnMutateM
odel

Projecting an object
onto a plane:
CTestView::OnProjectPl
ane

Drawing a triangle
under the cursor:
CTestView::Draw

• Performance comparison,
vector vs. scalar: perform.cpp

• Performance comparison,
buffered vs. unbuffered:
perform2.cpp

Table B-2 Source Files of the Intel IPP Sample Code (continued)

Category Summary Description and Links

http://download.intel.com/support/performancetools/libraries/ipp/webExamples/imagefilter/Resize.h
http://download.intel.com/support/performancetools/libraries/ipp/webExamples/imagefilter/Resize.cpp
http://download.intel.com/support/performancetools/libraries/ipp/webExamples/imagefilter/ResizeTest.cpp
http://download.intel.com/support/performancetools/libraries/ipp/webExamples/imagefilter/Rotate.h
http://download.intel.com/support/performancetools/libraries/ipp/webExamples/imagefilter/Rotate.cpp
http://download.intel.com/support/performancetools/libraries/ipp/webExamples/imagefilter/RotateTest.cpp
http://download.intel.com/support/performancetools/libraries/ipp/webExamples/imagefilter/Affine.h
http://download.intel.com/support/performancetools/libraries/ipp/webExamples/imagefilter/Affine.cpp
http://download.intel.com/support/performancetools/libraries/ipp/webExamples/imagefilter/AffineTest.cpp
http://download.intel.com/support/performancetools/libraries/ipp/webExamples/graphics/ObjectViewerDoc.cpp
http://download.intel.com/support/performancetools/libraries/ipp/webExamples/graphics/ObjectViewerDoc.h
http://download.intel.com/support/performancetools/libraries/ipp/webExamples/graphics/ObjectViewerView.cpp
http://download.intel.com/support/performancetools/libraries/ipp/webExamples/graphics/ObjectViewerView.h
http://download.intel.com/support/performancetools/libraries/ipp/webExamples/graphics/perform.cpp
http://download.intel.com/support/performancetools/libraries/ipp/webExamples/graphics/perform2.cpp

B-4

B Intel® IPP User’s Guide

Using Intel IPP Samples
Download the Intel IPP samples from
http://www.intel.com/software/products/ipp/samples.htm.

These samples are updated in each version of Intel IPP. It is strongly recommended that
you upgrade the Intel IPP Samples when a new version of Intel IPP is available.

System Requirements
Refer to the readme.htm document in the root directory of each sample to learn the
system requirements for the specific sample. Most common requirements are listed below.

Hardware requirements:
• A system based on an Intel® Pentium® processor, Intel® Xeon® processor, or a

subsequent IA-32 architecture-based processor

Software requirements:
• Intel® IPP for the Linux* OS, version 6.1

• Red Hat Enterprise Linux* operating system version 3.0 or higher

• Intel® C++ Compiler for Linux* OS: versions 11.1, 11.0 or 10.1 ; GNU C/C++
Compiler 3.2 or higher

• Qt* library runtime and development environment

Special-Purpose Domains Cryptography and computer vision
usage

• RSA key generation and
encryption: rsa.cpp rsa.h
rsatest.cpp bignum.h
bignum.cpp

• Canny edge detection class:
canny.cpp canny.h
cannytest.cpp filter.h
filter.cpp

• Gaussian pyramids class:
pyramid.cpp pyramid.h
pyramidtest.cpp

Table B-2 Source Files of the Intel IPP Sample Code (continued)

Category Summary Description and Links

http://download.intel.com/support/performancetools/libraries/ipp/webExamples/specialdoms/rsa.cpp
http://download.intel.com/support/performancetools/libraries/ipp/webExamples/specialdoms/rsa.h
http://download.intel.com/support/performancetools/libraries/ipp/webExamples/specialdoms/rsatest.cpp
http://download.intel.com/support/performancetools/libraries/ipp/webExamples/specialdoms/bignum.h
http://download.intel.com/support/performancetools/libraries/ipp/webExamples/specialdoms/bignum.cpp
http://download.intel.com/support/performancetools/libraries/ipp/webExamples/specialdoms/canny.cpp
http://download.intel.com/support/performancetools/libraries/ipp/webExamples/specialdoms/canny.h
http://download.intel.com/support/performancetools/libraries/ipp/webExamples/specialdoms/cannytest.cpp
http://download.intel.com/support/performancetools/libraries/ipp/webExamples/specialdoms/filter.h
http://download.intel.com/support/performancetools/libraries/ipp/webExamples/specialdoms/filter.cpp
http://download.intel.com/support/performancetools/libraries/ipp/webExamples/specialdoms/pyramid.cpp
http://download.intel.com/support/performancetools/libraries/ipp/webExamples/specialdoms/pyramid.h
http://download.intel.com/support/performancetools/libraries/ipp/webExamples/specialdoms/pyramidtest.cpp
http://www.intel.com/software/products/ipp/samples.htm

Intel® IPP Samples B

B-5

•

Building Source Code
The building procedure is described in the readme.htm document for each sample. Most
common steps are described below.

Set up your build environment by creating an environment variable named IPPROOT that
points to the root directory of your Intel IPP installation. For example:
/opt/Intel/IPP/6.1.x.xxx/ia32/.

To build the sample, change your current folder to the root sample folder and run shell
script build32.sh [option].

By default, the script searches the compilers step by step according to the table below
(assuming that compiler is installed in the default directory). If you wish to use a specific
version of the Intel C/C++ compiler or the GCC software, set an option for the script from
the table below.

After the successful build, the result file or files are placed in the corresponding sample
directory: <install_dir>/ipp-samples/<sample-name>/bin/linux32_<compiler>,

where compiler = icc111|icc110|icc101|gcc3|gcc4.

Table B-3 Options for Script

Compiler Option

Intel C++ Compiler 11.1 for Linux OS icc111

Intel C++ Compiler 11.0 for Linux OS icc110

Intel C++ Compiler 10.1 for Linux OS icc101

GCC 4.x.x gcc4

GCC 3.4.x gcc3

B-6

B Intel® IPP User’s Guide

Running the Software
To run each sample application, the Intel IPP shared object libraries must be on the
system’s path. See “Setting Environment Variables” for more details.

Refer to the readme.htm document in the directory of the specific sample for detailed
instructions on how to run the application, the list of command line options, or menu
commands.

Known Limitations
The applications created with the Intel IPP Samples are intended to demonstrate how to
use the Intel IPP functions and help developers to create their own software. These sample
applications have some limitations that are described in the section “Known Limitations” in
the readme.htm document for each sample.

Index-1

Index
B
building application, 2-9

building samples, B-5

C
calling functions, 2-10

checking your installation, 2-9

configuring Eclipse, 4-1

controlling number of threads, 6-1

D
detecting processor type, 5-2

Disabling Multithreading, 6-2

dispatching, 5-1

document
audience, 1-3
filename, 3-4
location, 3-1
organisation, 1-4
purpose, 1-2

H
header files, 2-10

I
Intel® IPP, 1-1

J
java applications, 8-1

L
language support, 8-1

library dependencies by domain, 5-13

linking
custom dynamic, 5-9
dynamic, 5-5
static, with dispatching, 5-6
static, without dispatching, 5-7

linking examples, 5-14

linking models, 5-4

linking models comparison, 5-10

M
managing performance, 7-1

memory alignment, 7-1
reusing buffers, 7-4
thresholding data, 7-4
using FFT, 7-5

memory alignment, 7-1

N
notational conventions, 1-5

O
OpenMP support, 6-1

Intel® IPP User’s Guide

Index-2

P
performance test tool, 7-6

command line examples, 7-7
command line options, A-1

processor-specific codes, 5-1

R
reusing buffers, 7-4

running samples, B-4
known limitations, B-6

S
Sample, B-1

samples
types, B-1

selecting
libraries, 5-10
linking models, 5-4

setting environment variables, 2-9

source code samples, B-2

structure
by library types, 3-2
documentation directory, 3-4
high-level directory, 3-1

supplied libraries, 3-2

T
technical support, 1-2

threading, 6-1

thresholding data, 7-4

U
using

DLLs, 3-2
static libraries, 3-3

using FFT, 7-5

using Intel IPP
with Java, 8-1
with programming languages, 8-1
with Visual C++.NET, 4-2

V
version information, 2-9

	Intel(R) Integrated Performance Primitives for Linux* OS on IA-32 Architecture
	Disclaimer and Legal Information
	Version Information
	Contents
	1. Overview
	Technical Support
	About This Document
	Purpose
	Audience

	Document Organization
	Notational Conventions

	2. Getting Started with Intel® IPP
	Intel IPP Basics
	Cross-Architecture Alignment
	Types of Input Data
	Domains
	Function Naming

	Checking Your Installation
	Obtaining Version Information
	Building Your Application
	Setting Environment Variables
	Including Header Files
	Calling IPP Functions

	Before You Begin Using Intel IPP

	3. Intel IPP Structure
	High-level Directory Structure
	Supplied Libraries
	Using Intel IPP Shared Object Libraries (SO)
	Using Intel IPP Static Libraries

	Contents of the Documentation Directory

	4. Configuring Your Development Environment
	Configuring Eclipse CDT to Link with Intel IPP
	Configuring Eclipse CDT 4.0
	Configuring Eclipse CDT 3.x

	5. Linking Your Application with Intel IPP
	Dispatching
	Processor Type and Features

	Selecting Between Linking Methods
	Dynamic Linking
	Static Linking (with Dispatching)
	Static Linking (without Dispatching)
	Building a Custom SO
	Comparison of Intel IPP Linkage Methods

	Selecting the Intel IPP Libraries Needed by Your Application
	Dynamic Linkage
	Static Linkage with Dispatching
	Library Dependencies by Domain (Static Linkage Only)

	Linking Examples

	6. Supporting Multithreaded Applications
	Intel IPP Threading and OpenMP* Support
	Setting Number of Threads
	Using Shared L2 Cache
	Nested Parallelization
	Disabling Multithreading

	7. Managing Performance and Memory
	Memory Alignment
	Thresholding Data
	Reusing Buffers
	Using FFT
	Running Intel IPP Performance Test Tool
	Examples of Using Performance Test Tool Command Lines

	8. Using Intel IPP with Programming Languages
	Language Support
	Using Intel IPP in Java* Applications

	A. Performance Test Tool Command Line Options
	B. Intel(R) IPP Samples
	Types of Intel IPP Sample Code
	Source Files of the Intel IPP Samples
	Using Intel IPP Samples
	System Requirements
	Building Source Code
	Running the Software

	Known Limitations

	Index
	B
	C
	D
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

