
 
 
 
 
 

Intel(R) Threading Building Blocks 

Reference Manual 
 

 

 

 

 

Copyright © 2009 Intel Corporation 

All Rights Reserved 

Document Number 315415-001US 

Revision: 1.14 

World Wide Web: http://www.intel.com 
 
 
 
 
 

 

 

 

 

 

 

 

 



 
Intel(R) Threading Building Blocks 

 

ii   315415-001US 

Disclaimer and Legal Information 

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL(R) PRODUCTS. NO LICENSE, EXPRESS OR 
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT 
AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY 
WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL 
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, 
OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.   

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY 
APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR 
DEATH MAY OCCUR. 

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the 
absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future 
definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The 
information here is subject to change without notice. Do not finalize a design with this information.  

The products described in this document may contain design defects or errors known as errata which may cause the product to 
deviate from published specifications. Current characterized errata are available on request.  

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. 

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained 
by calling 1-800-548-4725, or by visiting Intel's Web Site.  

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor 
family, not across different processor families. See http://www.intel.com/products/processor_number for details. 

MPEG is an international standard for video compression/decompression promoted by ISO. Implementations of MPEG CODECs, or 
MPEG enabled platforms may require licenses from various entities, including Intel Corporation. 

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Atom, Centrino Atom Inside, Centrino Inside, Centrino logo, Core 
Inside, FlashFile, i960, InstantIP, Intel, Intel logo, Intel386, Intel486, IntelDX2, IntelDX4, IntelSX2, Intel Atom, Intel Atom 
Inside, Intel Core, Intel Inside, Intel Inside logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel NetMerge, Intel 
NetStructure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel XScale, Itanium, Itanium Inside, 
MCS, MMX, Oplus, OverDrive, PDCharm, Pentium, Pentium Inside, skoool, Sound Mark, The Journey Inside, Viiv Inside, vPro 
Inside, VTune, Xeon, and Xeon Inside are trademarks of Intel Corporation in the U.S. and other countries. 

* Other names and brands may be claimed as the property of others. 

Copyright (C) 2005 - 2009, Intel Corporation. All rights reserved. 

Revision History 

Document 
Number 

Revision 
Number 

Description Revision 
Date 

315415-
001 

1.8 Reword description of class aligned_space. 
Add atomic<bool>. Fix definition of 
concurrent_queue::empty(). Remove 
partitioner as concept. Add 
affinity_partitioner. Update description 
of concurrent_vector. Add recursive_mutex. 

2007-Dec-19 

 1.9 Fix errors in task patterns with 
continuation passing. Update copyright to 
2008. Add const to argument hint for 
memory allocators. Add class 
task_scheduler_observer, tbb_thread, and 
tbb_allocator. Update 
concurrent_hash_map. Add stack size 
parameter for task_scheduler_init. Add 
memory allocator argument to container 
classes.  

2008-Mar-31 

http://www.intel.com/


 
Overview 

 

Reference Manual    iii iii 

Document 
Number 

Revision 
Number 

Description Revision 
Date 

 1.10 Add pipeline enhancements. Clarify 
behavior of assignment and copy 
constructor for atomic<T>. Extend 
description of parallel_scan. Add 
task_group_context. Add new insert and 
erase methods to concurrent_hash_map. Add 
chapter on exceptions. 

2008-Jun-3 

 1.11 Condense discussion of using partitioner 
with parallel_scan. Deprecate virtualness 
of ~pipeline. Add methods clear() and 
get_allocator() to concurrent_queue, and 
add optional allocator argument to 
constructor. Add section about 
TBB_VERSION. 

2008-Sept-4 

 1.12 Add task_scheduler_init::is_active().  
Document new debugging macros and 
deprecate old ones. Add 
filter::serial_out_of_order and 
filter::finalize(). Describe automatic 
reset of cancellation state by 
task::wait_for_all(). Clarify behavior of 
concurrent_vector::clear(). Add 
TBB_runtime_interface_version(). Add new 
constructors to concurrent_queue. 
Consistently use typename keyword for 
template parameters. 

2008-Dec-5 

 1.13 Update copyright to 2009. Remove 
requirement to clear a pipeline before 
destroying its filters. Add null_mutex and 
null_rw_mutex. 

2009-Feb-6 

 1.14 Clarify semantics of concurrent_hash_map 
methods insert and erase. 

2009-Mar-13 

 



 
Intel(R) Threading Building Blocks 

 

iv   315415-001US 

Contents 
1 Overview .........................................................................................................1 
2 General Conventions .........................................................................................2 

2.1 Notation................................................................................................2 
2.2 Terminology ..........................................................................................3 

2.2.1 Concept ...................................................................................3 
2.2.2 Model ......................................................................................4 
2.2.3 CopyConstructible .....................................................................4 

2.3 Identifiers .............................................................................................4 
2.3.1 Case........................................................................................4 
2.3.2 Reserved Identifier Prefixes ........................................................4 

2.4 Namespaces ..........................................................................................5 
2.4.1 tbb Namespace .........................................................................5 
2.4.2 tbb::internal Namespace ............................................................5 

2.5 Thread Safety ........................................................................................5 
2.6 Enabling Debugging Features ...................................................................5 

2.6.1 TBB_USE_ASSERT Macro............................................................6 
2.6.2 TBB_USE_THREADING_TOOLS Macro ...........................................6 
2.6.3 TBB_USE_PERFORMANCE_WARNINGS Macro ................................6 

2.7 Version Information................................................................................7 
2.7.1 Version Macros .........................................................................7 
2.7.2 TBB_VERSION Environment Variable ............................................7 
2.7.3 TBB_runtime_interface_version Function ......................................8 

3 Algorithms .......................................................................................................9 
3.1 Splittable Concept ..................................................................................9 

3.1.1 split Class ..............................................................................10 
3.2 Range Concept.....................................................................................10 

3.2.1 blocked_range<Value> Template Class ......................................12 
3.2.1.1 size_type.................................................................14 
3.2.1.2 blocked_range( Value begin, Value end, size_t grainsize=1 

) ............................................................................14 
3.2.1.3 blocked_range( blocked_range& range, split )...............14 
3.2.1.4 size_type size() const................................................15 
3.2.1.5 bool empty() const ...................................................15 
3.2.1.6 size_type grainsize() const.........................................15 
3.2.1.7 bool is_divisible() const .............................................15 
3.2.1.8 const_iterator begin() const .......................................16 
3.2.1.9 const_iterator end() const..........................................16 

3.2.2 blocked_range2d Template Class ...............................................16 
3.2.2.1 row_range_type .......................................................19 
3.2.2.2 col_range_type ........................................................19 
3.2.2.3 blocked_range2d<RowValue,ColValue>( RowValue 

row_begin, RowValue row_end, typename 
row_range_type::size_type row_grainsize, ColValue 
col_begin, ColValue col_end, typename 
col_range_type::size_type col_grainsize ) ....................19 



 
Overview 

 

Reference Manual    v v 

3.2.2.4 blocked_range2d<RowValue,ColValue>( RowValue 
row_begin, RowValue row_end, ColValue col_begin, 
ColValue col_end) .....................................................19 

3.2.2.5 blocked_range2d<RowValue,ColValue> ( 
blocked_range2d& range, split ) .................................19 

3.2.2.6 bool empty() const ...................................................20 
3.2.2.7 bool is_divisible() const .............................................20 
3.2.2.8 const row_range_type& rows() const...........................20 
3.2.2.9 const col_range_type& cols() const .............................20 

3.2.3 blocked_range3d Template Class ...............................................20 
3.3 Partitioners .........................................................................................21 

3.3.1 simple_partitioner Class ...........................................................22 
3.3.1.1 simple_partitioner() ..................................................23 
3.3.1.2 ~simple_partitioner() ................................................23 

3.3.2 auto_partitioner Class ..............................................................23 
3.3.2.1 auto_partitioner() .....................................................24 
3.3.2.2 ~auto_partitioner()...................................................24 

3.3.3 affinity_partitioner...................................................................24 
3.3.3.1 affinity_partitioner()..................................................26 
3.3.3.2 ~affinity_partitioner() ...............................................26 

3.4 parallel_for<Range,Body> Template Function ..........................................26 
3.5 parallel_reduce<Range,Body> Template Function .....................................30 
3.6 parallel_scan<Range,Body> Template Function ........................................33 

3.6.1 pre_scan_tag and final_scan_tag Classes....................................38 
3.6.1.1 bool is_final_scan()...................................................38 

3.7 parallel_do<InputIterator,Body> Template Function..................................39 
3.7.1 parallel_do_feeder<Item> class ................................................40 

3.7.1.1 void add( const Item& item )......................................41 
3.8 pipeline Class ......................................................................................41 

3.8.1 pipeline() ...............................................................................42 
3.8.2 ~pipeline() .............................................................................42 
3.8.3 void add_filter( filter& f )..........................................................43 
3.8.4 void run( size_t max_number_of_live_tokens )............................43 
3.8.5 void clear() ............................................................................43 
3.8.6 filter Class..............................................................................43 

3.8.6.1 filter( mode filter_mode )...........................................44 
3.8.6.2 ~filter()...................................................................45 
3.8.6.3 bool is_serial() const .................................................45 
3.8.6.4 bool is_ordered() const..............................................45 
3.8.6.5 virtual void* operator()( void * item )..........................45 
3.8.6.6 virtual void finalize( void * item )................................45 

3.9 parallel_sort<RandomAccessIterator, Compare> Template Function ............46 
4 Containers .....................................................................................................48 

4.1 Container Range Concept ......................................................................48 
4.2 concurrent_hash_map<Key,T,HashCompare,Allocator> Template Class .......49 

4.2.1 Whole Table Operations............................................................52 
4.2.1.1 concurrent_hash_map() ............................................52 
4.2.1.2 concurrent_hash_map( const concurrent_hash_map& 

table, const allocator_type& a = allocator_type() ) ........53 
4.2.1.3 template<typename  InputIterator> 

concurrent_hash_map(InputIterator first, InputIterator 
last,  const allocator_type& a = allocator_type()) ..........53 

4.2.1.4 ~concurrent_hash_map() ..........................................53 



 
Intel(R) Threading Building Blocks 

 

vi   315415-001US 

4.2.1.5 concurrent_hash_map& operator= ( 
concurrent_hash_map& source ).................................53 

4.2.1.6 void swap( concurrent_hash_map& table ) ...................53 
4.2.1.7 void clear() ..............................................................53 
4.2.1.8 allocator_type get_allocator() const.............................54 

4.2.2 Concurrent Access ...................................................................54 
4.2.2.1 const_accessor.........................................................54 
4.2.2.2 accessor..................................................................56 

4.2.3 Concurrent Operations .............................................................57 
4.2.3.1 size_type count( const Key& key ) const ......................58 
4.2.3.2 bool find( const_accessor& result, const Key& key ) const58 
4.2.3.3 bool find( accessor& result, const Key& key )................58 
4.2.3.4 bool insert( const_accessor& result, const Key& key ) ....59 
4.2.3.5 bool insert( accessor& result, const Key& key ) .............59 
4.2.3.6 bool insert( const_accessor& result, const value_type& 

value ) ....................................................................59 
4.2.3.7 bool insert( accessor& result, const value_type& value ).59 
4.2.3.8 bool insert( const value_type& value ) .........................60 
4.2.3.9 template<typename InputIterator> void insert( 

InputIterator first, InputIterator last ) .........................60 
4.2.3.10 bool erase( const Key& key )......................................60 
4.2.3.11 bool erase( const_accessor& item_accessor )................60 
4.2.3.12 bool erase( accessor& item_accessor ).........................61 

4.2.4 Parallel Iteration .....................................................................61 
4.2.4.1 const_range_type range( size_t grainsize=1 ) const ......61 
4.2.4.2 range_type range( size_t grainsize=1 )........................61 

4.2.5 Capacity ................................................................................61 
4.2.5.1 size_type size() const................................................61 
4.2.5.2 bool empty() const ...................................................62 
4.2.5.3 size_type max_size() const ........................................62 

4.2.6 Iterators ................................................................................62 
4.2.6.1 iterator begin().........................................................62 
4.2.6.2 iterator end() ...........................................................62 
4.2.6.3 const_iterator begin() const .......................................62 
4.2.6.4 const_iterator end() const..........................................62 
4.2.6.5 std::pair<iterator, iterator> equal_range( const Key& key 

); ...........................................................................63 
4.2.6.6 std::pair<const_iterator, const_iterator> equal_range( 

const Key& key ) const;.............................................63 
4.2.7 Global Functions......................................................................63 

4.2.7.1 template<typename Key, typename T, typename 
HashCompare, typename A1, typename A2> bool 
operator==( const 
concurrent_hash_map<Key,T,HashCompare,A1>& a, 
const concurrent_hash_map<Key,T,HashCompare,A2>& 
b); .........................................................................63 

4.2.7.2 template<typename Key, typename T, typename 
HashCompare, typename A1, typename A2> bool 
operator!=(const 
concurrent_hash_map<Key,T,HashCompare,A1> &a,   
const concurrent_hash_map<Key,T,HashCompare,A2> 
&b); .......................................................................63 

4.2.7.3 template<typename Key, typename T, typename 
HashCompare, typename A> void 



 
Overview 

 

Reference Manual    vii vii 

swap(concurrent_hash_map<Key, T, HashCompare, A> 
&a, concurrent_hash_map<Key, T, HashCompare, A> &b)63 

4.3 concurrent_queue<T,Allocator> Template Class .......................................64 
4.3.1 concurrent_queue( const Allocator& a = Allocator() )....................66 
4.3.2 concurrent_queue( const concurrent_queue& src, const Allocator& a 

= Allocator() ) ........................................................................66 
4.3.3 template<typename InputIterator> concurrent_queue( InputIterator 

first, InputIterator last, const Allocator& a = Allocator() )..............66 
4.3.4 ~concurrent_queue()...............................................................67 
4.3.5 void push( const T& source ).....................................................67 
4.3.6 void pop( T& destination ) ........................................................67 
4.3.7 bool pop_if_present( T& destination ).........................................67 
4.3.8 void clear() ............................................................................67 
4.3.9 size_type size() const ..............................................................67 
4.3.10 bool empty() const ..................................................................68 
4.3.11 size_type capacity() const ........................................................68 
4.3.12 void set_capacity( size_type capacity ) .......................................68 
4.3.13 Allocator get_allocator() const...................................................68 
4.3.14 Iterators ................................................................................68 

4.3.14.1 iterator begin().........................................................69 
4.3.14.2 iterator end() ...........................................................69 
4.3.14.3 const_iterator begin() const .......................................69 
4.3.14.4 const_iterator end() const..........................................69 

4.4 concurrent_vector ................................................................................69 
4.4.1 Construction, Copy, and Assignment ..........................................74 

4.4.1.1 concurrent_vector( const allocator_type& a = 
allocator_type() ) .....................................................74 

4.4.1.2 concurrent_vector( size_type n, const_reference t=T(), 
const allocator_type& a = allocator_type() );................74 

4.4.1.3 template<typename InputIterator> concurrent_vector( 
InputIterator first, InputIterator last, const 
allocator_type& a = allocator_type() ) .........................74 

4.4.1.4 concurrent_vector( const concurrent_vector& src ) ........74 
4.4.1.5 concurrent_vector& operator=( const concurrent_vector& 

src ) .......................................................................74 
4.4.1.6 template<typename M>  concurrent_vector& operator=( 

const concurrent_vector<T, M>& src ).........................74 
4.4.1.7 void assign( size_type n, const_reference t ) ................75 
4.4.1.8 template<class InputIterator >  void assign( InputIterator 

first, InputIterator last ) ............................................75 
4.4.2 Whole Vector Operations ..........................................................75 

4.4.2.1 void reserve( size_type n ).........................................75 
4.4.2.2 void compact() .........................................................75 
4.4.2.3 void swap( concurrent_vector& x ) ..............................75 
4.4.2.4 void clear() ..............................................................76 
4.4.2.5 ~concurrent_vector() ................................................76 

4.4.3 Concurrent Growth ..................................................................76 
4.4.3.1 size_type grow_by( size_type delta, const_reference  

t=T() ) ....................................................................76 
4.4.3.2 void grow_to_at_least( size_type n ) ...........................76 
4.4.3.3 size_t push_back( const_reference value ); ..................77 

4.4.4 Access ...................................................................................77 
4.4.4.1 reference operator[]( size_type index )........................77 
4.4.4.2 const_refrence operator[]( size_type index ) const ........77 



 
Intel(R) Threading Building Blocks 

 

viii   315415-001US 

4.4.4.3 reference at( size_type index ) ...................................77 
4.4.4.4 const_reference at( size_type index ) const ..................77 
4.4.4.5 reference front().......................................................78 
4.4.4.6 const_reference front() const .....................................78 
4.4.4.7 reference back() .......................................................78 
4.4.4.8 const_reference back() const......................................78 

4.4.5 Parallel Iteration .....................................................................78 
4.4.5.1 range_type range( size_t grainsize=1 )........................78 
4.4.5.2 const_range_type range( size_t grainsize=1 ) const ......78 

4.4.6 Capacity ................................................................................79 
4.4.6.1 size_type size() const................................................79 
4.4.6.2 bool empty() const ...................................................79 
4.4.6.3 size_type capacity() const..........................................79 
4.4.6.4 size_type max_size() const ........................................79 

4.4.7 Iterators ................................................................................79 
4.4.7.1 iterator begin().........................................................79 
4.4.7.2 const_iterator begin() const .......................................79 
4.4.7.3 iterator end() ...........................................................80 
4.4.7.4 const_iterator end() const..........................................80 
4.4.7.5 reverse_iterator rbegin() ...........................................80 
4.4.7.6 const_reverse_iterator rbegin() const ..........................80 
4.4.7.7 iterator rend()..........................................................80 
4.4.7.8 const_reverse_iterator rend().....................................80 

5 Memory Allocation...........................................................................................81 
5.1 Allocator Concept .................................................................................81 
5.2 tbb_allocator<T> Template Class ...........................................................82 
5.3 scalable_allocator<T> Template Class.....................................................82 

5.3.1 C Interface to Scalable Allocator ................................................83 
5.4 cache_aligned_allocator<T> Template Class ............................................84 

5.4.1 pointer allocate( size_type n, const void* hint=0 ) .......................86 
5.4.2 void deallocate( pointer p, size_type n ) .....................................86 
5.4.3 char* _Charalloc( size_type size )..............................................86 

5.5 aligned_space Template Class ................................................................87 
5.5.1 aligned_space() ......................................................................87 
5.5.2 ~aligned_space() ....................................................................87 
5.5.3 T* begin() ..............................................................................88 
5.5.4 T* end() ................................................................................88 

6 Synchronization..............................................................................................89 
6.1 Mutexes..............................................................................................89 

6.1.1 Mutex Concept........................................................................89 
6.1.2 mutex Class ...........................................................................90 
6.1.3 recursive_mutex Class .............................................................91 
6.1.4 spin_mutex Class ....................................................................91 
6.1.5 queuing_mutex Class...............................................................92 
6.1.6 ReaderWriterMutex Concept......................................................93 

6.1.6.1 ReaderWriterMutex().................................................94 
6.1.6.2 ~ReaderWriterMutex() ..............................................94 
6.1.6.3 ReaderWriterMutex::scoped_lock()..............................94 
6.1.6.4 ReaderWriterMutex::scoped_lock( ReaderWriterMutex& 

rw, bool write =true).................................................94 
6.1.6.5 ReaderWriterMutex::~scoped_lock() ...........................94 



 
Overview 

 

Reference Manual    ix ix 

6.1.6.6 void ReaderWriterMutex:: scoped_lock:: acquire( 
ReaderWriterMutex& rw,  bool write=true ) ..................94 

6.1.6.7 bool ReaderWriterMutex:: scoped_lock::try_acquire( 
ReaderWriterMutex& rw,  bool write=true ) ..................95 

6.1.6.8 void ReaderWriterMutex:: scoped_lock::release()..........95 
6.1.6.9 bool ReaderWriterMutex:: 

scoped_lock::upgrade_to_writer()...............................95 
6.1.6.10 bool ReaderWriterMutex:: 

scoped_lock::downgrade_to_reader()..........................95 
6.1.7 spin_rw_mutex Class ...............................................................95 
6.1.8 queuing_rw_mutex Class..........................................................96 
6.1.9 null_mutex Class.....................................................................97 
6.1.10 null_rw_mutex Class................................................................97 

6.2 atomic<T> Template Class ....................................................................98 
6.2.1 enum memory_semantics....................................................... 100 
6.2.2 value_type fetch_and_add( value_type addend ) ....................... 100 
6.2.3 value_type fetch_and_increment()........................................... 100 
6.2.4 value_type fetch_and_decrement().......................................... 101 
6.2.5 value_type compare_and_swap............................................... 101 
6.2.6 value_type fetch_and_store( value_type new_value )................. 101 

7 Timing......................................................................................................... 102 
7.1 tick_count Class ................................................................................. 102 

7.1.1 static tick_count tick_count::now() .......................................... 103 
7.1.2 tick_count::interval_t operator−( const tick_count& t1, const 

tick_count& t0 ) .................................................................... 103 
7.1.3 tick_count::interval_t Class .................................................... 103 

7.1.3.1 interval_t() ............................................................ 104 
7.1.3.2 interval_t( double sec ) ........................................... 104 
7.1.3.3 double seconds() const............................................ 104 
7.1.3.4 interval_t operator+=( const interval_t& i ) ................ 104 
7.1.3.5 interval_t operator−=( const interval_t& i )................. 104 
7.1.3.6 interval_t operator+ ( const interval_t& i, const 

interval_t& j ) ........................................................ 105 
7.1.3.7 interval_t operator− ( const interval_t& i, const interval_t& 

j ) ........................................................................ 105 
8 Task Scheduling ........................................................................................... 106 

8.1 Scheduling Algorithm.......................................................................... 107 
8.2 task_scheduler_init Class .................................................................... 108 

8.2.1 task_scheduler_init( int number_of_threads=automatic, 
stack_size_type thread_stack_size=0 ) .................................... 109 

8.2.2 ~task_scheduler_init()........................................................... 110 
8.2.3 void initialize( int number_of_threads=automatic )..................... 110 
8.2.4 void terminate().................................................................... 110 
8.2.5 int default_num_threads()...................................................... 110 
8.2.6 bool is_active() const............................................................. 111 
8.2.7 Mixing with OpenMP............................................................... 111 

8.3 task Class ......................................................................................... 111 
8.3.1 task Derivation ..................................................................... 114 

8.3.1.1 Processing of execute() ........................................... 115 
8.3.2 task Allocation ...................................................................... 115 

8.3.2.1 new( task::allocate_root( task_group_context& group ) ) T116 
8.3.2.2 new( task::allocate_root() ) ..................................... 116 



 
Intel(R) Threading Building Blocks 

 

x   315415-001US 

8.3.2.3 new( this. allocate_continuation() ) T ........................ 116 
8.3.2.4 new( this. allocate_child() ) T ................................... 116 
8.3.2.5 new( this.task::allocate_additional_child_of( parent )) . 117 

8.3.3 Explicit task Destruction ......................................................... 118 
8.3.3.1 void destroy( task& victim ) ..................................... 118 

8.3.4 Recycling Tasks..................................................................... 119 
8.3.4.1 void recycle_as_continuation() ................................. 119 
8.3.4.2 void recycle_as_safe_continuation() .......................... 119 
8.3.4.3 void recycle_as_child_of( task& new_parent )............. 120 
8.3.4.4 void recycle _to_reexecute() .................................... 120 

8.3.5 task Depth ........................................................................... 120 
8.3.5.1 depth_type ............................................................ 120 
8.3.5.2 depth_type depth() const......................................... 121 
8.3.5.3 void set_depth( depth_type new_depth ) ................... 121 
8.3.5.4 void add_to_depth( int delta ) .................................. 121 

8.3.6 Synchronization .................................................................... 121 
8.3.6.1 void set_ref_count( int count ) ................................. 122 
8.3.6.2 void wait_for_all() .................................................. 122 
8.3.6.3 void spawn( task& child )......................................... 123 
8.3.6.4 void spawn ( task_list& list ) .................................... 123 
8.3.6.5 void spawn_and_wait_for_all( task& child ) ................ 124 
8.3.6.6 void spawn_and_wait_for_all( task_list& list )............. 124 
8.3.6.7 static void spawn_root_and_wait( task& root )............ 124 
8.3.6.8 static void spawn_root_and_wait( task_list& root_list ) 125 

8.3.7 task Context......................................................................... 125 
8.3.7.1 static task& self() ................................................... 125 
8.3.7.2 task* parent() const................................................ 125 
8.3.7.3 bool is_stolen_task() const....................................... 125 

8.3.8 Cancellation.......................................................................... 125 
8.3.8.1 bool cancel_group_execution() ................................. 126 
8.3.8.2 bool is_cancelled() const.......................................... 126 

8.3.9 Affinity................................................................................. 126 
8.3.9.1 affinity_id .............................................................. 126 
8.3.9.2 virtual void note_affinity ( affinity_id id ).................... 126 
8.3.9.3 void set_affinity( affinity_id id ) ................................ 127 
8.3.9.4 affinity_id affinity() const......................................... 127 

8.3.10 task Debugging..................................................................... 127 
8.3.10.1 state_type state() const .......................................... 127 
8.3.10.2 int ref_count() const ............................................... 128 

8.4 empty_task Class ............................................................................... 129 
8.5 task_list Class.................................................................................... 129 

8.5.1 task_list() ............................................................................ 130 
8.5.2 ~task_list() .......................................................................... 130 
8.5.3 bool empty() const ................................................................ 130 
8.5.4 push_back( task& task )......................................................... 130 
8.5.5 task& task pop_front() ........................................................... 131 
8.5.6 void clear() .......................................................................... 131 

8.6 task_group_context............................................................................ 131 
8.6.1 task_group_context( kind_t relation_to_parent=bound )............. 132 
8.6.2 ~task_group_context() .......................................................... 132 
8.6.3 bool cancel_group_execution()................................................ 132 
8.6.4 bool is_group_execution_cancelled() const................................ 133 
8.6.5 void reset() .......................................................................... 133 

8.7 task_scheduler_observer..................................................................... 133 



 
Overview 

 

Reference Manual    xi xi 

8.7.1 task_scheduler_observer() ..................................................... 134 
8.7.2 ~task_scheduler_observer() ................................................... 134 
8.7.3 void observe( bool state=true ) ............................................... 134 
8.7.4 bool is_observing() const........................................................ 134 
8.7.5 virtual void on_scheduler_entry( bool is_worker) ....................... 134 
8.7.6 virtual void on_scheduler_exit( bool is_worker ) ........................ 135 

8.8 Catalog of Recommended task Patterns ................................................. 135 
8.8.1 Blocking Style With k Children................................................. 135 
8.8.2 Continuation-Passing Style With k Children ............................... 136 

8.8.2.1 Recycling Parent as Continuation .............................. 136 
8.8.2.2 Recycling Parent as a Child ...................................... 137 

8.8.3 Letting Main Thread Work While Child Tasks Run ....................... 138 
9 Exceptions ................................................................................................... 139 

9.1 tbb_exception.................................................................................... 139 
9.2 captured_exception ............................................................................ 140 

9.2.1 captured_exception( const char* name, const char* info ) .......... 141 
9.3 movable_exception<ExceptionData> .................................................... 141 

9.3.1 movable_exception( const ExceptionData& src ) ........................ 142 
9.3.2 ExceptionData& data() throw()................................................ 142 
9.3.3 const ExceptionData& data() const throw() ............................... 142 

10 Threads....................................................................................................... 143 
10.1 tbb_thread Class ................................................................................ 143 

10.1.1 tbb_thread()......................................................................... 144 
10.1.2 template<typename F, typename X> tbb_thread(F f, X x)........... 145 
10.1.3 template<typename F, typename X, typename Y> tbb_thread(F f, X 

x, Y y) ................................................................................. 145 
10.1.4 ~tbb_thread......................................................................... 145 
10.1.5 bool joinable() const .............................................................. 145 
10.1.6 void join() ............................................................................ 145 
10.1.7 void detach() ........................................................................ 146 
10.1.8 id get_id() const.................................................................... 146 
10.1.9 native_handle_type native_handle() ........................................ 146 
10.1.10 static unsigned hardware_concurrency()................................... 146 

10.2 tbb_thread:: id .................................................................................. 146 
10.3 this_tbb_thread Namespace................................................................. 147 

10.3.1 tbb_thread::id get_id() .......................................................... 147 
10.3.2 void yield()........................................................................... 148 
10.3.3 void sleep( const tick_count::interval_t & i) .............................. 148 

11 References................................................................................................... 149 
Appendix A Compatibility Features ................................................................................... 150 

A.1 parallel_while Template Class............................................................... 150 
A.1.1 parallel_while<Body>().......................................................... 151 
A.1.2 ~parallel_while<Body>() ....................................................... 151 
A.1.3 Template <typename Stream> void run( Stream& stream, const 

Body& body )........................................................................ 152 
A.1.4 void add( const value_type& item ).......................................... 152 

A.2 Interface for constructing a pipeline filter............................................... 152 
A.2.1 filter::filter( bool is_serial )..................................................... 152 
A.2.2 filter::serial .......................................................................... 152 

A.3 Debugging Macros .............................................................................. 153 





 
Overview 

 

Reference Manual    1 1 

1 Overview 
Intel® Threading Building Blocks is a library that supports scalable parallel 
programming using standard ISO C++ code. It does not require special languages or 
compilers. It is designed to promote scalable data parallel programming. Additionally, 
it fully supports nested parallelism, so you can build larger parallel components from 
smaller parallel components. To use the library, you specify tasks, not threads, and let 
the library map tasks onto threads in an efficient manner.  

Many of the library interfaces employ generic programming, in which interfaces are 
defined by requirements on types and not specific types. The C++ Standard Template 
Library (STL) is an example of generic programming. Generic programming enables 
Intel® Threading Building Blocks to be flexible yet efficient. The generic interfaces 
enable you to customize components to your specific needs.  

The net result is that Intel® Threading Building Blocks enables you to specify 
parallelism far more conveniently than using raw threads, and at the same time can 
improve performance.  

This document is a reference manual. It is organized for looking up details about 
syntax and semantics. You should first read the Intel® Threading Building Blocks 
Getting Started Guide and the Intel® Threading Building Blocks Tutorial to learn how 
to use the library effectively.  

TIP: Even experienced parallel programmers should read the Intel® Threading Building 
Blocks Tutorial before using this reference guide because Intel® Threading Building 
Blocks uses a surprising recursive model of parallelism and generic algorithms. 



 
Intel(R) Threading Building Blocks 

 

2   315415-001US 

2 General Conventions 
This section describes conventions used in this document. 

2.1 Notation 
Literal program text appears in Courier font. Algebraic placeholders are in 
monospace italics. For example, the notation blocked_range<Type> indicates that 
blocked_range is literal, but Type is a notational placeholder. Real program text 
replaces Type with a real type, such as in blocked_range<int>. 

Class members are summarized by informal class declarations that describe the class 
as it seems to clients, not how it is actually implemented. For example, here is an 
informal declaration of class Foo: 

class Foo { 
public: 
    int x(); 
    int y; 
    ~Foo(); 
}; 

The actual implementation might look like: 

namespace internal { 
    class FooBase { 
    protected: 
        int x(); 
    }; 
 
    class Foo_v3: protected FooBase { 
    private: 
        int internal_stuff; 
    public: 
        using FooBase::x; 
        int y; 
    }; 
} 
 
typedef internal::Foo_v3 Foo; 

The example shows two cases where the actual implementation departs from the 
informal declaration: 

• Foo is actually a typedef to Foo_v3. 



 
General Conventions 

 

Reference Manual    3 3 

• Method x() is inherited from a protected base class. 

• The destructor is an implicit method generated by the compiler. 

The informal declarations are intended to show you what you need to know to use the 
class without the distraction of irrelevant clutter particular to the implementation.  

2.2 Terminology 
This section describes terminology specific to Intel® Threading Building Blocks. 

2.2.1 Concept 
A concept is a set of requirements on a type. The requirements may be syntactic or 
semantic. For example, the concept of “sortable” could be defined as a set of 
requirements that enable an array to be sorted. A type T would be sortable if:  

• x < y returns a boolean value, and represents a total order on items of type T. 

• swap(x,y) swaps items x and y  

You can write a sorting template function in C++ that sorts an array of any type that 
is sortable. 

Two approaches for defining concepts are valid expressions and pseudo-signatures 0

1. 
The ISO C++ standard follows the valid expressions approach, which shows what the 
usage pattern looks like for a concept. It has the drawback of relegating important 
details to notational conventions. This document uses pseudo-signatures, because 
they are concise, and can be cut-and-pasted for an initial implementation.  

For example, 449H369HTable 1 shows pseudo-signatures for a sortable type T: 

Table 1: Pseudo-Signatures for Example Concept “sortable” 

Pseudo-Signature Semantics 

bool operator<(const T& x, const T& y) Compare x and y. 

void swap(T& x, T& y) Swap x and y. 

A real signature may differ from the pseudo-signature that it implements in ways 
where implicit conversions would deal with the difference. For an example type U, the 
real signature that implements operator< in 450H370HTable 1 can be expressed as int 
operator<( U x, U y ), because C++ permits implicit conversion from int to bool, 
and implicit conversion from U to (const U&). Similarly, the real signature bool 

                                               

1 See Section 3.3.2 of Concepts for C++0x available at 
http://www.osl.iu.edu/publications/prints/2005/siek05:_concepts_cpp0x.pdf for 
further discussion of valid expressions versus pseudo-signatures. 



 
Intel(R) Threading Building Blocks 

 

4   315415-001US 

operator<( U& x, U& y ) is acceptable because C++ permits implicit addition of a 

const qualifier to a reference type.  

2.2.2 Model 
A type models a concept if it meets the requirements of the concept. For example, 
type int models the sortable concept in 451H371HTable 1 if there exists a function swap(x,y) 
that swaps two int values x and y. The other requirement for sortable, specifically 
x<y, is already met by the built-in operator< on type int. 

2.2.3 CopyConstructible 
The library sometimes requires that a type model the CopyConstructible concept, 
which is defined by the ISO C++ standard. 452H372HTable 2 shows the requirements for 
CopyConstructible in pseudo-signature form. 

Table 2: CopyConstructible Requirements 

Pseudo-Signature Semantics 

T( const T& ) Construct copy of const T. 

~T() Destructor. 

T* operator&() Take address. 

const T* operator&() const Take address of const T. 

2.3 Identifiers 
This section describes the identifier conventions used by Intel® Threading Building 
Blocks. 

2.3.1 Case 
The identifier convention in the library follows the style in the ISO C++ standard 
library. Identifiers are written in underscore_style, and concepts in PascalCase. 

2.3.2 Reserved Identifier Prefixes 
The library reserves the prefix __TBB for internal identifiers and macros that should 
never be directly referenced by your code.  



 
General Conventions 

 

Reference Manual    5 5 

2.4 Namespaces 
This section describes reserved namespaces used by Intel® Threading Building Blocks. 

2.4.1 tbb Namespace 
The library puts all public classes and functions into the namespace tbb. 

2.4.2 tbb::internal Namespace 
The library uses the namespace tbb::internal for internal identifiers. Client code 
should never directly reference the namespace tbb::internal or the identifiers inside 
it. Indirect reference via a public typedef provided by the header files is permitted.  

An example of the distinction between direct and indirect use is type 
concurrent_vector<T>::iterator. This type is a typedef for an internal class 
internal::vector_iterator<Container,Value>. Your source code should use the 
iterator typedef. 

2.5 Thread Safety 
Unless otherwise stated, the thread safety rules for the library are as follows:  

• Two threads can invoke a method or function concurrently on different objects, but 
not the same object.  

• It is unsafe for two threads to invoke concurrently methods or functions on the 
same object.  

Descriptions of the classes note departures from this convention. For example, the 
concurrent containers are more liberal. By their nature, they do permit some 
concurrent operations on the same container object. 

2.6 Enabling Debugging Features 
Four macros control certain debugging features. In general, it is useful to compile with 
these features on for development code, and off for production code, because the 
features may decrease performance. 373HTable 3 summarizes the macros and their default 
values. A value of 1 enables the corresponding feature; a value of 0 disables the 
feature.  



 
Intel(R) Threading Building Blocks 

 

6   315415-001US 

Table 3: Debugging Macros 

Macro Default Value Feature 

Windows* systems:  
1 if _DEBUG is defined,  
0 otherwise. 

TBB_USE_DEBUG 

All other systems: 0. 

Default value for all other 
macros in this table. 

TBB_USE_ASSERT Enable internal assertion 
checking. Can significantly slow 
performance. 

TBB_USE_THREADING_TOOLS Enable full support for Intel® 
Threading Tools. 

TBB_USE_PERFORMANCE_WARNINGS 

TBB_USE_DEBUG 

 

Enable warnings about 
performance issues. 

 

2.6.1 TBB_USE_ASSERT Macro 
The macro TBB_DO_ASSERT controls whether error checking is enabled in the header 
files. Define TBB_DO_ASSERT as 1 to enable error checking. 

If an error is detected, the library prints an error message on stderr and calls the 
standard C routine abort. To stop a program when internal error checking detects a 
failure, place a breakpoint on tbb::assertion_failure. 

TIP: On Windows* systems, debug builds implicitly set TBB_DO_ASSERT to 1. 

2.6.2 TBB_USE_THREADING_TOOLS Macro 
The macro TBB_USE_THREADING_TOOLS controls support for Intel® Threading Tools: 

• Intel® Thread Profiler  

• Intel® Thread Checker.  

Define TBB_USE_THREADING_TOOLS as 1 to enable full support for these tools.  

That is full support is enabled if error checking is enabled. Leave 
TBB_USE_THREADING_TOOLS undefined or zero to enable top performance in release 
builds, at the expense of turning off some support for tools. 

2.6.3 TBB_USE_PERFORMANCE_WARNINGS Macro 
The macro TBB_USE_PERFORMANCE_WARNINGS controls performance warnings. Define it 
to be 1 to enable the warnings. Currently, the only warnings affected are some that 
report poor hash functions for concurrent_hash_map. Enabling the warnings may 
impact performance. 



 
General Conventions 

 

Reference Manual    7 7 

2.7 Version Information 
TBB has macros, an environment variable, and a function that reveal version and run-
time information. 

2.7.1 Version Macros  
The TBB header tbb/tbb_stddef.h defines macros related to versioning, as described 
in 374HTable 4. You should not redefine these macros. 

Table 4: Version Macros 

Macro Description of Value 

TBB_INTERFACE_VERSION Current interface version. The value is a 
decimal numeral of the form xyyy where x is 
the major version number and y is the 
minor version number. 

TBB_INTERFACE_VERSION_MAJOR TBB_INTERFACE_VERSION/1000; i.e., the 
major version number. 

TBB_COMPATIBLE_INTERFACE_VERSION Oldest major interface version still 
supported.  

2.7.2 TBB_VERSION Environment Variable 
Set the environment variable TBB_VERSION to 1 to cause the library to print 
information on stderr. Each line is of the form “TBB: tag value”, where tag and value 
are described in 375HTable 5.  

Table 5: Output from TBB_VERSION 

Tag Description of Value 

VERSION TBB product version number. 

INTERFACE_VERSION Value of macro TBB_INTERFACE_VERSION when library was 
compiled.  

BUILD_... Various information about the machine configuration on which 
the library was built. 

TBB_USE_ASSERT Setting of macro TBB_USE_ASSERT 

DO_ITT_NOTIFY 1 if library can enable instrumentation for Intel® Threading 
Tools; 0 or undefined otherwise. 

ITT yes if library has enabled instrumentation for Intel® Threadng 
Tools, no otherwise. Typically yes only if the program is 
running under control of the Intel® Threadng Tools. 

ALLOCATOR Underlying allocator for tbb::tbb_allocator. It is 



 
Intel(R) Threading Building Blocks 

 

8   315415-001US 

scalable_malloc if TBB malloc library was successuly loaded; 
malloc otherwise. 

CAUTION: This output is implementation specific and may change at any time.  

2.7.3 TBB_runtime_interface_version Function 

Summary 
Function that returns the interface version of the TBB library that was loaded at 
runtime.  

Syntax 
extern “C” int TBB_runtime_interface_version(); 

Header 
#include "tbb/tbb_stddef.h" 

Description 

The value returned by TBB_runtime_interface_version() may differ from the value 
of TBB_INTERFACE_VERSION obtained at compile time. This can be used to identify 
whether an application was compiled against a compatible version of the TBB headers.  

CAUTION: In general, the run-time value TBB_runtime_interface_version() must be greater 
than or equal to the compile-time value of TBB_INTERFACE_VERSION. Otherwise the 

application may fail to resolve all symbols at run time. 



 
Algorithms 

 

Reference Manual    9 9 

3 Algorithms 
Most parallel algorithms provided by the library are generic. They operate on all types 
that model the necessary concepts. Parallel algorithms may be nested. For example, 
the body of a parallel_for can invoke another parallel_for.  

CAUTION: When the body of an outer parallel algorithm invokes another parallel algorithm, it 
may cause the outer body to be re-entered for a different iteration of the outer 
algorithm.  

For example, if the outer body holds a global lock while calling an inner parallel 
algorithm, the body will deadlock if the re-entrant invocation attempts to acquire the 
same global lock. This ill-formed example is a special case of a general rule that code 
should not hold a lock while calling code written by another author. 

3.1 Splittable Concept 
Summary 
Requirements for a type whose instances can be split into two pieces. 

Requirements 
454H376HTable 6 lists the requirements for a splittable type X with instance x.  

Table 6: Splittable Concept 

Pseudo-Signature Semantics 

X::X(X& x, Split) Split x into x and newly constructed object.  

Description 
A type is splittable if it has a splitting constructor that allows an instance to be split 
into two pieces. The splitting constructor takes as arguments a reference to the 
original object, and a dummy argument of type Split, which is defined by the library. 
The dummy argument distinguishes the splitting constructor from a copy constructor. 
After the constructor runs, x and the newly constructed object should represent the 
two pieces of the original x. The library uses splitting constructors in three contexts: 

• Partitioning a range into two subranges that can be processed concurrently. 

• Forking a body (function object) into two bodies that can run concurrently. 

The following model types provide examples. 



 
Intel(R) Threading Building Blocks 

 

10   315415-001US 

Model Types 
blocked_range (377H 3.2.1) and blocked_range2d (378H 3.2.2) represent splittable ranges. For 
each of these, splitting partitions the range into two subranges. See the example in 
Section 379H 3.2.1.3 for the splitting constructor of blocked_range<Value>. 

The bodies for parallel_reduce (380H 3.5) and parallel_scan (381H 3.6) must be splittable. 

For each of these, splitting results in two bodies that can be run concurrently. 

3.1.1 split Class 

Summary 
Type for dummy argument of a splitting constructor.  

Syntax 
class split; 

Header 
#include "tbb/tbb_stddef.h" 

Description 
An argument of type split is used to distinguish a splitting constructor from a copy 
constructor. 

Members 
namespace tbb { 
    class split { 
    }; 
} 

3.2 Range Concept 

Summary 
Requirements for type representing a recursively divisible set of values. 

Requirements 
455H382HTable 7 lists the requirements for a Range type R. 

Table 7: Range Concept 

Pseudo-Signature Semantics 

R::R( const R& ) Copy constructor. 



 
Algorithms 

 

Reference Manual    11 11 

Pseudo-Signature Semantics 

R::~R() Destructor. 

bool R::empty() const True if range is empty. 

bool R::is_divisible() const True if range can be partitioned into two 
subranges. 

R::R( R& r, split ) Split r into two subranges. 

Description 
A Range can be recursively subdivided into two parts. It is recommended that the 
division be into nearly equal parts, but it is not required. Splitting as evenly as 
possible typically yields the best parallelism. Ideally, a range is recursively splittable 
until the parts represent portions of work that are more efficient to execute serially 
rather than split further. The amount of work represented by a Range typically 
depends upon higher level context, hence a typical type that models a Range should 
provide a way to control the degree of splitting. For example, the template class 
blocked_range (383H 3.2.1) has a grainsize parameter that specifies the biggest range 

considered indivisible. 
The constructor that implements splitting is called a splitting constructor. If the set of 
values has a sense of direction, then by convention the splitting constructor should 
construct the second part of the range, and update the argument to be the first half. 
Following this convention causes the parallel_for (456H384H 3.4), parallel_reduce (457H385H 3.5), 
and parallel_scan (386H 3.6) algorithms, when running sequentially, to work across a 
range in the increasing order typical of an ordinary sequential loop. 

Example 
The following code defines a type TrivialIntegerRange that models the Range 
concept. It represents a half-open interval [lower,upper) that is divisible down to a 
single integer. 

struct TrivialIntegerRange { 
    int lower; 
    int upper; 
    bool empty() const {return lower==upper;} 
    bool is_divisible() const {return upper>lower+1;} 
    TrivialIntegerRange( TrivialIntegerRange& r, split ) { 
        int m = (r.lower+r.upper)/2;   
        lower = m; 
        upper = r.upper; 
        r.upper = m; 
    } 
}; 

TrivialIntegerRange is for demonstration and not very practical, because it lacks a 
grainsize parameter. Use the library class blocked_range instead.  



 
Intel(R) Threading Building Blocks 

 

12   315415-001US 

Model Types 
Type blocked_range (387H 3.2.1) models a one-dimensional range. 

Type blocked_range2d (388H 3.2.2) models a two-dimensional range. 

Type blocked_range3d (389H 3.2.3) models a three-dimensional range. 

Concept Container Range (390H 4.1) models a container as a range. 

3.2.1 blocked_range<Value> Template Class 

Summary 
Template class for a recursively divisible half-open interval. 

Syntax 
template<typename Value> class blocked_range; 

Header 
#include "tbb/blocked_range.h" 

Description 
A blocked_range<Value> represents a half-open range [i,j) that can be recursively 

split. The types of i and j must model the requirements in 461H391HTable 8. Because the 
requirements are pseudo-signatures, signatures that differ by implicit conversions are 
allowed. For example, a blocked_range<int> is allowed, because the difference of 
two int values can be implicitly converted to a size_t. Examples that model the Value 
requirements are integral types, pointers, and STL random-access iterators whose 
difference can be implicitly converted to a size_t.  
A blocked_range models the Range concept (462H392H 3.2). 

Table 8: Value Concept for blocked_range 

Pseudo-Signature Semantics 

Value::Value( const Value& ) Copy constructor. 

Value::~Value() Destructor. 

bool operator<( const Value& i, const Value& j ) Value i precedes value 
j. 

size_t operator−( const Value& i, const Value& j ) Number of values in 
range [i,j). 

Value operator+( const Value& i, size_t k ) kth value after i. 

A blocked_range<Value> specifies a grainsize of type size_t. A blocked_range is 
splittable into two subranges if the size of the range exceeds grain size. The ideal 
grain size depends upon the context of the blocked_range<Value>, which is typically 
as the range argument to the loop templates parallel_for, parallel_reduce, or 



 
Algorithms 

 

Reference Manual    13 13 

parallel_scan. A too small grainsize may cause scheduling overhead within the loop 

templates to swamp speedup gained from parallelism. A too large grainsize may 
unnecessarily limit parallelism. For example, if the grain size is so large that the range 
can be split only once, then the maximum possible parallelism is two. 

Here is a suggested procedure for choosing grainsize: 

1. Set the grainsize parameter to 10,000. This value is high enough to amortize 
scheduler overhead sufficiently for practically all loop bodies, but may be 
unnecessarily limit parallelism.  

2. Run your algorithm on one processor. 

3. Start halving the grainsize parameter and see how much the algorithm slows 
down as the value decreases.  

A slowdown of about 5-10% is a good setting for most purposes. 

TIP: For a blocked_range [i,j) where j<i, not all methods have specified behavior. 
However, enough methods do have specified behavior that parallel_for (393H 3.4), 
parallel_reduce (394H 3.5), and parallel_scan (395H 3.6) iterate over the same iteration space as 
the serial loop for( Value index=i; index<j; ++index )... , even when j<i. If 
TBB_USE_ASSERT (396H 2.6.1) is nonzero, methods with unspecified behavior raise an 
assertion failure.  

Examples 
A blocked_range<Value> typically appears as a range argument to a loop template. 
See the examples for parallel_for (397H 3.4), parallel_reduce (398H 3.5), and 
parallel_scan (399H 3.6).  

Members 
namespace tbb { 
    template<typename Value> 
    class blocked_range { 
    public: 
        // types 
        typedef size_t size_type; 
        typedef Value const_iterator; 
 
        // constructors 
        blocked_range( Value begin, Value end, size_type 
grainsize=1); 
        blocked_range( blocked_range& r, split ); 
 
        // capacity 
        size_type size() const; 
        bool empty() const; 
     
        // access 



 
Intel(R) Threading Building Blocks 

 

14   315415-001US 

        size_type grainsize() const; 
        bool is_divisible() const; 
 
        // iterators 
        const_iterator begin() const; 
        const_iterator end() const; 
    }; 
} 

3.2.1.1 size_type 

Description 
The type for measuring the size of a blocked_range. The type is always a size_t.  

const_iterator 

Description 
The type of a value in the range. Despite its name, the type const_iterator is not 
necessarily an STL iterator; it merely needs to meet the Value requirements in 400HTable 
8. However, it is convenient to call it const_iterator so that if it is a const_iterator, 
then the blocked_range behaves like a read-only STL container. 

3.2.1.2 blocked_range( Value begin, Value end, size_t grainsize=1 ) 

Requirements 
The parameter grainsize must be positive. The debug version of the library raises an 
assertion failure if this requirement is not met. 

Effects 
Constructs a blocked_range representing the half-open interval [begin,end) with the 
given grainsize.  

Example 
The statement “blocked_range<int> r( 5, 14, 2 );” constructs a range of int that 

contains the values 5 through 13 inclusive, with a grainsize of 2. Afterwards, 
r.begin()==5 and r.end()==14. 

3.2.1.3 blocked_range( blocked_range& range, split ) 

Requirements 
is_divisible() is true. 



 
Algorithms 

 

Reference Manual    15 15 

Effects 
Partitions range into two subranges. The newly constructed blocked_range is 
approximately the second half of the original range, and range is updated to be the 
remainder. Each subrange has the same grainsize as the original range. 

Example 
Let i and j be integers that define a half-open interval [i,j) and let g specifiy a grain 
size. The statement blocked_range<int> r(i,j,g) constructs a 
blocked_range<int> that represents [i,j) with grain size g. Running the statement 
blocked_range<int> s(r,split); subsequently causes r to represent [i, i +(j 
−i)/2) and s to represent [i +(j −i)/2, j), both with grain size g. 

3.2.1.4 size_type size() const 

Requirements 
end()<begin() is false. 

Effects 
Determines size of range.  

Returns 
end()−begin() 

3.2.1.5 bool empty() const 

Effects 
Determines if range is empty.  

Returns 
!(begin()<end())  

3.2.1.6 size_type grainsize() const 

Returns 
Grain size of range.  

3.2.1.7 bool is_divisible() const 

Requirements 
!(end()<begin()) 



 
Intel(R) Threading Building Blocks 

 

16   315415-001US 

Effects 
Determines if range can be split into subranges. 

Returns 
True if size()>grainsize(); false otherwise. 

3.2.1.8 const_iterator begin() const 

Returns 
Inclusive lower bound on range. 

3.2.1.9 const_iterator end() const 

Returns 
Exclusive upper bound on range. 

3.2.2 blocked_range2d Template Class 

Summary 
Template class that represents recursively divisible two-dimensional half-open 
interval. 

Syntax 
template<typename RowValue, typename ColValue> class 
blocked_range2d; 

Header 
#include "tbb/blocked_range2d.h" 

Description 
A blocked_range2d<RowValue,ColValue> represents a half-open two dimensional 
range [i0,j0)×[i1,j1). Each axis of the range has its own splitting threshold. The 
RowValue and ColValue must meet the requirements in 463H401HTable 8. A blocked_range is 
splittable if either axis is splittable. A blocked_range models the Range concept (464H402H 3.2). 

Members 
namespace tbb { 
template<typename RowValue, typename ColValue=RowValue> 
    class blocked_range2d { 
    public: 
        // Types 
        typedef blocked_range<RowValue> row_range_type; 



 
Algorithms 

 

Reference Manual    17 17 

        typedef blocked_range<ColValue> col_range_type; 
 
        // Constructors 
        blocked_range2d( RowValue row_begin, RowValue row_end,  
                       typename row_range_type::size_type 
row_grainsize, 
                       ColValue col_begin, ColValue col_end,  
                       typename col_range_type::size_type 
col_grainsize); 
        blocked_range2d( RowValue row_begin, RowValue row_end,  
                         ColValue col_begin, ColValue col_end); 
        blocked_range2d( blocked_range2d& r, split ); 
 
        // Capacity 
        bool empty() const; 
 
        // Access 
        bool is_divisible() const; 
        const row_range_type& rows() const; 
        const col_range_type& cols() const; 
    }; 
}  

Example 
The code that follows shows a serial matrix multiply, and the corresponding parallel 
matrix multiply that uses a blocked_range2d to specify the iteration space. 

const size_t L = 150; 
const size_t M = 225; 
const size_t N = 300; 
 
void SerialMatrixMultiply( float c[M][N], float a[M][L], float 
b[L][N] ) { 
    for( size_t i=0; i<M; ++i ) { 
        for( size_t j=0; j<N; ++j ) { 
            float sum = 0; 
            for( size_t k=0; k<L; ++k ) 
                sum += a[i][k]*b[k][j]; 
            c[i][j] = sum; 
        } 
    } 
} 

 
#include "tbb/parallel_for.h" 
#include "tbb/blocked_range2d.h" 



 
Intel(R) Threading Building Blocks 

 

18   315415-001US 

 
using namespace tbb; 
 
const size_t L = 150; 
const size_t M = 225; 
const size_t N = 300; 
 
class MatrixMultiplyBody2D { 
    float (*my_a)[L]; 
    float (*my_b)[N]; 
    float (*my_c)[N]; 
public: 
    void operator()( const blocked_range2d<size_t>& r ) const { 
        float (*a)[L] = my_a; 
        float (*b)[N] = my_b; 
        float (*c)[N] = my_c; 
        for( size_t i=r.rows().begin(); i!=r.rows().end(); ++i ){ 
            for( size_t j=r.cols().begin(); j!=r.cols().end(); 
++j ) { 
                float sum = 0; 
                for( size_t k=0; k<L; ++k ) 
                    sum += a[i][k]*b[k][j]; 
                c[i][j] = sum; 
            } 
        } 
    } 
    MatrixMultiplyBody2D( float c[M][N], float a[M][L], float 
b[L][N] ) : 
        my_a(a), my_b(b), my_c(c) 
    {} 
}; 
 
void ParallelMatrixMultiply(float c[M][N], float a[M][L], float 
b[L][N]){ 
    parallel_for( blocked_range2d<size_t>(0, M, 16, 0, N, 32),      
                  MatrixMultiplyBody2D(c,a,b) ); 
} 

The blocked_range2d enables the two outermost loops of the serial version to 
become parallel loops. The parallel_for recursively splits the blocked_range2d until 
the pieces are no larger than 16×32. It invokes 
MatrixMultiplyBody2D::operator() on each piece. 



 
Algorithms 

 

Reference Manual    19 19 

3.2.2.1 row_range_type 

Description 
A blocked_range<RowValue>. That is, the type of the row values. 

3.2.2.2 col_range_type 

Description 
A blocked_range<ColValue>. That is, the type of the column values. 

3.2.2.3 blocked_range2d<RowValue,ColValue>( RowValue row_begin, RowValue 
row_end, typename row_range_type::size_type row_grainsize, ColValue 
col_begin, ColValue col_end, typename col_range_type::size_type 
col_grainsize ) 

Effects 
Constructs a blocked_range2d representing a two dimensional space of values. The 
space is the half-open Cartesian product [row_begin,row_end)× [col_begin,col_end), 
with the given grain sizes for the rows and columns.  

Example 
The statement “blocked_range2d<char,int> r(’a’, ’z’+1, 3, 0, 10, 2 );” 
constructs a two-dimensional space that contains all value pairs of the form (i, j), 
where i ranges from ’a’ to ’z’ with a grain size of 3, and j ranges from 0 to 9 with a 
grain size of 2. 

3.2.2.4 blocked_range2d<RowValue,ColValue>( RowValue row_begin, RowValue 
row_end, ColValue col_begin, ColValue col_end) 

Effects 
Same as blocked_range2d(row_begin,row_end,1,col_begin,col_end,1). 

3.2.2.5 blocked_range2d<RowValue,ColValue> ( blocked_range2d& range, split ) 

Effects 
Partitions range into two subranges. The newly constructed blocked_range2d is 
approximately the second half of the original range, and range is updated to be the 
remainder. Each subrange has the same grain size as the original range. The split is 

either by rows or columns. The choice of which axis to split is intended to cause, after 
repeated splitting, the subranges to approach the aspect ratio of the respective row 
and column grain sizes. For example, if the row_grainsize is twice col_grainsize, 

the subranges will tend towards having twice as many rows as columns. 



 
Intel(R) Threading Building Blocks 

 

20   315415-001US 

3.2.2.6 bool empty() const 

Effects 
Determines if range is empty. 

Returns 
rows().empty()||cols().empty() 

3.2.2.7 bool is_divisible() const 

Effects 
Determines if range can be split into subranges. 

Returns 
rows().is_divisible()||cols().is_divisible() 

3.2.2.8 const row_range_type& rows() const 

Returns 
Range containing the rows of the value space. 

3.2.2.9 const col_range_type& cols() const 

Returns 
Range containing the columns of the value space. 

3.2.3 blocked_range3d Template Class 

Summary 
Template class that represents recursively divisible three-dimensional half-open 
interval. 

Syntax 
template<typename PageValue, typename RowValue, typename 
ColValue> class blocked_range3d; 

Header 
#include "tbb/blocked_range3d.h" 

Description 
A blocked_range3d<PageValue,RowValue,ColValue> is the three-dimensional 
extension of blocked_range2d. 



 
Algorithms 

 

Reference Manual    21 21 

Members 
namespace tbb { 
template<typename PageValue, typename RowValue=PageValue, 
typename ColValue=RowValue> 
    class blocked_range2d { 
    public: 
        // Types 
        typedef blocked_range<ColValue> page_range_type; 
        typedef blocked_range<RowValue> row_range_type; 
        typedef blocked_range<ColValue> col_range_type; 
 
        // Constructors 
        blocked_range3d( PageValue page_begin, PageValue 
page_end,   
                      typename page_range_type::size_type 
page_grainsize, 
                      RowValue row_begin, RowValue row_end,  
                      typename row_range_type::size_type 
row_grainsize, 
                      ColValue col_begin, ColValue col_end,  
                      typename col_range_type::size_type 
col_grainsize); 
        blocked_range3d( PageValue page_begin, PageValue 
page_end,   
                      RowValue row_begin, RowValue row_end,  
                      ColValue col_begin, ColValue col_end); 
        blocked_range3d( blocked_range2d& r, split ); 
 
        // Capacity 
        bool empty() const; 
 
        // Access 
        bool is_divisible() const; 
        const page_range_type& rows() const; 
        const row_range_type& rows() const; 
        const col_range_type& cols() const; 
    }; 
}  

3.3 Partitioners 

Summary 
A partitioner specifies how a loop template should partition its work among threads.  



 
Intel(R) Threading Building Blocks 

 

22   315415-001US 

Description 
The default behavior of the loop templates parallel_for (403H 3.4), parallel_reduce 
(404H 3.5), and parallel_scan (405H 3.6) is to recursively split a range until it is no longer 
divisible ( 406H 3.2). An optional partitioner parameter enables other behaviors to be 
specified, as shown in 407HTable 9. 

Table 9: Partitioners 

Partitioner Loop Behavior 

simple_partitioner 
(default) 

Recursively splits a range until it is no longer divisible. 
The Range::is_divisible function is wholly responsible 
for deciding when recursive splitting halts. When used 
with classes such as blocked_range, the selection of an 
appropriate grainsize is critical to enabling concurrency 
while limiting overheads (see the discussion in Section 
408H 3.2.1).    

auto_partitioner Performs sufficient splitting to balance load, not 
necessarily splitting as finely as Range::is_divisible 
permits. When used with classes such as blocked_range, 
the selection of an appropriate grainsize is less 
important, and often acceptable performance can be 
achieved with the defdault grain size of 1. 

affinity_partitioner Similar to auto_partitioner, but improves cache affinity 
by its choice of mapping subranges to worker threads. It 
can improve performance significantly when a loop is re-
executed over the same data set, and the data set fits in 
cache. 

3.3.1 simple_partitioner Class 

Summary 
Specify that a parallel loop should recursively split its range until it cannot be 
subdivided further. 

Syntax 
class simple_partitioner; 

Header 
#include "tbb/partitioner.h" 

Description 
A simple_partitioner specifies that a loop template should recursively divide its 
range until for each subrange r, the condition !r.is_divisible() holds. This is the 
default behavior of the loop templates that take a range argument. 



 
Algorithms 

 

Reference Manual    23 23 

TIP: When using simple_partitioner and a blocked_range for a parallel loop, be careful 

to specify an appropriate grainsize for the blocked_range. The default grainsize is 1, 
which may make the subranges much too small for efficient execution. 

Members 
namespace tbb { 
    class simple_partitioner { 
    public: 
        simple_partitioner(); 
        ~simple_partitioner(); 
    } 
} 

3.3.1.1 simple_partitioner() 

Construct a simple_partitioner. 

3.3.1.2 ~simple_partitioner() 

Destroy this simple_partitioner. 

3.3.2 auto_partitioner Class 

Summary 
Specify that a parallel loop should optimize its range subdivision based on work-
stealing events. 

Syntax 
class auto_partitioner; 

Header 
#include "tbb/partitioner.h" 

Description 
A loop template with an auto_partitioner attempts to minimize range splitting while 
providing ample opportunities for work-stealing.  

The range subdivision is initially limited to S subranges, where S is proportional to the 
number of threads specified by the task_scheduler_init (409H 8.2.1). Each of these 

subranges is not divided further unless it is stolen by an idle thread. If stolen, it is 
further subdivided to create additional subranges. Thus a loop template with an 
auto_partitioner creates additional subranges only when necessary to balance load. 

TIP: When using auto_partitioner and a blocked_range for a parallel loop, the body 
may be passed a subrange larger than the blocked_range’s grainsize. Therefore do 



 
Intel(R) Threading Building Blocks 

 

24   315415-001US 

not assume that the grainsize is an upper bound on the size of the subrange. Use a 
simple_partitioner if an upper bound is required. 

Members 
namespace tbb { 
    class auto_partitioner { 
    public: 
        auto_partitioner(); 
        ~auto_partitioner(); 
    } 
} 

3.3.2.1 auto_partitioner() 

Construct an auto_partitioner. 

3.3.2.2 ~auto_partitioner() 

Destroy this auto_partitioner. 

3.3.3 affinity_partitioner 

Summary 
Hint that loop iterations should be assigned to threads in a way that optimizes for 
cache affinity. 

Syntax 
class affinity_partitioner; 

Header 
#include "tbb/partitioner.h" 

Description 
An affinity_partitioner hints that execution of a loop template should assign 
iterations to the same processors as another execution of the loop (or another loop) 
with the same affinity_partitioner object. 

Unlike the other partitioners, it is important that the same affinity_partitioner 

object be passed to the loop templates to be optimized for affinity. The Tutorial 
(Section 3.2.3 “Bandwidth and Cache Affinity”) discusses affinity effects in detail.  

TIP: The affinity_partitioner generally improves performance only when: 

• The computation does a few operations per data access. 

• The data acted upon by the loop fits in cache.  



 
Algorithms 

 

Reference Manual    25 25 

• The loop, or a similar loop, is re-executed over the same data. 

• There are more than two hardware threads available. 

Members 
namespace tbb { 
    class affinity_partitioner { 
    public: 
        affinity_partitioner(); 
        ~affinity_partitioner(); 
    } 
} 

Example 
The following example can benefit from cache affinity. The example simulates a one 
dimensional additive automaton. 

#include "tbb/blocked_range.h" 
#include "tbb/parallel_for.h" 
#include "tbb/partitioner.h" 
 
using namespace tbb; 
 
const int N = 1000000; 
typedef unsigned char Cell; 
Cell Array[2][N]; 
int FlipFlop; 
 
struct TimeStepOverSubrange { 
    void operator()( const blocked_range<int>& r ) const { 
        int j = r.end(); 
        const Cell* x = Array[FlipFlop]; 
        Cell* y = Array[!FlipFlop]; 
        for( int i=r.begin(); i!=j; ++i )  
            y[i] = x[i]^x[i+1]; 
    } 
}; 
 
 
void DoAllTimeSteps( int m ) { 
    affinity_partitioner ap; 
    for( int k=0; k<m; ++k ) { 
        parallel_for( blocked_range<int>(0,N-1),  
                      TimeStepOverSubrange(), 
                      ap ); 
        FlipFlop ^= 1; 



 
Intel(R) Threading Building Blocks 

 

26   315415-001US 

    } 
} 

For each time step, the old state of the automaton is read from Array[FlipFlop], 
and the new state is written into Array[!FlipFlop]. Then FlipFlop flips to make the 
new state become the old state. The aggregate size of both states is about 2 MByte, 
which fits in most modern processors’ cache. Improvements ranging from 50%-200% 
have been observed for this example on 8 core machines, compared with using an 
auto_partitioner instead.  

The affinity_partitioner must live between loop iterations. The example 
accomplishes this by declaring it outside the loop that executes all iterations. An 
alternative would be to declare the affinity partitioner at the file scope, which 
works as long as DoAllTimeSteps itself is not invoked concurrently. The same 
instance of affinity_partitioner should not be passed to two parallel algorithm 
templates that are invoked concurrently. Use separate instances instead. 

3.3.3.1 affinity_partitioner() 

Construct an affinity_partitioner. 

3.3.3.2 ~affinity_partitioner() 

Destroy this affinity_partitioner. 

3.4 parallel_for<Range,Body> Template Function 
Summary 
Template function that performs parallel iteration over a range of values. 

Syntax 
template<typename Range, typename Body>  
void parallel_for( const Range& range, const Body& body ); 
 
template<typename Range, typename Body> 
void parallel_for( const Range& range, const Body& body,  
                   const simple_partitioner& ); 
 
template<typename Range, typename Body> 
void parallel_for( const Range& range, const Body& body,  
                   const auto_partitioner& ); 
 
template<typename Range, typename Body> 
void parallel_for( const Range& range, const Body& body, 
                   affinity_partitioner& ); 



 
Algorithms 

 

Reference Manual    27 27 

Header 
#include "tbb/parallel_for.h" 

Description 
A parallel_for(range,body,partitioner) represents parallel execution of body 
over each value in range. The optional partitioner specifies a partitioning strategy. 
Type Range must model the Range concept (465H410H 3.2). The body must model the 

requirements in 466H411HTable 10.  

Table 10: Requirements for parallel_for Body 

Pseudo-Signature Semantics 

Body::Body( const Body& ) Copy constructor. 

Body::~Body() Destructor. 

void Body::operator()( Range& range ) const Apply body to range. 

A parallel_for recursively splits the range into subranges to the point such that 
is_divisible() is false for each subrange, and makes copies of the body for each of 
these subranges. For each such body/subrange pair, it invokes Body::operator(). 

The invocations are interleaved with the recursive splitting, in order to minimize space 
overhead and efficiently use cache.  

Some of the copies of the range and body may be destroyed after parallel_for 

returns. This late destruction is not an issue in typical usage, but is something to be 
aware of when looking at execution traces or writing range or body objects with 
complex side effects. 

When worker threads are available (412H 8.2), parallel_for executes iterations is non-

deterministic order. Do not rely upon any particular execution order for correctness. 
However, for efficiency, do expect parallel_for to tend towards operating on 
consecutive runs of values.  

When no worker threads are available, parallel_for executes iterations from left to 
right in the following sense. Imagine drawing a binary tree that represents the 
recursive splitting. Each non-leaf node represents splitting a subrange r by invoking 
the splitting constructor Range(r,split()). The left child represents the updated 
value of r. The right child represents the newly constructed object. Each leaf  in the 
tree represents an indivisible subrange. The method Body::operator() is invoked on 

each leaf subrange, from left to right. 

Complexity 
If the range and body take O(1) space, and the range splits into nearly equal pieces, 
then the space complexity is O(P log(N)), where N is the size of the range and P is the 
number of threads. 



 
Intel(R) Threading Building Blocks 

 

28   315415-001US 

Example 
This example defines a routine ParallelAverage that sets output[i] to the average 
of input[i-1], input[i], and input[i+1], for 1≤i<n. 

#include "tbb/parallel_for.h" 
#include "tbb/blocked_range.h" 
 
using namespace tbb; 
 
struct Average { 
    const float* input; 
    float* output; 
    void operator()( const blocked_range<int>& range ) const { 
        for( int i=range.begin(); i!=range.end(); ++i ) 
            output[i] = (input[i-
1]+input[i]+input[i+1])*(1/3.0f); 
    } 
}; 
 
// Note: Reads input[0..n] and writes output[1..n-1].  
void ParallelAverage( float* output, const float* input, size_t n 
) { 
    Average avg; 
    avg.input = input; 
    avg.output = output; 
    parallel_for( blocked_range<int>( 1, n, 1000 ), avg ); 
} 

Example 
This example is more complex and requires familiarity with STL. It shows the power of 
parallel_for beyond flat iteration spaces. The code performs a parallel merge of two 

sorted sequences. It works for any sequence with a random-access iterator. The 
algorithm (Akl 1987) works recursively as follows: 

1. If the sequences are too short for effective use of parallelism, do a sequential 
merge. Otherwise perform steps 2-6. 

2. Swap the sequences if necessary, so that the first sequence [begin1,end1) is at 
least as long as the second sequence [begin2,end2). 

3. Set m1 to the middle position in [begin1,end1). Call the item at that location key.  

4. Set m2 to where key would fall in [begin2,end2). 

5. Merge [begin1,m1) and [begin2,m2) to create the first part of the merged 
sequence. 

6. Merge [m1,end1) and [m2,end2) to create the second part of the merged 
sequence. 

The Intel® Threading Building Blocks implementation of this algorithm uses the range 
object to perform most of the steps. Predicate is_divisible performs the test in step 



 
Algorithms 

 

Reference Manual    29 29 

1, and step 2. The splitting constructor does steps 3-6. The body object does the 
sequential merges. 

#include "tbb/parallel_for.h" 
#include <algorithm> 
 
using namespace tbb; 
 
template<typename Iterator> 
struct ParallelMergeRange { 
    static size_t grainsize; 
    Iterator begin1, end1; // [begin1,end1) is 1st sequence to be 
merged 
    Iterator begin2, end2; // [begin2,end2) is 2nd sequence to be 
merged 
    Iterator out;               // where to put merged sequence     
    bool empty()   const {return (end1-begin1)+(end2-begin2)==0;} 
    bool is_divisible() const { 
        return std::min( end1-begin1, end2-begin2 ) > grainsize; 
    } 
    ParallelMergeRange( ParallelMergeRange& r, split ) { 
        if( r.end1-r.begin1 < r.end2-r.begin2 ) { 
            std::swap(r.begin1,r.begin2); 
            std::swap(r.end1,r.end2); 
        } 
        Iterator m1 = r.begin1 + (r.end1-r.begin1)/2; 
        Iterator m2 = std::lower_bound( r.begin2, r.end2, *m1 ); 
        begin1 = m1; 
        begin2 = m2; 
        end1 = r.end1; 
        end2 = r.end2; 
        out = r.out + (m1-r.begin1) + (m2-r.begin2); 
        r.end1 = m1; 
        r.end2 = m2; 
    } 
    ParallelMergeRange( Iterator begin1_, Iterator end1_,  
                        Iterator begin2_, Iterator end2_,  
                        Iterator out_ ) : 
        begin1(begin1_), end1(end1_),  
        begin2(begin2_), end2(end2_), out(out_) 
    {} 
}; 
 
template<typename Iterator> 
size_t ParallelMergeRange<Iterator>::grainsize = 1000; 
 



 
Intel(R) Threading Building Blocks 

 

30   315415-001US 

template<typename Iterator> 
struct ParallelMergeBody { 
    void operator()( ParallelMergeRange<Iterator>& r ) const { 
        std::merge( r.begin1, r.end1, r.begin2, r.end2, r.out ); 
    } 
}; 
 
template<typename Iterator> 
void ParallelMerge( Iterator begin1, Iterator end1, Iterator 
begin2, Iterator end2, Iterator out ) { 
    parallel_for(      
        
ParallelMergeRange<Iterator>(begin1,end1,begin2,end2,out), 
        ParallelMergeBody<Iterator>()  
    ); 
} 

Because the algorithm moves many locations, it tends to be bandwidth limited. 
Speedup varies, depending upon the system. 

3.5 parallel_reduce<Range,Body> Template 
Function 
Summary 
Computes reduction over a range. 

Syntax 
template<typename Range, typename Body>  
void parallel_reduce( const Range& range, const Body& body ); 
 
template<typename Range, typename Body> 
void parallel_reduce( const Range& range, const Body& body,  
                      const simple_partitioner& ); 
 
template<typename Range, typename Body> 
void parallel_reduce( const Range& range, const Body& body,  
                      const auto_partitioner& ); 
 
template<typename Range, typename Body> 
void parallel_reduce( const Range& range, const Body& body,  
                      affinity_partitioner& ); 



 
Algorithms 

 

Reference Manual    31 31 

Header 
#include "tbb/parallel_reduce.h" 

Description 
A parallel_reduce(range,body) performs parallel reduction of body over each value 
in range. Type Range must model the Range concept (468H413H 3.2). The body must model the 

requirements in 469H414HTable 11.  

Table 11: Requirements for parallel_reduce Body 

Pseudo-Signature Semantics 

Body::Body( Body&, split ); Splitting constructor (470H415H 3.1). Must be 
able to run concurrently with 
operator() and method join. 

Body::~Body() Destructor. 

void Body::operator()( Range& range ); Accumulate result for subrange. 

void Body::join( Body& rhs );  Join results. The result in rhs 
should be merged into the result of 
this.  

A parallel_reduce recursively splits the range into subranges to the point such that 
is_divisible() is false for each subrange. A parallel_reduce uses the splitting 
constructor to make one or more copies of the body for each thread. It may copy a 
body while the body’s operator() or method join runs concurrently. You are 

responsible for ensuring the safety of such concurrency. In typical usage, the safety 
requires no extra effort. 

When worker threads are available (471H416H 8.2.1), parallel_reduce invokes the splitting 
constructor for the body. For each such split of the body, it invokes method join in 
order to merge the results from the bodies. Define join to update this to represent 

the accumulated result for this and rhs. The reduction operation should be associative, 
but does not have to be commutative. For a noncommutative operation op, 
“left.join(right)” should update left to be the result of left op right. 

A body is split only if the range is split, but the converse is not necessarily so. 472H417HFigure 1 
diagrams a sample execution of parallel_reduce. The root represents the original 

body b0 being applied to the half-open interval [0,20). The range is recursively split at 
each level into two subranges. The grain size for the example is 5, which yields four 
leaf ranges. The slash marks (/) denote where copies (b1 and b2) of the body were 
created by the body splitting constructor. Bodies b0 and b1 each evaluate one leaf. 
Body b2 evaluates leaf [10,15) and [15,20), in that order. On the way back up the 
tree, parallel_reduce invokes b0.join(b1) and b0.join(b2) to merge the results of the 

leaves.  



 
Intel(R) Threading Building Blocks 

 

32   315415-001US 

b0 [0,20) 

b0 [0,10) b2 [10,20) 

b0 [0,5) b1 [5,10) b2 [10,15) b2 [15,20) 
 

Figure 1: Example Execution of parallel_reduce Over blocked_range<int>(0,20,5) 

473H418HFigure 1 shows only one possible execution. Other valid executions include splitting b2 
into b2 and b3, or doing no splitting at all. With no splitting, b0 evaluates each leaf in 
left to right order, with no calls to join. A given body always evaluates one or more 
consecutive subranges in left to right order. For example, in Figure 1, body b2 is 
guaranteed to evaluate [10,15) before [15,20). You may rely on the consecutive left 
to right property for a given instance of a body, but must not rely on a particular 
choice of body splitting. parallel_reduce makes the choice of body splitting 

nondeterministically. 

When no worker threads are available, parallel_reduce executes sequentially from 
left to right in the same sense as for parallel_for (474H419H 3.4). Sequential execution never 
invokes the splitting constructor or method join. 

Complexity 
If the range and body take O(1) space, and the range splits into nearly equal pieces, 
then the space complexity is O(P log(N)), where N is the size of the range and P is the 
number of threads. 

Example 
The following code sums the values in an array. 
#include "tbb/parallel_reduce.h" 
#include "tbb/blocked_range.h" 
 
using namespace tbb; 
 
struct Sum { 
    float value; 
    Sum() : value(0) {} 
    Sum( Sum& s, split ) {value = 0;} 
    void operator()( const blocked_range<float*>& range ) { 
        float temp = value; 
        for( float* a=range.begin(); a!=range.end(); ++a ) { 
            temp += *a; 
        } 
        value = temp; 



 
Algorithms 

 

Reference Manual    33 33 

    } 
    void join( Sum& rhs ) {value += rhs.value;} 
}; 
 
float ParallelSum( float array[], size_t n ) { 
    Sum total; 
    parallel_reduce( blocked_range<float*>( array, array+n, 1000),  
                     total ); 
    return total.value; 
} 

The example generalizes to reduction for any associative operation op as follows: 

• Replace occurrences of 0 with the identity element for op 

• Replace occurrences of += with op= or its logical equivalent. 

• Change the name Sum to something more appropriate for op. 

The operation may be noncommutative. For example, op could be matrix 
multiplication. 

The block size of 1000 can be omitted if you use an auto_partitioner or 
affinity_paritioner. With an auto_partitioner, the invocation of 
parallel_reduce can be changed as shown below: 

    parallel_reduce( blocked_range<float*>( array, array+n, 1000),  
                     total, auto_partitioner() ); 

3.6 parallel_scan<Range,Body> Template 
Function 
Summary 
Template function that computes parallel prefix. 

Syntax 
template<typename Range, typename Body>  
void parallel_scan( const Range& range, Body& body ); 
 
template<typename Range, typename Body>  
void parallel_scan( const Range& range, Body& body, const 
simple_partitioner& ); 
 
template<typename Range, typename Body>  
void parallel_scan( const Range& range, Body& body, const 
auto_partitioner& ); 



 
Intel(R) Threading Building Blocks 

 

34   315415-001US 

Header 
#include "tbb/parallel_scan.h" 

Description 
A parallel_scan(range,body) computes a parallel prefix, also known as parallel 
scan. This computation is an advanced concept in parallel computing that is 
sometimes useful in scenarios that appear to have inherently serial dependences. 

A mathematical definition of the parallel prefix is as follows. Let ⊕ be an associative 
operation ⊕ with left-identity element id⊕. The parallel prefix of ⊕ over a sequence x0, 
x1, ...xn-1 is a sequence y0, y1, y2, ...yn-1 where: 

• y0 = id⊕ ⊕ x0 

• yi = yi−1 ⊕ xi 

For example, if ⊕ is addition, the parallel prefix corresponds a running sum. A serial 
implementation of parallel prefix is: 

T temp = id⊕; 
for( int i=1; i<=n; ++i ) { 

    temp = temp ⊕ x[i]; 
    y[i] = temp; 
} 

Parallel prefix performs this in parallel by reassociating the application of ⊕ and using 
two passes. It may invoke ⊕ up to twice as many times as the serial prefix algorithm. 
Given the right grain size and sufficient hardware threads, it can out perform the 
serial prefix because even though it does more work, it can distribute the work across 
more than one hardware thread. 

TIP: Because parallel_scan needs two passes, systems with only two hardware threads 
tend to exhibit small speedup. parallel_scan is best considered a glimpse of a 

technique for future systems with more than two cores. It is nonetheless of interest 
because it shows how a problem that appears inherently sequential can be 
parallelized. 

The template parallel_scan<Range,Body> implements parallel prefix generically. It 
requires the signatures described in 475H420HTable 12.  

Table 12: parallel_scan Requirements 

Pseudo-Signature Semantics 

void Body::operator()( const Range& r,  

                       pre_scan_tag ) 

Accumulate summary for range r. 

void Body::operator()( const Range& r,   

                       final_scan_tag ) 

Compute scan result and 
summary for range r. 



 
Algorithms 

 

Reference Manual    35 35 

Pseudo-Signature Semantics 

Body::Body( Body& b, split ) Split b so that this and b can 
accumulate summaries separately. 
Body *this is object a in the table 
row below. 

void Body::reverse_join( Body& a ) Merge summary accumulated by a 
into summary accumulated by 
this, where this was created 
earlier from a by a's splitting 
constructor. Body *this is object 
b in the table row above. 

void Body::assign( Body& b ) Assign summary of b to this. 

A summary contains enough information such that for two consecutive subranges r 
and s: 

• If r has no preceding subrange, the scan result for s can be computed from knowing 
s and the summary for r.  

• A summary of r concatenated with s can be computed from the summaries of r and 
s.  

For example, if computing a running sum of an array, the summary for a range r is 
the sum of the array elements corresponding to r.  

421HFigure 2 shows one way that parallel_scan might compute the running sum of an 

array containing the integers 1-16. Time flows downwards in the diagram. Each color 
denotes a separate Body object. Summaries are shown in brackets.  

1. The first two steps split the original blue body into the pink and yellow bodies. 
Each body operates on a quarter of the input array in parallel. The last quarter is 
processed later in step 5. 

2. The blue body computes the final scan and summary for 1-4. The pink and yellow 
bodies compute their summaries by prescanning 5-8 and 9-12 respectively. 

3. The pink body computes its summary for 1-8 by performing a reverse_join with 
the blue body.  

4. The yellow body computes its summary for 1-12 by performing a reverse_join 
with the pink body. 

5. The blue, pink, and yellow bodies compute final scans and summaries for portions 
of the array.  

6. The yellow summary is assigned to the blue body. The pink and yellow bodies are 
destroyed. 

Note that two quarters of the array were not prescanned. The parallel_scan 
template makes an effort to avoid prescanning where possible, to improve 
performance when there are only a few or no extra worker threads. If no other 
workers are available, parallel_scan processes the subranges without any pre_scans, 
by processing the subranges from left to right using final scans. That’s why final scans 
must compute a summary as well as the final scan result. The summary might be 
needed to process the next subrange if no worker thread has prescanned it yet. 



 
Intel(R) Threading Building Blocks 

 

36   315415-001US 

 

1   2   3   4 5   6   7   8 9  10  11  12 13  14  15  16 

pre_scan 
[26] 

pre_scan 
[42] 

final_scan 
0 1 3 6 [10] 

final_scan 
10 15 21 28 [36]

reverse_join 
[36] 

reverse_join 
[78] 

final_scan 
36 45 55 66 [78]

final_scan 
78 91 105 120 [136]

split 
[0] 

split 
[0] 

original body 
[0] 

original body 
[0] 

assign 
[136] 

input array 

 

Figure 2: Example Execution of parallel_scan 

The following code demonstrates how the signatures could be implemented to use 
parallel_scan to compute the same result as the earlier sequential example 
involving ⊕.  

using namespace tbb; 
 
class Body { 
    T sum; 
    T* const y; 



 
Algorithms 

 

Reference Manual    37 37 

    const T* const x; 
public: 

    Body( T y_[], const T x_[] ) : sum(id⊕), x(x_), y(y_) {} 
    T get_sum() const {return sum;} 
 
    template<typename Tag> 
    void operator()( const blocked_range<int>& r, Tag ) { 
        T temp = sum; 
        for( int i=r.begin(); i<r.end(); ++i ) { 

            temp = temp ⊕ x[i]; 
            if( Tag::is_final_scan() ) 
                y[i] = temp; 
        } 
        sum = temp; 
    } 

    Body( Body& b, split ) : x(b.x), y(b.y), sum(id⊕) {} 

    void reverse_join( Body& a ) { sum = a.sum ⊕ sum;} 
    void assign( Body& b ) {sum = b.sum;} 
}; 
 
float DoParallelScan( T y[], const T x[], int n) { 
    Body body(y,x); 
    parallel_scan( blocked_range<int>(0,n,1000), body ); 
    return body.get_sum(); 
} 

The definition of operator() demonstrates typical patterns when using 
parallel_scan. 

• A single template defines both versions. Doing so is not required, but usually saves 
coding effort, because the two versions are usually similar. The library defines static 
method is_final_scan() to enable differentiation between the versions.  

• The prescan variant computes the ⊕ reduction, but does not update y. The prescan 
is used by parallel_scan to generate look-ahead partial reductions. 

• The final scan variant computes the ⊕ reduction and updates y. 

The operation reverse_join is similar to the operation join used by 
parallel_reduce, except that the arguments are reversed. That is, this is the right 
argument of ⊕. Template function parallel_scan decides if and when to generate 
parallel work. It is thus crucial that ⊕ is associative and that the methods of Body 

faithfully represent it. Operations such as floating-point addition that are somewhat 
associative can be used, with the understanding that the results may be rounded 
differently depending upon the association used by parallel_scan. The reassociation 

may differ between runs even on the same machine. However, if there are no worker 
threads available, execution associates identically to the serial form shown at the 
beginning of this section. 



 
Intel(R) Threading Building Blocks 

 

38   315415-001US 

The block size of 1000 can be omitted if you use an auto_partitioner. With an 
auto_partitioner, the invocation of parallel_scan can be changed as shown 

below: 

    parallel_scan(blocked_range<int>(0,n,,1000), total,  
                                     auto_partitioner() ); 

3.6.1 pre_scan_tag and final_scan_tag Classes 

Summary 
Types that distinguish the phases of parallel_scan.. 

Syntax 
struct pre_scan_tag;  
struct final_scan_tag; 

Header 
#include "tbb/parallel_scan.h" 

Description 
Types pre_scan_tag and final_scan_tag are dummy types used in conjunction with 
parallel_scan. See the example in Section 422H 3.6 for how they are used in the 
signature of operator().  

Members 
namespace tbb { 
 
    struct pre_scan_tag { 
        static bool is_final_scan(); 
    }; 
 
    struct final_scan_tag { 
        static bool is_final_scan(); 
    }; 
 
} 

3.6.1.1 bool is_final_scan() 

Returns 
True for a final_scan_tag, otherwise false. 



 
Algorithms 

 

Reference Manual    39 39 

3.7 parallel_do<InputIterator,Body> Template 
Function 
Summary 
Template function that processes work items in parallel.  

Syntax 
template<typename InputIterator, typename Body>  
void parallel_do( InputIterator first, InputIterator last, Body 
body ); 

Header 
#include "tbb/parallel_do.h" 

Description 
A parallel_do(first,last,body) applies a function object body over the half-open 
interval [first,last). Items may be processed in parallel. Additional work items can 
be added by body if it has a second argument of type parallel_do_feeder (423H 3.7.1). 
The function terminates when body(x) returns for all items x that were in the input 
sequence or added to it by method parallel_do_feeder::add (424H 3.7.1.1). 

The requirements for input iterators are specified in Section 24.1 of the ISO C++ 
standard. 425HTable 13 shows the requirements on type Body.  

Table 13: parallel_do Requirements for Body B and its Argument Type T 

Pseudo-Signature Semantics 

B::operator()(  

    cv-qualifiers T& item, 

    parallel_do_feeder<T>& feeder 

) const 

OR 

B::operator()(cv-qualifiers T& item ) 
const 

Process item. Template 
parallel_do may concurrently 
invoke operator() for the same 
this but different item. 

The signature with feeder permits 
additional work items to be 
added. 

T( const T& ) Copy a work item. 

~T::T() Destroy a work item. 

For example, a unary function object, as defined in Section 20.3 of the C++ standard, 
models the requirements for B.  

CAUTION: Defining both the one-argument and two-argument forms of operator() is not 

permitted. 



 
Intel(R) Threading Building Blocks 

 

40   315415-001US 

TIP: The parallelism in parallel_do is not scalable if all of the items come from an input 
stream that does not have random access. To achieve scaling, do one of the following: 

• Use random access iterators to specify the input stream.  

• Design your algorithm such that the body often adds more than one piece of work. 

• Use parallel_for instead.  

To achieve speedup, the grainsize of B::operator() needs to be on the order of at 
least ~10,000 instructions. Otherwise, the internal overheads of parallel_do swamp 
the useful work. 

Example 
The following code sketches a body with the two-argument form of operator(). 

struct MyBody { 
    void operator()(item_t item,  
                    parallel_do_feeder<item_t>& feeder ) { 
        for each new piece of work implied by item do { 
            item_t new_item = initializer; 
            feeder.add(new_item); 
        } 
    }  
}; 

3.7.1 parallel_do_feeder<Item> class 

Summary 
 Inlet into which additional work items for a parallel_do can be fed. 

Syntax 
template<typename Item>  
class parallel_do_feeder; 

Header 
#include "tbb/parallel_do.h" 

Description 
A parallel_do_feeder enables the body of a parallel_do to add more work items. 

Only class parallel_do ( 426H 3.7) can create or destroy a parallel_do_feeder. The only 
operation other code can perform on a parallel_do_feeder is to invoke method 
parallel_do_feeder::add.  

Members 
namespace tbb { 



 
Algorithms 

 

Reference Manual    41 41 

    template<typename Item> 
    struct parallel_do_feeder { 
        void add( const Item& item ); 
    }; 
} 

3.7.1.1 void add( const Item& item )  

Requirements 
Must be called from a call to body.operator() created by parallel_do. Otherwise, 
the termination semantics of method operator() are undefined. 

Effects 
Adds item to collection of work items to be processed.  

3.8 pipeline Class 
Summary 
Class that performs pipelined execution. 

Syntax 
class pipeline; 

Header 
#include "tbb/pipeline.h" 

Description 
A pipeline represents pipelined application of a series of filters to a stream of items. 
Each filter operates in a particular mode: parallel, serial in order, or serial out of order 
(1HMacDonald 2004). See class filter (427H 3.8.6) for details.  

A pipeline contains one or more filters, denoted here as fi , where i denotes the 
position of the filter in the pipeline. The pipeline starts with filter f0, followed by f1, f2, 
etc. The following steps describe how to use class pipeline. 

1. Derive classes fi from filter. The constructor for fi specifies its mode as a 
parameter to the constructor for base class filter (480H428H 3.8.6.1).  

2. Override virtual method filter::operator() to perform the filter’s action on the 
item, and return a pointer to the item to be processed by the next filter. The first 
filter f0 generates the stream. It should return NULL if there are no more items in 
the stream. The return value for the last filter is ignored.  

3. Create an instance of class pipeline. 



 
Intel(R) Threading Building Blocks 

 

42   315415-001US 

4. Create instances of the filters fi  and add them to the pipeline, in order from first 
to last. An instance of a filter can be added at most once to a pipeline. A filter 
should never be a member of more than one pipeline at a time. 

5. Call method pipeline::run. The parameter max_number_of_live_tokens puts an 
upper bound on the number of stages that will be run concurrently. Higher values 
may increase concurrency at the expense of more memory consumption from 
having more items in flight. See the Tutorial, in the section on class pipeline, for 
more about effective use of max_number_of_live_tokens. 

Given sufficient processors and tokens, the throughput of the pipeline is limited to the 
throughput of the slowest serial filter. 

Members 
namespace tbb { 
    class pipeline { 
    public: 
        pipeline(); 
        ~pipeline(); 1F

2 
        void add_filter( filter& f ); 
        void run( size_t max_number_of_live_tokens ); 
        void clear(); 
    }; 
}  

3.8.1 pipeline()  

Effects 
Constructs pipeline with no filters. 

3.8.2 ~pipeline() 

Effects 
Removes all filters from the pipeline and destroys the pipeline 

                                               

2 Though the current implementation declares the destructor virtual, do not 
rely on this detail. The virtualness is deprecated and may disappear in future 
versions of TBB.  



 
Algorithms 

 

Reference Manual    43 43 

3.8.3 void add_filter( filter& f ) 

Effects 
Appends filter f to sequence of filters in the pipeline. The filter f must not already be in 
a pipeline. 

3.8.4 void run( size_t max_number_of_live_tokens ) 

Effects 
Runs the pipeline until the first filter returns NULL and each subsequent filter has 
processed all items from its predecessor. The number of items processed in parallel 
depends upon the structure of the pipeline and number of available threads. At most 
max_number_of_live_tokens are in flight at any given time. 

A pipeline can be run multiple times. It is safe to add stages between runs. Concurrent  
invocations of run on the same instance of pipeline are prohibited. 

3.8.5 void clear() 

Effects 
Removes all filters from the pipeline. 

3.8.6 filter Class 

Summary 
Abstract base class that represents a filter in a pipeline. 

Syntax 
class filter; 

Header 
#include "tbb/pipeline.h" 

Description 
A filter represents a filter in a pipeline (429H 3.8). There are three modes of filters: 

o A parallel filter can process multiple items in parallel and in no particular 

order.  

o A serial_out_of_order filter processes items one at a time, and in no 

particular order. 



 
Intel(R) Threading Building Blocks 

 

44   315415-001US 

o A serial_in_order filter processes items one at a time. All serial_in_order 

filters in a pipeline process items in the same order.  

The mode of filter is specified by an argument to the constructor. Parallel filters are 
preferred when practical because they permit parallel speedup. If a filter must be 
serial, the out of order variant is preferred when practical because it puts less 
contraints on processing order.  

Class filter should only be used in conjunction with class pipeline ( 430H 3.8). 

CAUTION: TBB 2.0 and prior treated parallel input stages as serial. TBB 2.1 can execute a 
parallel input stage in parallel, so if you specify such a stage, ensure that its 
operator() is thread safe. 

Members 
namespace tbb { 
    class filter { 
    public: 
        enum mode { 
            parallel = implementation-defined, 
            serial_in_order = implementation-defined, 
            serial_out_of_order = implementation-defined 
        }; 
        bool is_serial() const; 
        bool is_ordered() const; 
        virtual void* operator()( void* item ) = 0; 
        virtual void finalize( void* item ) {} 
        virtual ~filter(); 
    protected: 
        filter( mode ); 
    }; 
}  

Example 
See the example filters MyInputFilter, MyTransformFilter, and MyOutputFilter in 
the tutorial (doc/Tutorial.pdf). 

3.8.6.1 filter( mode filter_mode ) 

Effects 
Constructs a filter of the specified mode.  

NOTE: Earlier versions of TBB had a similar constructor with a bool argument is_serial. 
That constructor exists but is deprecated (Section 431H A.2.1). 



 
Algorithms 

 

Reference Manual    45 45 

3.8.6.2 ~filter() 

Effects 
Destroys the filter. If the filter is in a pipeline, it is automatically removed from that 
pipeline.  

3.8.6.3 bool is_serial() const 

Returns 
False if filter mode is parallel; true otherwise. 

3.8.6.4 bool is_ordered() const 

Returns 
True if filter mode is serial_in_order, false otherwise. 

3.8.6.5 virtual void* operator()( void * item ) 

Description 
The derived filter should override this method to process an item and return a pointer 
to an item to be processed by the next filter. The item parameter is NULL for the 
first filter in the pipeline. 

Returns 
The first filter in a pipeline should return NULL if there are no more items to process. 
The result of the last filter in a pipeline is ignored. 

3.8.6.6 virtual void finalize( void * item ) 

Description 
A pipeline can be cancelled by user demand or because of an exception. When a 
pipeline is cancelled, there may be items returned by a filter’s operator() that have 
not yet been processed by the next filter. When a pipeline is cancelled, the next filter 
invokes finalize() on each item instead of operator(). In contrast to operator(), 
method finalize() does not return an item for further processing. A derived filter 
should override finalize() to perform proper cleanup for an item. A pipeline will not 

invoke any further methods on the item. 

Effects 

The default definition has no effect. 



 
Intel(R) Threading Building Blocks 

 

46   315415-001US 

3.9 parallel_sort<RandomAccessIterator, 
Compare> Template Function 
Summary 
Sort a sequence. 

Syntax 
template<typename RandomAccessIterator>  
void parallel_sort(RandomAccessIterator begin, 
RandomAccessIterator end); 
 
template<typename RandomAccessIterator, typename Compare> 
void parallel_sort(RandomAccessIterator begin, 
RandomAccessIterator end,  
                   const Compare& comp ); 

Header 
#include "tbb/parallel_sort.h" 

Description 
Performs an unstable sort of sequence [begin1, end1). An unstable sort might not 
preserve the relative ordering of elements with equal keys. The sort is deterministic; 
sorting the same sequence will produce the same result each time. The requirements 
on the iterator and sequence are the same as for std::sort. Specifically, 
RandomAccessIterator must be a random access iterator, and its value type T must 
model the requirements in 483H432HTable 14.  

Table 14: Requirements on Value Type T of RandomAccessIterator for parallel_sort 

Pseudo-Signature Semantics 

void swap( T& x, T& y ) Swap x and y. 

bool Compare::operator()( const T& x, const T& y 
) 

True if x comes before 
y; false otherwise. 

A call parallel_sort(i,j,comp) sorts the sequence [i,j) using the second 
argument  comp to determine relative orderings. If comp(x,y) returns true then x 
appears before y in the sorted sequence.  

A call parallel_sort(i,j) is equivalent to parallel_sort(i,j,std::less<T>). 

Complexity 
parallel_sort is comparison sort with an average time complexity of O(N log (N)), 

where N is the number of elements in the sequence. When worker threads are 



 
Algorithms 

 

Reference Manual    47 47 

available (484H433H 8.2.1), parallel_sort creates subtasks that may be executed 

concurrently, leading to improved execution times.  

Example 
The following example shows two sorts. The sort of array a uses the default 
comparison, which sorts in ascending order. The sort of array b sorts in descending 
order by using std::greater<float> for comparison. 
#include "tbb/parallel_sort.h" 
#include <math.h> 
 
using namespace tbb; 
 
const int N = 100000; 
float a[N]; 
float b[N]; 
 
void SortExample() { 
    for( int i = 0; i < N; i++ ) { 
       a[i] = sin((double)i); 
       b[i] = cos((double)i); 
    } 
    parallel_sort(a, a + N); 
    parallel_sort(b, b + N, std::greater<float>()); 
} 



 
Intel(R) Threading Building Blocks 

 

48   315415-001US 

4 Containers 
The container classes permit multiple threads to simultaneously invoke certain 
methods on the same container.  

Like STL, Intel® Threading Building Blocks containers are templated with respect to 
an allocator argument. Each container uses its allocator to allocate memory for 

user-visible items. A container may use a different allocator for strictly internal 
structures. 

4.1 Container Range Concept 
Summary 
View set of items in a container as a recursively divisible range. 

Requirements 

A Container Range is a Range (434H 3.2) with the further requirements listed in 435HTable 15.  

Table 15: Requirements on a Container Range R (In Addition to 436HTable 7) 

Pseudo-Signature Semantics 

R::value_type Item type 

R::reference Item reference type 

R::const_reference Item const reference type 

R::difference_type Type for difference of two 
iterators 

R::iterator Iterator type for range 

R::iterator R::begin()  First item in range 

R::iterator R::end()  One past last item in range 

R::size_type R::grainsize() const Grain size 

Model Types 
Classes concurrent_hash_map (437H 4.2.4) and concurrent_vector (438H 4.4.5) both have 
member types range_type and const_range_type that model a Container Range. 

Use the range types in conjunction with parallel_for (497H439H 3.4), parallel_reduce (498H440H 3.5), 
and parallel_scan (499H441H .3 6442H 3.6) to iterate over items in a container.  



 
Containers 

 

Reference Manual    49 49 

4.2 concurrent_hash_map<Key,T,HashCompare,All
ocator> Template Class 
Summary 
Template class for associative container with concurrent access. 

Syntax 
template<typename Key, typename T, typename HashCompare,  
         typename A=tbb_allocator<std::pair<Key, T> > >  
class concurrent_hash_map; 

Header 
#include "tbb/concurrent_hash_map.h" 

Description 
A concurrent_hash_map maps keys to values in a way that permits multiple threads 

to concurrently access values. The keys are unordered. There is at most one element 
in a concurrent_hash_map for each key. The key may be other elements in flight but 
not in the map as described in Section 443H 4.2.3. The interface resembles typical STL 
associative containers, but with some differences critical to supporting concurrent 
access. It meets the Container Requirements of the ISO C++ standard. 

Types Key and T must model the CopyConstructible concept (485H444H 2.2.3). 

Type HashCompare specifies how keys are hashed and compared for equality. It must 

model the HashCompare concept in 445HTable 16. 

Table 16: HashCompare Concept 

Pseudo-Signature Semantics 

HashCompare::HashCompare( const HashCompare& ) Copy constructor. 

HashCompare::~HashCompare () Destructor. 

bool HashCompare::equal( const Key& j, const Key& k 
) const 

True if keys are 
equal. 

size_t HashCompare::hash( const Key& k ) const 2F

3 Hashcode for key.  

CAUTION: As for most hash tables, if two keys are equal, they must hash to the same hash code. 
That is for a given HashCompare h and any two keys j and k, the following assertion 
must hold: “!h.equal(j,k) || h.hash(j)==h.hash(k)”. The importance of this 

                                               

3 Prior versions of this document accidentally omitted the trailing const from 
hash. TBB 2.1 enforces the const requirement. 



 
Intel(R) Threading Building Blocks 

 

50   315415-001US 

property is the reason that concurrent_hash_map makes key equality and hashing 

function travel together in a single object instead of being separate objects. 

CAUTION: Good performance depends on having good pseudo-randomness in the low-order bits 
of the hash code, particularly six lowermost bits.  

Example 

When keys are pointers, simply casting the pointer to a hash code may cause poor 
performance because the low-order bits of the hash code will be always zero if the 
pointer points to a type with alignment restrictions. A way to remove this bias is to 
divide the casted pointer by the size of the type, as shown by the underlined blue text 
below. 
size_t MyHashCompare::hash( Key* key ) const { 
    return reinterpret_cast<size_t>(key)/sizeof(Key);         
} 

Members 
namespace tbb { 
    template<typename Key, typename T, typename HashCompare,  
             typename Allocator=tbb_allocator<std::pair<Key,T> > 
> 
    class concurrent_hash_map { 
    public: 
        // types 
        typedef Key key_type; 
        typedef T mapped_type; 
        typedef std::pair<const Key,T> value_type; 
        typedef size_t size_type; 
        typedef ptrdiff_t difference_type; 
        typedef value_type* pointer; 
        typedef const value_type* const_pointer; 
        typedef value_type& reference; 
        typedef Allocator allocator_type; 
 
        // whole-table operations 
        concurrent_hash_map( const allocator_type& 
a=allocator_type() ); 
        concurrent_hash_map( const concurrent_hash_map&,  
                             const allocator_type& 
a=allocator_type() ); 
        template<typename InputIterator> 
            concurrent_hash_map( 
                InputIterator first, InputIterator last,  
                const allocator_type& a = allocator_type()) 
        ~concurrent_hash_map(); 



 
Containers 

 

Reference Manual    51 51 

        concurrent_hash_map operator=( const concurrent_hash_map& 
); 
        void clear(); 
        allocator_type get_allocator() const; 
 
        // concurrent access 
        class const_accessor; 
        class accessor; 
 
        // concurrent operations on a table 
        bool find( const_accessor& result, const Key& key ) 
const; 
        bool find( accessor& result, const Key& key ); 
        bool insert( const_accessor& result, const Key& key ); 
        bool insert( accessor& result, const Key& key ); 
        bool insert( const_accessor& result, const value_type& 
value ); 
        bool insertt( accessor& result, const value_type& value 
); 
        bool insert( const value_type& value ); 
        template<typename I> void insert( I first, I last ); 
        bool erase( const Key& key ); 
        bool erase( const_accessor& item_accessor ); 
        bool erase( accessor& item_accessor ); 
 
        // parallel iteration 
        typedef implementation defined range_type; 
        typedef implementation defined const_range_type; 
        range_type range( size_t grainsize=1 ); 
        const_range_type range( size_t grainsize=1 ) const; 
 
        // Capacity 
        size_type size() const; 
        bool empty() const; 
        size_type max_size() const; 
 
        // Iterators 
        typedef implementation defined iterator; 
        typedef implementation defined const_iterator; 
        iterator begin(); 
        iterator end(); 
        const_iterator begin() const; 
        const_iterator end() const; 
        std::pair<iterator, iterator> equal_range( const Key& key 
); 
        std::pair<const_iterator, const_iterator>  



 
Intel(R) Threading Building Blocks 

 

52   315415-001US 

            equal_range( const Key& key ) const; 
    }; 
 
    template<typename Key, typename T, typename HashCompare,  
             typename A1, typename A2> 
    bool operator==(const 
concurrent_hash_map<Key,T,HashCompare,A1> &a,  
                    const 
concurrent_hash_map<Key,T,HashCompare,A2> &b); 
 
    template<typename Key, typename T, typename HashCompare,  
             typename A1, typename A2> 
    bool operator!=(const 
concurrent_hash_map<Key,T,HashCompare,A1> &a,  
                    const 
concurrent_hash_map<Key,T,HashCompare,A2> &b); 
 
    template<typename Key, typename T, typename HashCompare, 
typename A> 
    void swap(concurrent_hash_map<Key,T,HashCompare,A>& a,     
              concurrent_hash_map<Key,T,HashCompare,A>& b) 
} 

Exception Safey 
The following functions must not throw exceptions: 

• The hash function  

• The destructors for types Key and T. 

The following hold true: 

• If an exception happens during an insert operation, the operation has no effect.  

• If an exception happens during an assignment operation, the container may be in a 
state where only some of the items were assigned, and methods size() and 
empty() may return invalid answers. 

4.2.1 Whole Table Operations 
These operations affect an entire table. Do not concurrently invoke them on the same 
table. 

4.2.1.1 concurrent_hash_map() 

Effects 
Constructs empty table. 



 
Containers 

 

Reference Manual    53 53 

4.2.1.2 concurrent_hash_map( const concurrent_hash_map& table, const 
allocator_type& a = allocator_type() ) 

Effects 
Copies a table. The table being copied may have const operations running on it 

concurrently. 

4.2.1.3 template<typename  InputIterator> concurrent_hash_map(InputIterator first, 
InputIterator last,  const allocator_type& a = allocator_type()) 

Effects 

Constructs table containing copies of elements in the iterator half-open interval 

[first,last). 

4.2.1.4 ~concurrent_hash_map() 

Effects 
Invokes clear(). This method is not safe to execute concurrently with other methods 
on the same concurrent_hash_map. 

4.2.1.5 concurrent_hash_map& operator= ( concurrent_hash_map& source ) 

Effects 
If source and destination (this) table are distinct, clears the destination table and 
copies all key-value pairs from the source table to the destination table. Otherwise, 
does nothing. 

Returns 
Reference to the destination table. 

4.2.1.6 void swap( concurrent_hash_map& table ) 
Effects 

Swaps contents and allocators of this and table. 

4.2.1.7 void clear() 

Effects 
Erases all key-value pairs from the table.  

If TBB_USE_PERFORMANCE_WARNINGS is nonzero, issues a performance warning if 
the randomness of the hashing is poor enough to significantly impact performance.  



 
Intel(R) Threading Building Blocks 

 

54   315415-001US 

4.2.1.8 allocator_type get_allocator() const 

Returns 
Copy of allocator used to construct table. 

4.2.2 Concurrent Access 
Member classes const_accessor and accessor are called accessors. Accessors allow 
multiple threads to concurrently access pairs in a shared concurrent_hash_map. An 
accessor acts as a smart pointer to a pair in a concurrent_hash_map. It holds an 
implicit lock on a pair until the instance is destroyed or method release is called on 
the accessor.  

Classes const_accessor and accessor differ in the kind of access that they permit. 

Table 17: Differences Between const_accessor and accessor 

Class value_type Implied Lock on pair 

const_accessor const std::pair<const Key,T> Reader lock – permits 
shared access with other 
readers. 

accessor std::pair<const Key,T> Writer lock – permits 
exclusive access by a 
thread. Blocks access by 
other threads. 

Accessors cannot be assigned or copy-constructed, because allowing such would 
greatly complicate the locking semantics. 

4.2.2.1 const_accessor 

Summary 
Provides read-only access to a pair in a concurrent_hash_map. 

Syntax 
template<typename Key, typename T, typename HashCompare, typename 
A>  
class concurrent_hash_map<Key,T,HashCompare,A>::const_accessor; 

Header 
#include "tbb/concurrent_hash_map.h" 

Description 
A const_accessor permits read-only access to a key-value pair in a 
concurrent_hash_map.  



 
Containers 

 

Reference Manual    55 55 

Members 
namespace tbb { 
    template<typename Key, typename T, typename HashCompare, 
typename A> 
    class 
concurrent_hash_map<Key,T,HashCompare,A>::const_accessor { 
    public: 
        // types 
        typedef const std::pair<const Key,T> value_type; 
 
        // construction and destruction 
        const_accessor(); 
        ~const_accessor(); 
         
        // inspection 
        bool empty() const; 
        const value_type& operator*() const; 
        const value_type* operator->() const; 
 
        // early release 
        void release(); 
    };  
}  

4.2.2.1.1 bool empty() const 

Returns 
True if instance points to nothing; false if instance points to a key-value pair.  

4.2.2.1.2 void release()  

Effects 
If !empty(), releases the implied lock on the pair, and sets instance to point to 

nothing. Otherwise does nothing. 

4.2.2.1.3 const value_type& operator*() const 

Effects 
Raises assertion failure if empty() and TBB_USE_ASSERT (487H446H 2.6.1) is defined as 
nonzero. 

Returns 
Const reference to key-value pair. 



 
Intel(R) Threading Building Blocks 

 

56   315415-001US 

4.2.2.1.4 const value_type* operator->() const 

Returns 
&operator*() 

4.2.2.1.5 const_accessor() 

Effects 
Constructs const_accessor that points to nothing. 

4.2.2.1.6 ~const_accessor 

Effects 
If pointing to key-value pair, releases the implied lock on the pair. 

4.2.2.2 accessor 

Summary 
 Class that provides read and write access to a pair in a concurrent_hash_map. 

Syntax 
template<typename Key, typename T, typename HashCompare,  
         typename Allocator>  
class concurrent_hash_map<Key,T,HashCompare,A>::accessor; 

Header 
#include "tbb/concurrent_hash_map.h" 

Description 
An accessor permits read and write access to a key-value pair in a 
concurrent_hash_map. It is derived from a const_accessor, and thus can be 
implicitly cast to a const_accessor. 

Members 
namespace tbb { 
    template<typename Key, typename T, typename HashCompare, 
typename Allocator> 
    class 
concurrent_hash_map<Key,T,HashCompare,Allocator>::accessor:    
        
concurrent_hash_map<Key,T,HashCompare,Allocator>::const_accessor 
{ 
    public: 
        typedef std::pair<const Key,T> value_type; 



 
Containers 

 

Reference Manual    57 57 

        value_type& operator*() const; 
        value_type* operator->() const; 
    }; 
} 

4.2.2.2.1 value_type& operator*() const 

Effects 
Raises assertion failure if empty() and TBB_USE_ASSERT (488H447H 2.6.1) is defined as nonzero. 

Returns 
Reference to key-value pair. 

4.2.2.2.2 value_type* operator->() const 

Returns 
&operator*() 

4.2.3 Concurrent Operations  
The operations count, find, insert, and erase are the only operations that may be 
concurrently invoked on the same concurrent_hash_map. These operations search the 
table for a key-value pair that matches a given key. The find and insert methods 
each have two variants. One takes a const_accessor argument and provides read-only 
access to the desired key-value pair. The other takes an accessor argument and 
provides write access. 

TIP: If the nonconst variant succeeds in finding the key, the consequent write access 

blocks any other thread from accessing the key until the accessor object is destroyed. 
Where possible, use the const variant to improve concurrency. 

Each map operation in this section returns true if the operation succeeds, false 
otherwise. 

CAUTION: Though there can be at most one occurrence of a given key in the map, there may be 
other key-value pairs in flight with the same key. These arise from the semantics of 
the insert and erase methods. The insert methods can create and destroy a 

temporary key-value pair that is not inserted into a map. The erase methods remove 
a key-value pair from the map before destroying it, thus permitting another thread to 
construct a similar key before the old one is destroyed. 

TIP: To guarantee that only one instance of a resource exists simultaneously for a given 
key, use the following technique: 

• To construct the resource: Obtain an accessor to the key in the map before 
constructing the resource.  



 
Intel(R) Threading Building Blocks 

 

58   315415-001US 

• To destroy the resource: Obtain an accessor to the key, destroy the resource, and 
then erase the key using the accessor.   

Below is a sketch of how this can be done.  

extern tbb::concurrent_hash_map<Key,Resource,HashCompare> Map; 
 
void ConstructResource( Key key ) { 
    accessor acc; 
    if( Map.insert(acc,key) ) { 
        // Current thread inserted key and has exclusive access. 
        ...construct the resource here... 
    } 
    // Implicit destruction of acc releases lock 
} 
 
void DestroyResource( Key key ) { 
    accessor acc; 
    if( Map.find(acc,key) ) { 
        // Current thread found key and has exclusive access. 
        ...destroy the resource here... 
        // Erase key using accessor. 
        Map.erase(acc); 
    } 
} 

4.2.3.1 size_type count( const Key& key ) const 

Returns 
1 if map contains key; 0 otherwise. 

4.2.3.2 bool find( const_accessor& result, const Key& key ) const 

Effects 
Searches table for pair with given key. If key is found, sets result to provide read-only 
access to the matching pair. 

Returns 
True if key was found; false if key was not found. 

4.2.3.3 bool find( accessor& result, const Key& key ) 

Effects 
Searches table for pair with given key. If key is found, sets result to provide write 
access to the matching pair  



 
Containers 

 

Reference Manual    59 59 

Returns 
True if key was found; false if key was not found. 

4.2.3.4 bool insert( const_accessor& result, const Key& key ) 

Effects 
Searches table for pair with given key. If not present, inserts new pair(key,T()) into 
the table. Sets result to provide read-only access to the matching pair. 

Returns 
True if new pair was inserted; false if key was already in the map. 

4.2.3.5 bool insert( accessor& result, const Key& key ) 

Effects 
Searches table for pair with given key. If not present, inserts new pair(key,T()) into 
the table. Sets result to provide write access to the matching pair. 

Returns 
True if new pair was inserted; false if key was already in the map. 

4.2.3.6 bool insert( const_accessor& result, const value_type& value ) 

Effects 

Searches table for pair with given key. If not present, inserts new pair copy-
constructed from value into the table. Sets result to provide read-only access to the 
matching pair. 

Returns 
True if new pair was inserted; false if key was already in the map. 

4.2.3.7 bool insert( accessor& result, const value_type& value ) 

Effects 

Searches table for pair with given key. If not present, inserts new pair copy-
constructed from value into the table. Sets result to provide write access to the 
matching pair. 

Returns 
True if new pair was inserted; false if key was already in the map. 



 
Intel(R) Threading Building Blocks 

 

60   315415-001US 

4.2.3.8 bool insert( const value_type& value ) 

Effects 
Searches table for pair with given key. If not present, inserts new pair copy-
constructed from value into the table.  

Returns 
True if new pair was inserted; false if key was already in the map. 

4.2.3.9 template<typename InputIterator> void insert( InputIterator first, 
InputIterator last ) 

Effects 
For each pair p in the half-open interval [first,last), does insert(p). The order of 

the insertions, or whether they are done concurrently, is unspecified. 

CAUTION: The current implementation processes the insertions in order. Future implementations 
may do the insertions concurrently. If duplicate keys exist in [first,last), be careful to 
not depend on their insertion order. 

4.2.3.10 bool erase( const Key& key ) 

Effects 
Searches table for pair with given key. Removes the matching pair if it exists. If there 
is an accessor pointing to the pair, the pair is nonetheless removed from the table but 
its destruction is deferred until all accessors stop pointing to it. 

Returns 
True if pair was removed by the call; false if key was not found in the map. 

4.2.3.11 bool erase( const_accessor& item_accessor ) 

Requirements 

item_accessor.empty()==false 

Effects 

Removes pair referenced by item_accessor. Concurrent insertion of the same key 
creates a new pair in the table. 

Returns 

True if pair was removed by this thread; false if pair was removed by another thread. 



 
Containers 

 

Reference Manual    61 61 

4.2.3.12 bool erase( accessor& item_accessor ) 

Requirements 

item_accessor.empty()==false 

Effects 

Removes pair referenced by item_accessor. Concurrent insertion of the same key 
creates a new pair in the table. 

Returns 

True if pair was removed by this thread; false if pair was removed by another thread. 

4.2.4 Parallel Iteration 
Types const_range_type and range_type model the Container Range concept (448H 4.1). 
The types differ only in that the bounds for a const_range_type are of type 
const_iterator, whereas the bounds for a range_type are of type iterator. 

4.2.4.1 const_range_type range( size_t grainsize=1 ) const 

Effects 
Constructs a const_range_type representing all keys in the table. The parameter 
grainsize is in units of hash table buckets. Each bucket typically has on average 

about one key-value pair. 

Returns 
const_range_type object for the table.  

4.2.4.2 range_type range( size_t grainsize=1 ) 

Returns 
range_type object for the table. 

4.2.5 Capacity 

4.2.5.1 size_type size() const 

Returns 
Number of key-value pairs in the table. 

NOTE: This method takes constant time, but is slower than for most STL containers.  



 
Intel(R) Threading Building Blocks 

 

62   315415-001US 

4.2.5.2 bool empty() const 

Returns 
size()==0. 

NOTE: This method takes constant time, but is slower than for most STL containers.  

4.2.5.3 size_type max_size() const 

Returns 
Inclusive upper bound on number of key-value pairs that the table can hold. 

4.2.6 Iterators 
Template class concurrent_hash_map supports forward iterators; that is, iterators 
that can advance only forwards across a table. Reverse iterators are not supported. 
Modification of a table invalidates any existing iterators that point into the table. 

4.2.6.1 iterator begin() 

Returns 
iterator pointing to beginning of key-value sequence. 

4.2.6.2 iterator end() 

Returns 
iterator pointing to end of key-value sequence. 

4.2.6.3 const_iterator begin() const 

Returns 
const_iterator with pointing to beginning of key-value sequence.  

4.2.6.4 const_iterator end() const 

Returns 
const_iterator pointing to end of key-value sequence.  



 
Containers 

 

Reference Manual    63 63 

4.2.6.5 std::pair<iterator, iterator> equal_range( const Key& key ); 

Returns 
Pair of iterators (i,j) such that the half-open range [i,j) contains all pairs in the map 
(and only such pairs) with keys equal to key. Because the map has no duplicate keys, 

the half-open range is either empty or contains a single pair. 

4.2.6.6 std::pair<const_iterator, const_iterator> equal_range( const Key& key ) 
const; 
Description 

See 449H 4.2.6.5.  

4.2.7 Global Functions 
These functions in namespace tbb improve the STL compatibility of 
concurrent_hash_map. 

4.2.7.1 template<typename Key, typename T, typename HashCompare, typename 
A1, typename A2> bool operator==( const 
concurrent_hash_map<Key,T,HashCompare,A1>& a, const 
concurrent_hash_map<Key,T,HashCompare,A2>& b); 

Returns 
True if a and b contain equal sets of keys and for each pair (k,v1)∈a  and pair ,v2)∈b, 
the expression bool(v1==v2) is true. 

4.2.7.2 template<typename Key, typename T, typename HashCompare, typename 
A1, typename A2> bool operator!=(const 
concurrent_hash_map<Key,T,HashCompare,A1> &a,   const 
concurrent_hash_map<Key,T,HashCompare,A2> &b); 

Returns 
!(a==b) 

4.2.7.3 template<typename Key, typename T, typename HashCompare, typename 
A> void swap(concurrent_hash_map<Key, T, HashCompare, A> &a, 
concurrent_hash_map<Key, T, HashCompare, A> &b) 

Effects 
a.swap(b) 



 
Intel(R) Threading Building Blocks 

 

64   315415-001US 

4.3 concurrent_queue<T,Allocator> Template 
Class 
Summary 
Template class for queue with concurrent operations. 

Syntax 
template<typename T> class concurrent_queue; 

Header 
#include "tbb/concurrent_queue.h" 

Description 
A concurrent_queue is a bounded first-in first-out data structure that permits 
multiple threads to concurrently push and pop items. The default bounds are large 
enough to make the queue practically unbounded, subject to memory limitations on 
the target machine.  

The interface is different than for an STL std::queue because concurrent_queue is 

designed for concurrent operations.  

Table 18: Differences Between STL queue and Intel® Threading Building Blocks 
concurrent_queue  

Feature STL std::queue concurrent_queue 

Access to front and 
back 

Methods front and back  Not present. They would be 
unsafe while concurrent 
operations are in progress. 

size_type unsigned integral type signed integral type 

size() Returns number of items 
in queue 

Returns number of pushes 
minus the number of pops. 
Waiting push or pop operations 
are included in the difference. 
The size() is negative if there 
are pops waiting for 
corresponding pushes.  

Copy and pop item 
from queue q. 

x=q.front(); q.pop() q.pop(x) 



 
Containers 

 

Reference Manual    65 65 

Feature STL std::queue concurrent_queue 

Copy and pop item 
unless queue q is 
empty. 

bool b=!q.empty(); 

if(b) { 

    x=q.front();      

    q.pop(); 

} 

bool b = q.pop_if_present(x) 

pop of empty queue not allowed Wait until item becomes 
available. 

CAUTION: If the push or pop operations block, they block using user-space locks, which can 
waste processor resources when the blocking time is long. Class concurrent_queue is 
designed for situations where the blocking time is typically short relative to the rest of 
the application time. 

Members 
namespace tbb { 
    template<typename T, typename 
Allocator=cache_aligned_allocator<T> > 
    class concurrent_queue { 
    public: 
        // types 
        typedef T value_type; 
        typedef T& reference; 
        typedef const T& const_reference; 
        typedef std::ptrdiff_t size_type; 
        typedef std::ptrdiff_t difference_type; 
 
        concurrent_queue(const Allocator& a = Allocator()); 
        concurrent_queue(const concurrent_queue& src, 
                         const Allocator& a = Allocator()); 
        template<typename InputIterator> 
        concurrent_queue(InputIterator first, InputIterator last, 
                         const Allocator& a = Allocator()); 
        ~concurrent_queue(); 
 
        void push( const T& source ); 
        void pop( T& destination ); 
        bool pop_if_present( T& destination ); 
        void clear() ; 
 
        size_type size() const; 
        bool empty() const; 
        size_t capacity() const; 



 
Intel(R) Threading Building Blocks 

 

66   315415-001US 

        void set_capacity( size_type capacity ); 
        Allocator get_allocator() const; 
 
        typedef implementation-defined iterator; 
        typedef implementation-defined const_iterator; 
 
        // iterators (these are slow an intended only for 
debugging) 
        iterator begin(); 
        iterator end(); 
        const_iterator begin() const; 
        const_iterator end() const; 
    }; 
} 

4.3.1 concurrent_queue( const Allocator& a = 
Allocator() ) 

Effects 
Constructs empty queue. 

4.3.2 concurrent_queue( const concurrent_queue& 
src, const Allocator& a = Allocator() ) 

Effects 
Constructs a copy of src. 

4.3.3 template<typename InputIterator> 
concurrent_queue( InputIterator first, 
InputIterator last, const Allocator& a = 
Allocator() ) 

Effects 

Constructs a queue containing copies of elements in the iterator half-open interval 

[first,last). 



 
Containers 

 

Reference Manual    67 67 

4.3.4 ~concurrent_queue() 

Effects 
Destroys all items in the queue. 

4.3.5 void push( const T& source ) 

Effects 
Waits until size()<capacity, and then pushes copy of source onto back of the queue. 

4.3.6 void pop( T& destination ) 

Effects 
Waits until a value becomes available and pop it from the queue. Assigns it to 
destination. Destroys the original value.  

4.3.7 bool pop_if_present( T& destination ) 

Effects 
If value is available, pops it from the queue, assigns it to destination, and destroys the 
original value. Otherwise does nothing. 

Returns 
True if value was popped; false otherwise. 

4.3.8 void clear() 

Effects 
Clears the queue. Afterwards size()==0. 

4.3.9 size_type size() const 

Returns 
Number pushes minus number of pops. The result is negative if there are pop 
operations waiting for corresponding pushes. The result can exceed capacity() if the 

queue is full and there are push operations waiting for corresponding pops. 



 
Intel(R) Threading Building Blocks 

 

68   315415-001US 

4.3.10 bool empty() const 

Returns 
size()<=0 

4.3.11 size_type capacity() const 

Returns 
Maximum number of values that the queue can hold. 

4.3.12 void set_capacity( size_type capacity ) 

Effects 
Sets the maximum number of values that the queue can hold. 

4.3.13 Allocator get_allocator() const 

Returns 
Copy of allocator used to construct the queue. 

4.3.14 Iterators 
A concurrent_queue provides limited iterator support that is intended solely to allow 
programmers to inspect a queue during debugging. It provides iterator and 
const_iterator types. Both follow the usual STL conventions for forward iterators. The 
iteration order is from least recently pushed to most recently pushed. Modifying a 
concurrent_queue invalidates any iterators that reference it.  

CAUTION: The iterators are relatively slow. They should be used only for debugging. 

Example 
The following program builds a queue with the integers 0..9, and then dumps the 
queue to standard output. Its overall effect is to print 0 1 2 3 4 5 6 7 8 9.  

#include "tbb/concurrent_queue.h" 
#include <iostream> 
 
using namespace std; 
using namespace tbb; 
 
int main() { 



 
Containers 

 

Reference Manual    69 69 

    concurrent_queue<int> queue; 
    for( int i=0; i<10; ++i ) 
        queue.push(i); 
    for( concurrent_queue<int>::const_iterator i(queue.begin()); 
i!=queue.end(); ++i ) 
        cout << *i << " "; 
    cout << endl; 
    return 0; 
 
} 

4.3.14.1 iterator begin() 

Returns 
iterator pointing to beginning of the queue. 

4.3.14.2 iterator end() 

Returns 
iterator pointing to end of the queue. 

4.3.14.3 const_iterator begin() const 

Returns 
const_iterator with pointing to beginning of the queue.  

4.3.14.4 const_iterator end() const 

Returns 
const_iterator pointing to end of the queue.  

4.4 concurrent_vector 
Summary 
Template class for vector that can be concurrently grown and accessed. 

Syntax 
template<typename T, class Allocator=cache_aligned_allocator<T> >  
class concurrent_vector; 



 
Intel(R) Threading Building Blocks 

 

70   315415-001US 

Header 
#include "tbb/concurrent_vector.h" 

Description 
A concurrent_vector is a container with the following features: 

• Random access by index. The index of the first element is zero. 

• Multiple threads can grow the container and append new elements concurrently. 

• Growing the container does not invalidate existing iterators or indices.  

A concurrent_vector meets all requirements for a Container and a Reversible 
Container as specified in the ISO C++ standard. It does not meet the Sequence 
requirements due to absence of methods insert() and erase().  

Members 
namespace tbb { 
    template<typename T, typename 
Allocator=cache_aligned_allocator<T> > 
    class concurrent_vector { 
    public: 
        typedef size_t size_type; 
        typedef allocator-A-rebound-for-T 3F

4 allocator_type; 
        typedef T value_type; 
        typedef ptrdiff_t difference_type; 
        typedef T& reference; 
        typedef const T& const_reference; 
        typedef T* pointer; 
        typedef const T *const_pointer; 
        typedef implementation-defined iterator; 
        typedef implementation-defined const_iterator; 
        typedef implementation-defined reverse_iterator; 
        typedef implementation-defined const_reverse_iterator; 
 
        // Parallel ranges 
        typedef implementation-defined range_type; 
        typedef implementation-defined const_range_type; 
        range_type range( size_t grainsize ); 
        const_range_type range( size_t grainsize ) const; 
 
        // Constructors 
        explicit concurrent_vector( const allocator_type& a = 

                                               

4 This rebinding follows practice established by both the Microsoft and GNU 
implementations of std::vector.  



 
Containers 

 

Reference Manual    71 71 

                                    allocator_type() ); 
        concurrent_vector( const concurrent_vector& x ); 
        template<typename M> 
            concurrent_vector( const concurrent_vector<T, M>& x 
); 
 
        explicit concurrent_vector( size_type n,  
            const T& t=T(),  
            const allocator_type& a = allocator_type() ); 
        template<typename InputIterator> 
            concurrent_vector(InputIterator first, InputIterator 
last, 
           const allocator_type& a=allocator_type()); 
 
        // Assignment 
        concurrent_vector& operator=( const concurrent_vector& x 
); 
        template<class M> 
            concurrent_vector& operator=( const 
concurrent_vector<T, M>& x ); 
        void assign( size_type n, const T& t ); 
        template<class InputIterator > 
            void assign( InputIterator first, InputIterator last 
); 
 
        // Concurrent growth operations 
        size_type grow_by( size_type delta ); 
        size_type grow_by( size_type delta, const T& t ); 
        void grow_to_at_least( size_type n ); 
        size_type push_back( const T& item ); 
 
        // Items access 
        reference operator[]( size_type index ); 
        const_reference operator[]( size_type index ) const; 
        reference at( size_type index ); 
        const_reference at( size_type index ) const; 
        reference front(); 
        const_reference front() const; 
        reference back(); 
        const_reference back() const; 
 
        // Storage 
        bool empty() const; 
        size_type capacity() const; 
        size_type max_size() const; 
        size_type size() const; 



 
Intel(R) Threading Building Blocks 

 

72   315415-001US 

        allocator_type get_allocator() const; 
 
        // Non-concurrent operations on whole container 
        void reserve( size_type n ); 
        void compact(); 
        void swap( concurrent_vector& vector ); 
        void clear(); 
        ~concurrent_vector(); 
 
        // Iterators 
        iterator begin(); 
        iterator end(); 
        const_iterator begin() const; 
        const_iterator end() const; 
        reverse_iterator rbegin(); 
        reverse_iterator rend(); 
        const_reverse_iterator rbegin() const; 
        const_reverse_iterator rend() const; 
    }; 
 
    // Template functions 
    template<typename T, class A1, class A2> 
        bool operator==( const concurrent_vector<T, A1>& a,  
                         const concurrent_vector<T, A2>& b ); 
 
   template<typename T, class A1, class A2> 
       bool operator!=( const concurrent_vector<T, A1>& a,  
                        const concurrent_vector<T, A2>& b ); 
 
   template<typename T, class A1, class A2> 
   bool operator<( const concurrent_vector<T, A1>& a,  
                   const concurrent_vector<T, A2>& b ); 
 
   template<typename T, class A1, class A2> 
       bool operator>( const concurrent_vector<T, A1>& a,  
                       const concurrent_vector<T, A2>& b ); 
 
   template<typename T, class A1, class A2> 
       bool operator<=( const concurrent_vector<T, A1>& a,  
                        const concurrent_vector<T, A2>& b ); 
 
   template<typename T, class A1, class A2> 
       bool operator>=(const concurrent_vector<T, A1>& a,  
                       const concurrent_vector<T, A2>& b ); 
 



 
Containers 

 

Reference Manual    73 73 

   template<typename T, class A> 
       void swap(concurrent_vector<T, A>& a, concurrent_vector<T, 
A>& b); 
 
} 

Exception Safety 
Concurrent growing is fundamentally incompatible with ideal exception safety.4F

5  
Nonetheless, concurrent_vector offers a practical level of exception safety. 

Element type T must meet the following requirements: 

• Its destructor must not throw an exception. 

• If its default constructor can throw an exception, its destructor must be non-virtual 
and work correctly on zero-initialized memory.   

Otherwise the program’s behavior is undefined. 

If an exception is thrown during a growth (450H 4.4.3) or assignment (451H 4.4.1) operation, the 
instance of the vector becomes broken unless it is stated otherwise in the method’s 
description.  

• Some items added to a broken vector may be zero-filled instead of default-
constructed. 

• A broken vector cannot be repaired. It is unable to grow anymore.  

• Size and capacity reported by a broken vector are incorrect, and calculated as if the 
failed operation were successful 

• Access to the added items via operator[], back(), or iterators is unsafe for an 
invalid vector. Access via at() may cause an exception to be thrown. 

If a concurrent growth operation successfully completes, all elements it added to the 
vector remain valid and accessible even if a subsequent growth operations fails.  

Fragmentation 
Unlike a std::vector, a concurrent_vector never moves existing elements when it 

grows. The container allocates a series of contiguous arrays. The first reservation, 
growth, or assignment operation determines the size of the first array. Using a small 
number of elements as initial size incurs fragmentation across cache lines that may 
increase element access time. The method compact()merges several smaller arrays 
into a single contiguous array, which may improve access time. 

                                               

5 For example, consider P threads each appending N elements. To be 
perfectly exception safe, these operations would have to be serialized, 
because each operation has to know that the previous operation succeeded 
before allocating more indices.  



 
Intel(R) Threading Building Blocks 

 

74   315415-001US 

4.4.1 Construction, Copy, and Assignment 
Safety 
These operations must not be invoked concurrently on the same vector.  

4.4.1.1 concurrent_vector( const allocator_type& a = allocator_type() ) 

Effects 
Constructs empty vector using optionally specified allocator instance. 

4.4.1.2 concurrent_vector( size_type n, const_reference t=T(), const allocator_type& 
a = allocator_type() ); 

Effects 
Constructs vector of n copies of t, using optionally specified allocator instance. If t is 
not specified, each element is default constructed instead of copied. 

4.4.1.3 template<typename InputIterator> concurrent_vector( InputIterator first, 
InputIterator last, const allocator_type& a = allocator_type() ) 

Effects 
Constructs vector that is copy of the sequence [first,last), making only N calls to 
the copy constructor of T, where N is the distance between first and last.  

4.4.1.4 concurrent_vector( const concurrent_vector& src ) 

Effects 
Constructs copy of src. 

4.4.1.5 concurrent_vector& operator=( const concurrent_vector& src ) 

Effects 
Assigns contents of src to *this. 

Returns 
Reference to left hand side. 

4.4.1.6 template<typename M>  
concurrent_vector& operator=( const concurrent_vector<T, M>& src ) 
Assign contents of src to *this. 



 
Containers 

 

Reference Manual    75 75 

Returns 
Reference to left hand side. 

4.4.1.7 void assign( size_type n, const_reference t ) 

Assign n copies of t. 

4.4.1.8 template<class InputIterator >  
void assign( InputIterator first, InputIterator last ) 
Assign copies of sequence [first,last), making only N calls to the copy constructor 
of T, where N is the distance between first and last. 

4.4.2 Whole Vector Operations 

Safety 

Concurrent invocation of these operations on the same instance is not safe. 

4.4.2.1 void reserve( size_type n ) 

Effects 

Reserves space for at least n elements. 

Throws 

std::length_error if n>max_size(). It can also throw an exception if the allocator 
throws an exception. 

Safety 

If an exception is thrown, the instance remains in a valid state. 

4.4.2.2 void compact() 

Effects 

Compacts the internal representation to reduce fragmentation.  

4.4.2.3 void swap( concurrent_vector& x ) 

Swap contents of two vectors. Takes O(1) time. 



 
Intel(R) Threading Building Blocks 

 

76   315415-001US 

4.4.2.4 void clear() 

Effects 
Erases all elements. Afterwards, size()==0. Does not free internal arrays.5F

6 

TIP: To free internal arrays, call compact() after clear().  

4.4.2.5 ~concurrent_vector() 

Effects 
Erases all elements and destroys the vector. 

4.4.3 Concurrent Growth 

Safety 
The methods described in this section may be invoked concurrently on the same 
vector. 

4.4.3.1 size_type grow_by( size_type delta, const_reference  t=T() ) 

Effects 
Atomically appends delta copies of t to the end of the vector. If t is not specified, the 

new elements are default constructed. 

Returns 
Old size of the vector. If it returns k, then the new elements are at the half-open 
index range [k..k+delta). 

4.4.3.2 void grow_to_at_least( size_type n ) 

Effects 
Grows the vector until it has at least n elements. The new elements are default 
constructed. 

                                               

6 The original release of TBB 2.1 and its “update 1” freed the arrays. The 
change in “update 2” reverts back to the behavior of TBB 2.0. The motivation 
for not freeing the arrays is to behave similarly to std::vector::clear().  



 
Containers 

 

Reference Manual    77 77 

4.4.3.3 size_t push_back( const_reference value ); 

Effects 
Atomically appends copy of value to the end of the vector.  

Returns 
Index of the copy.  

4.4.4 Access 

Safety 

The methods described in this section may be concurrently invoked on the same 
vector as methods for concurrent growth (452H 4.4.3). However, the returned reference 
may be to an element that is being concurrently constructed. 

4.4.4.1 reference operator[]( size_type index ) 

Returns 
Reference to element with the specified index. 

4.4.4.2 const_refrence operator[]( size_type index ) const 

Returns 
Const reference to element with the specified index. 

4.4.4.3 reference at( size_type index ) 

Returns 

Reference to element at specified index. 

Throws 

std::out_of_range if index ≥ size() or index is for broken portion of vector. 

4.4.4.4 const_reference at( size_type index ) const 

Returns 

Const reference to element at specified index. 

Throws 

std::out_of_range if index ≥ size() or index is for broken portion of vector.  



 
Intel(R) Threading Building Blocks 

 

78   315415-001US 

4.4.4.5 reference front() 

Returns 
(*this)[0] 

4.4.4.6 const_reference front() const 

Returns 
(*this)[0] 

4.4.4.7 reference back() 

Returns 
(*this)[size()-1] 

4.4.4.8 const_reference back() const 

Returns 
(*this)[size()-1] 

4.4.5 Parallel Iteration 
Types const_range_type and range_type model the Container Range concept (495H453H .4 1454H 4.1). 
The types differ only in that the bounds for a const_range_type are of type 
const_iterator, whereas the bounds for a range_type are of type iterator. 

4.4.5.1 range_type range( size_t grainsize=1 ) 

Returns 
Range over entire concurrent_vector that permits read-write access. 

4.4.5.2 const_range_type range( size_t grainsize=1 ) const 

Returns 
Range over entire concurrent_vector that permits read-only access. 



 
Containers 

 

Reference Manual    79 79 

4.4.6 Capacity 

4.4.6.1 size_type size() const 

Returns 
Number of elements in the vector. The result may include elements that are under 
construction by concurrent calls to any of the growth methods (455H 4.4.3). 

4.4.6.2 bool empty() const 

Returns 
size()==0   

4.4.6.3 size_type capacity() const 

Returns 
Maximum size to which vector can grow without having to allocate more memory. 

NOTE: Unlike an STL vector, a concurrent_vector does not move existing elements if it 

allocates more memory.  

4.4.6.4 size_type max_size() const 

Returns 
Highest possible size of the vector could reach. 

4.4.7 Iterators 
Template class concurrent_vector<T> supports random access iterators as defined in 
Section 24.1.4 of the  ISO C++ Standard. Unlike a std::vector, the iterators are not 
raw pointers. A concurrent_vector<T> meets the reversible container requirements 

in Table 66 of the ISO C++ Standard. 

4.4.7.1 iterator begin() 

Returns 
iterator pointing to beginning of the vector. 

4.4.7.2 const_iterator begin() const 

Returns 
const_iterator pointing to beginning of the vector. 



 
Intel(R) Threading Building Blocks 

 

80   315415-001US 

4.4.7.3 iterator end() 

Returns 
iterator pointing to end of the vector. 

4.4.7.4 const_iterator end() const 

Returns 
const_iterator pointing to end of the vector. 

4.4.7.5 reverse_iterator rbegin() 

Returns 
reverse iterator pointing to beginning of reversed vector. 

4.4.7.6 const_reverse_iterator rbegin() const 

Returns 
const_reverse_iterator pointing to beginning of reversed vector. 

4.4.7.7 iterator rend() 

Returns 
const_reverse_iterator pointing to end of reversed vector. 

4.4.7.8 const_reverse_iterator rend() 

Returns 
const_reverse_iterator pointing to end of reversed vector. 



 
Memory Allocation 

 

Reference Manual    81 81 

5 Memory Allocation 
This section describes classes related to memory allocation. 

5.1 Allocator Concept 
The allocator concept for allocators in Intel® Threading Building Blocks is similar to 
the "Allocator requirements" in Table 32 of the ISO C++ Standard, but with further 
guarantees required by the ISO C++ Standard (Section 20.1.5 paragraph 4) for use 
with ISO C++ containers. 500H456HTable 19 summarizes the allocator concept. Here, A and B 
represent instances of the allocator class. 

Table 19: Allocator Concept  

Pseudo-Signature Semantics 

typedef T* A::pointer Pointer to T. 

typedef const T* A::const_pointer Pointer to const T. 

typedef T& A::reference Reference to T. 

typedef const T& A::const_reference Reference to const T. 

typedef T A::value_type Type of value to be 
allocated. 

typedef size_t A::size_type Type for representing 
number of values. 

typedef ptrdiff_t A::difference_type Type for representing pointer 
difference. 

template<typename U> struct rebind { 

    typedef A<U> A::other; 

}; 

Rebind to a different type U 

A() throw() Default constructor. 

A( const A& ) throw() Copy constructor. 

template<typename U> A( const A& ) Rebinding constructor. 

~A() throw() Destructor. 

T* A::address( T& x ) const Take address. 

const T* A::const_address( const T& x ) 
const 

Take const address. 

T* A::allocate( size_type n, const void* 
hint=0 ) 

Allocate space for n values. 



 
Intel(R) Threading Building Blocks 

 

82   315415-001US 

Pseudo-Signature Semantics 

void A::deallocate( T* p, size_t  n ) Deallocate n values. 

size_type A::max_size() const throw() Maximum plausible 
argument to method 
allocate. 

void A::construct( T* p, const T& value ) new(p) T(value) 

void A::destroy( T* p ) p->T::~T() 

bool operator==( const A&, const B& ) Return true. 

bool operator!=( const A&, const B& ) Return false. 

Model Types 
Template classes tbb_allocactor (457H 5.2), scalable_allocator (458H 5.3), and 
cached_aligned_allocator (459H 5.4) model the Allocator concept. 

5.2 tbb_allocator<T> Template Class 

Summary 

Template class for scalable memory allocation if available; possibly non-scalable 
otherwise. 

Syntax 
template<typename T> class tbb_allocator 

Header 
#include "tbb/tbb_allocator.h" 

Description 
A tbb_allocator allocates and frees memory via the TBB malloc library if it is 

available, otherwise it reverts to using malloc and free. 

TIP: Set the environment variable TBB_VERSION to 1 to find out if the TBB malloc library is 
being used. Details are in Section 460H 2.7.2. 

 

5.3 scalable_allocator<T> Template Class 

Summary 
Template class for scalable memory allocation. 



 
Memory Allocation 

 

Reference Manual    83 83 

Syntax 
template<typename T> class scalable_allocator; 

Header 
#include "tbb/scalable_allocator.h" 

Description 
A scalable_allocator allocates and frees memory in a way that scales with the 
number of processors. A scalable_allocator models the allocator requirements 
described in 501H461HTable 19. Using a scalable_allocator in place of std::allocator may 
improve program performance. Memory allocated by a scalable_allocator should 
be freed by a scalable_allocator, not by a std::allocator. 

CAUTION: The scalable_allocator requires that the tbb malloc library be available. If the library is 
missing, calls to the scalable allocator fail. In contrast, tbb_allocator falls back on 
malloc and free if the tbbmalloc library is missing.  

Members 
See Allocator concept ( 462H 5.1). 

Acknowledgement 
The scalable memory allocator incorporates McRT technology developed by Intel’s PSL 
CTG team. 

5.3.1 C Interface to Scalable Allocator 

Summary 
Low level interface for scalable memory allocation. 

Syntax 
extern "C" { 
    void* scalable_calloc ( size_t nobj, size_t size ); 
    void  scalable_free( void* ptr ); 
    void* scalable_malloc( size_t size ); 
    void* scalable_realloc( void* ptr, size_t size ); 
} 

Header 
#include "tbb/scalable_allocator.h" 



 
Intel(R) Threading Building Blocks 

 

84   315415-001US 

Description 

These functions provide a C level interface to the scalable allocator. Each routine 
scalable_x behaves analogously to the C standard library function x. Storage allocated 
by a scalable_x function should be freed or resized by a scalable_x function, not by a 
C standard library function. Likewise storage allocated by a C standard library function 
should not be freed or resized by a scalable_x function. 

5.4 cache_aligned_allocator<T> Template Class 
Summary 
Template class for allocating memory in way that avoids false sharing. 

Syntax 
template<typename T> class cache_aligned_allocator; 

Header 
#include "tbb/cache_aligned_allocator.h" 

Description 
A cache_aligned_allocator allocates memory on cache line boundaries, in order to 
avoid false sharing. False sharing is when logically distinct items occupy the same 
cache line, which can hurt performance if multiple threads attempt to access the 
different items simultaneously. Even though the items are logically separate, the 
processor hardware may have to transfer the cache  line between the processors as if 
they were sharing a location. The net result can be much more memory traffic than if 
the logically distinct items were on different cache lines. 

A cache_aligned_allocator models the allocator requirements described in 501H463HTable 
19. It can be used to replace a std::allocator. Used judiciously, 
cache_aligned_allocator can improve performance by reducing false sharing. 

However, it is sometimes an inappropriate replacement, because the benefit of 
allocating on a cache line comes at the price that cache_aligned_allocator implicitly 
adds pad memory. The padding is typically 128 bytes. Hence allocating many small 
objects with cache_aligned_allocator may increase memory usage. 

Members 
namespace tbb { 
 
    template<typename T> 
    class cache_aligned_allocator { 
    public: 
        typedef T* pointer; 
        typedef const T* const_pointer; 



 
Memory Allocation 

 

Reference Manual    85 85 

        typedef T& reference; 
        typedef const T& const_reference; 
        typedef T value_type; 
        typedef size_t size_type; 
        typedef ptrdiff_t difference_type; 
        template<typename U> struct rebind { 
            typedef cache_aligned_allocator<U> other; 
        }; 
 
    #if _WIN64 
        char* _Charalloc( size_type size ); 
    #endif /* _WIN64 */ 
 
        cache_aligned_allocator() throw(); 
        cache_aligned_allocator( const cache_aligned_allocator& ) 
throw(); 
        template<typename U>  
        cache_aligned_allocator( const 
cache_aligned_allocator<U>& ) throw(); 
        ~cache_aligned_allocator(); 
 
        pointer address(reference x) const; 
        const_pointer address(const_reference x) const; 
 
        pointer allocate( size_type n, const void* hint=0 ); 
        void deallocate( pointer p, size_type ); 
        size_type max_size() const throw(); 
 
        void construct( pointer p, const T& value ); 
        void destroy( pointer p ); 
    }; 
 
    template<> 
    class cache_aligned_allocator<void> { 
    public: 
        typedef void* pointer; 
        typedef const void* const_pointer; 
        typedef void value_type; 
        template<typename U> struct rebind { 
            typedef cache_aligned_allocator<U> other; 
        }; 
    }; 
 
    template<typename T, typename U> 
    bool operator==( const cache_aligned_allocator<T>&,  



 
Intel(R) Threading Building Blocks 

 

86   315415-001US 

                     const cache_aligned_allocator<U>& ); 
 
    template<typename T, typename U> 
    bool operator!=( const cache_aligned_allocator<T>&,  
                     const cache_aligned_allocator<U>& ); 
 
}  

For sake of brevity, the following subsections describe only those methods that differ 
significantly from the corresponding methods of std::allocator. 

5.4.1 pointer allocate( size_type n, const void* 
hint=0 ) 

Effects 
Allocates size bytes of memory on a cache-line boundary. The allocation may include 
extra hidden padding. 

Returns 
Pointer to the allocated memory. 

5.4.2 void deallocate( pointer p, size_type n ) 

Requirements 
Pointer p must be result of method allocate(n). The memory must not have been 
already deallocated.  

Effects 
Deallocates memory pointed to by p. The deallocation also deallocates any extra 
hidden padding. 

5.4.3 char* _Charalloc( size_type size ) 

NOTE: This method is provided only on 64-bit Windows* platforms. It is a non-ISO method 
that exists for backwards compatibility with versions of Window's containers that seem 
to require it. Please do not use it directly. 



 
Memory Allocation 

 

Reference Manual    87 87 

5.5 aligned_space Template Class 
Summary 
Uninitialized memory space for an array of a given type. 

Syntax 
template<typename T, size_t N> class aligned_space; 

Header 
#include "tbb/aligned_space.h" 

Description 
An aligned_space occupies enough memory and is sufficiently aligned to hold an 
array T[N]. The client is responsible for initializing or destroying the objects. An 
aligned_space is typically used as a local variable or field in scenarios where a block 

of fixed-length uninitialized memory is needed. 

Members 
namespace tbb { 
    template<typename T, size_t N> 
    class aligned_space { 
    public: 
        aligned_space(); 
        ~aligned_space(); 
        T* begin(); 
        T* end(); 
    }; 
}  

5.5.1 aligned_space() 

Effects 
None. Does not invoke constructors. 

5.5.2 ~aligned_space() 

Effects 
None. Does not invoke destructors. 



 
Intel(R) Threading Building Blocks 

 

88   315415-001US 

5.5.3 T* begin() 

Returns 
Pointer to beginning of storage. 

5.5.4 T* end() 

Returns 
begin()+N 



 
Synchronization 

 

Reference Manual    89 89 

6 Synchronization 
The library supports mutual exclusion and atomic operations. 

6.1 Mutexes 
Mutexes provide MUTual EXclusion of threads from sections of code. 

In general, strive for designs that minimize the use of explicit locking, because it can 
lead to serial bottlenecks. If explicitly locking is necessary, try to spread it out so that 
multiple threads usually do not contend to lock the same mutex. 

6.1.1 Mutex Concept 
The mutexes and locks here have relatively spartan interfaces that are designed for 
high performance. The interfaces enforce the scoped locking pattern, which is widely 
used in C++ libraries because:  

1. Does not require the programmer to remember to release the lock 

2. Releases the lock if  an exception is thrown out of the mutual exclusion region 
protected by the lock  

There are two parts to the pattern: a mutex object, for which construction of a lock 
object acquires a lock on the mutex and destruction of the lock object releases the 
lock. Here’s an example: 

{ 
    // Construction of myLock acquires lock on myMutex  
    M::scoped_lock myLock( myMutex );   
    ... actions to be performed while holding the lock ... 
    // Destruction of myLock releases lock on myMutex 
}                           

If the actions throw an exception, the lock is automatically released as the block is 
exited.  

502H464HTable 20 shows the requirements for the Mutex concept for a mutex type M  

Table 20: Mutex Concept 

Pseudo-Signature Semantics 

M() Construct unlocked mutex. 

~M() Destroy unlocked mutex.  

typename M::scoped_lock Corresponding scoped-lock type. 



 
Intel(R) Threading Building Blocks 

 

90   315415-001US 

Pseudo-Signature Semantics 

M::scoped_lock() Construct lock without acquiring 
mutex. 

M::scoped_lock(M&) Construct lock and acquire lock on 
mutex. 

M::~scoped_lock() Release lock (if acquired).  

M::scoped_lock::acquire(M&) Acquire lock on mutex. 

bool M::scoped_lock::try_acquire(M&) Try to acquire lock on mutex. Return 
true if lock acquired, false otherwise. 

M::scoped_lock::release() Release lock. 

static const bool M::is_rw_mutex True if mutex is reader-writer mutex; 
false otherwise. 

static const bool 
M::is_recursive_mutex 

True if mutex is reader-writer mutex; 
false otherwise. 

static const bool M::is_fair_mutex True if mutex is fair; false otherwise. 

465HTable 21 summarizes the classes that model the Mutex concept.  

Table 21: Mutexes that Model the Mutex Concept 

 Scalable Fair Reentrant Long 
Wait 

Size 

mutex OS 
dependent 

OS 
dependent 

No Blocks ≥ 3 
words 

recursive_mutex OS 
dependent 

OS 
dependent 

Yes Blocks ≥ 3 
words 

spin_mutex No No No Yields 1 byte 

queuing_mutex   No Yields 1 word 

spin_rw_mutex No No No Yields 1 word 

queuing_rw_mutex   No Yields 1 word 

null_mutex - Yes Yes - empty 

null_rw_mutex - Yes Yes - empty 

See the Tutorial, Section 6.1.1, for a discussion of the mutex properties and rationale 
for null mutexes. 

6.1.2 mutex Class 

Summary 
Class that models Mutex Concept using underlying OS locks. 



 
Synchronization 

 

Reference Manual    91 91 

Syntax 
class mutex; 

Header 
#include "tbb/mutex.h" 

Description 
A mutex models the Mutex Concept (504H466H 6.1.1). It is a wrapper around OS calls that 
provide mutual exclusion. The advantages of using mutex instead of the OS calls are: 

• Portable across all operating systems supported by Intel® Threading Building 
Blocks. 

• Releases the lock if an exception is thrown from the protected region of code. 

Members 
See Mutex Concept (505H467H 6.1.1). 

6.1.3 recursive_mutex Class 

Summary 
Class that models Mutex Concept using underlying OS locks and permits recursive 
acquisition. 

Syntax 
class recursive_mutex; 

Header 
#include "tbb/recursive_mutex.h" 

Description 
A recursive_mutex is similar to a mutex (468H 6.1.2), except that a thread may acquire 
multiple locks on it. The thread must release all locks on a recursive_mutex before 
any other thread can acquire a lock on it. 

Members 
See Mutex Concept (505H469H 6.1.1). 

6.1.4 spin_mutex Class 

Summary 
Class that models Mutex Concept using a spin lock. 



 
Intel(R) Threading Building Blocks 

 

92   315415-001US 

Syntax 
class spin_mutex; 

Header 
#include "tbb/spin_mutex.h" 

Description 
A spin_mutex models the Mutex Concept (506H470H 6.1.1). A spin_mutex is not scalable, fair, 
or recursive. It is ideal when the lock is lightly contended and is held for only a few 
machine instructions. If a thread has to wait to acquire a spin_mutex, it busy waits, 

which can degrade system performance if the wait is long. However, if the wait is 
typically short, a spin_mutex significantly improve performance compared to other 

mutexes. 

Members 
See Mutex Concept (507H471H 6.1.1). 

6.1.5 queuing_mutex Class 

Summary 
Class that models Mutex Concept that is fair and scalable. 

Syntax 
class queuing_mutex; 

Header 
#include "tbb/queuing_mutex.h" 

Description 
A queuing_mutex models the Mutex Concept (508H472H 6.1.1). A queuing_mutex is scalable, in 

the sense that if a thread has to wait to acquire the mutex, it spins on its own local 
cache line. A queuing_mutex is fair. Threads acquire a lock on a mutex in the order 
that they request it. A queuing_mutex is not recursive. 

The current implementation does busy-waiting, so using a queuing_mutex may 

degrade system performance if the wait is long.  

Members 
See Mutex Concept (509H473H 6.1.1). 



 
Synchronization 

 

Reference Manual    93 93 

6.1.6 ReaderWriterMutex Concept 
The ReaderWriterMutex concept extends the Mutex Concept to include the notion of 
reader-writer locks. It introduces a boolean parameter write that specifies whether a 
writer lock (write =true) or reader lock (write =false) is being requested. Multiple 

reader locks can be held simultaneously on a ReaderWriterMutex if it does not have a 
writer lock on it. A writer lock on a ReaderWriterMutex excludes all other threads from 
holding a lock on the mutex at the same time. 

474HTable 22 shows the requirements for a ReaderWriterMutex RW. They form a superset of 
the Mutex Concept (475H 6.1.1). 

Table 22: ReaderWriterMutex Concept 

Pseudo-Signature Semantics 

RW() Construct unlocked mutex. 

~RW() Destroy unlocked mutex. 

typename RW::scoped_lock Corresponding scoped-lock 
type. 

RW::scoped_lock() Construct lock without 
acquiring mutex. 

RW::scoped_lock(RW&, bool write=true) Construct lock and acquire 
lock on mutex. 

RW::~scoped_lock() Release lock (if acquired).  

RW::scoped_lock::acquire(RW&,  
bool write=true) 

Acquire lock on mutex. 

bool RW::scoped_lock::try_acquire(RW&,  
bool write=true) 

Try to acquire lock on mutex. 
Return true if lock acquired, 
false otherwise. 

RW::scoped_lock::release() Release lock. 

bool RW::scoped_lock::upgrade_to_writer() Change reader lock to writer 
lock. 

bool 
RW::scoped_lock::downgrade_to_reader() 

Change writer lock to reader 
lock. 

static const bool RW::is_rw_mutex = true True. 

static const bool RW::is_recursive_mutex True if mutex is reader-writer 
mutex; false otherwise. For all 
current reader-writer mutexes, 
false. 

static const bool RW::is_fair_mutex True if mutex is fair; false 
otherwise. 

The following subsections explain the semantics of the ReaderWriterMutex concept in 
detail. 



 
Intel(R) Threading Building Blocks 

 

94   315415-001US 

Model Types 
spin_rw_mutex (476H 6.1.7) and queuing_rw_mutex (477H 6.1.8) model the ReaderWriterMutex 
concept. 

6.1.6.1 ReaderWriterMutex() 

Effects 
Constructs unlocked ReaderWriterMutex. 

6.1.6.2 ~ReaderWriterMutex() 

Effects 
Destroys unlocked ReaderWriterMutex. The effect of destroying a locked 
ReaderWriterMutex is undefined. 

6.1.6.3 ReaderWriterMutex::scoped_lock() 

Effects 
Constructs a scoped_lock object that does not hold a lock on any mutex. 

6.1.6.4 ReaderWriterMutex::scoped_lock( ReaderWriterMutex& rw, bool write =true) 

Effects 
Constructs a scoped_lock object that acquires a lock on mutex rw. The lock is a 
writer lock if write is true; a reader lock otherwise. 

6.1.6.5 ReaderWriterMutex::~scoped_lock() 

Effects 
If the object holds a lock on a ReaderWriterMutex, releases the lock. 

6.1.6.6 void ReaderWriterMutex:: scoped_lock:: acquire( ReaderWriterMutex& rw,  
bool write=true ) 

Effects 
Acquires a lock on mutex rw. The lock is a writer lock if write is true; a reader lock 
otherwise. 



 
Synchronization 

 

Reference Manual    95 95 

6.1.6.7 bool ReaderWriterMutex:: scoped_lock::try_acquire( ReaderWriterMutex& rw,  
bool write=true ) 

Effects 
Attempts to acquire a lock on mutex rw. The lock is a writer lock if write is true; a 
reader lock otherwise.  

Returns 
true if the lock is acquired, false otherwise. 

6.1.6.8 void ReaderWriterMutex:: scoped_lock::release() 

Effects 
Releases lock. The effect is undefined if no lock is held. 

6.1.6.9 bool ReaderWriterMutex:: scoped_lock::upgrade_to_writer() 

Effects 
Changes reader lock to a writer lock. The effect is undefined if the object does not 
already hold a reader lock. 

Returns 
false if lock was released in favor of another upgrade request and then reacquired; 
true otherwise. 

6.1.6.10 bool ReaderWriterMutex:: scoped_lock::downgrade_to_reader() 

Effects 
Changes writer lock to a reader lock. The effect is undefined if the object does not 
already hold a writer lock. 

Returns 
false if lock was released and reacquired; true otherwise. 

NOTE: Intel's current implementations for spin_rw_mutex and queuing_rw_mutex always 
return true. Different implementations might sometimes return false. 

6.1.7 spin_rw_mutex Class 

Summary 
Class that models ReaderWriterMutex Concept that is unfair and not scalable. 



 
Intel(R) Threading Building Blocks 

 

96   315415-001US 

Syntax 
class spin_rw_mutex; 

Header 
#include "tbb/spin_rw_mutex.h" 

Description 
A spin_rw_mutex models the ReaderWriterMutex Concept (478H 6.1.6). A spin_rw_mutex is 
not scalable, fair, or recursive. It is ideal when the lock is lightly contended and is held 
for only a few machine instructions. If a thread has to wait to acquire a 
spin_rw_mutex, it busy waits, which can degrade system performance if the wait is 
long. However, if the wait is typically short, a spin_rw_mutex significantly improve 

performance compared to other mutexes.. 

Members 
See ReaderWriterMutex concept (479H 6.1.6). 

6.1.8 queuing_rw_mutex Class 

Summary 
Class that models ReaderWriterMutex Concept that is fair and scalable. 

Syntax 
class queuing_rw_mutex; 

Header 
#include "tbb/queuing_rw_mutex.h" 

Description 
A queuing_rw_mutex models the ReaderWriterMutex Concept (480H 6.1.6). A 
queuing_rw_mutex is scalable, in the sense that if a thread has to wait to acquire the 
mutex, it spins on its own local cache line. A queuing_rw_mutex is fair. Threads 
acquire a lock on a queuing_rw_mutex in the order that they request it. A 
queuing_rw_mutex is not recursive. 

Members 
See ReaderWriterMutex concept (481H 6.1.6). 



 
Synchronization 

 

Reference Manual    97 97 

6.1.9 null_mutex Class 

Summary 
Class that models Mutex Concept buts does nothing. 

Syntax 
class null_mutex; 

Header 
#include "tbb/null_mutex.h" 

Description 
A null_mutex models the Mutex Concept (504H482H 6.1.1) syntactically, but does nothing. It is 
useful for instantiating a template that expects a Mutex, but no mutual exclusion is 
actually needed for that instance.  

Members 
See Mutex Concept (505H483H 6.1.1). 

6.1.10 null_rw_mutex Class 

Summary 
Class that models ReaderWriterMutex Concept but does nothing. 

Syntax 
class null_rw_mutex; 

Header 
#include "tbb/null_rw_mutex.h" 

Description 
A null_rw_mutex models the ReaderWriterMutex Concept (484H 6.1.6) syntactically, but 
does nothing. It is useful for instantiating a template that expects a 
ReaderWriterMutex, but no mutual exclusion is actually needed for that instance.. 

Members 
See ReaderWriterMutex concept (485H 6.1.6). 



 
Intel(R) Threading Building Blocks 

 

98   315415-001US 

6.2 atomic<T> Template Class 
Summary 
Template class for atomic operations. 

Syntax 
template<typename T> atomic; 

Header 
#include "tbb/atomic.h" 

Description 
An atomic<T> supports atomic read, write, fetch-and-add, fetch-and-store, and 
compare-and-swap. Type T may be an integral type or a pointer type. When T is a 
pointer type, arithmetic operations are interpreted as pointer arithmetic. For example, 
if x has type atomic<float*> and a float occupies four bytes, then ++x advances x 
by four bytes. The specializations atomic<void*> and atomic<bool> do not allow 

arithmetic. 

Some of the methods have template method variants that permit more selective 
memory fencing. On IA-32 and EM64T processors, they have the same effect as the 
non-templated variants. On Itanium processors, they may improve performance by 
allowing the memory subsystem more latitude on the orders of reads and write. Using 
them may improve performance. 511H486HTable 23 shows the fencing for the non-template 
form. 

Table 23: Operation Order Implied by Non-Template Methods 

Kind Description Default For 

acquire   Operations after the atomic operation never 
move over it. 

read 

release Operations before the atomic operation never 
move over it. 

write 

sequentiall
y 
consistent 

Operations on either side never move over it 
and furthermore, the sequentially consistent 
atomic operations have a global order. 

fetch_and_store, 

fetch_and_add,  

compare_and_swap 

CAUTION: The copy constructor for class atomic<T> is not atomic. To atomically copy an 
atomic<T>, default-construct the copy first and assign to it. Below is an example that 
shows the difference. 

 
atomic<T> y(x);  // Not atomic 
atomic<T> z; 



 
Synchronization 

 

Reference Manual    99 99 

z=x;             // Atomic assignment 

The copy constructor is not atomic because it is compiler generated. Introducing any 
non-trivial constructors might remove an important property of atomic<T>: 
namespace scope instances are zero-initialized before namespace scope dynamic 
initializers run. This property can be essential for code executing early during program 
startup. 

To create an atomic<T> with a specific value, default-construct it first, and afterwards 
assign a value to it. 

Members 
namespace tbb { 
    enum memory_semantics { 
        acquire, 
        release 
    }; 
 
    struct atomic<T> { 
        typedef T value_type; 
 
        template<memory_semantics M> 
        value_type fetch_and_add( value_type addend ); 
 
        value_type fetch_and_add( value_type addend ); 
 
        template<memory_semantics M> 
        value_type fetch_and_increment(); 
 
        value_type fetch_and_increment(); 
 
        template<memory_semantics M> 
        value_type fetch_and_decrement(); 
 
        value_type fetch_and_decrement(); 
 
        template<memory_semantics M> 
        value_type compare_and_swap( value_type new_value,  
                                     value_type comparand ); 
 
        value_type compare_and_swap( value_type new_value,  
                                     value_type comparand ); 
 
        template<memory_semantics M> 
        value_type fetch_and_store( value_type new_value ); 
 
        value_type fetch_and_store( value_type new_value ); 



 
Intel(R) Threading Building Blocks 

 

100   315415-001US 

 
        operator value_type() const; 
 
        value_type operator=( value_type new_value ); 
        atomic<T>& operator=( const atomic<T>& value ); 
 
        value_type operator+=(value_type); 
        value_type operator-=(value_type); 
        value_type operator++(); 
        value_type operator++(int); 
        value_type operator--(); 
        value_type operator--(int); 
    }; 
}  

So that an atomic<T*> can be used like a pointer to T, the specialization atomic<T*> 
also defines: 

        T* operator->() const; 

6.2.1 enum memory_semantics 

Description 
Defines values used to select the template variants that permit more selective control 
over visibility of operations (see 487HTable 23). 

6.2.2 value_type fetch_and_add( value_type 
addend ) 

Effects 
Let x be the value of *this. Atomically updates x = x + addend.  

Returns 
Original value of x. 

6.2.3 value_type fetch_and_increment() 

Effects 
Let x be the value of *this. Atomically updates x = x + 1.  

Returns 
Original value of x. 



 
Synchronization 

 

Reference Manual    101 101 

6.2.4 value_type fetch_and_decrement() 

Effects 
Let x be the value of *this. Atomically updates x  = x − 1.  

Returns 
Original value of x. 

6.2.5 value_type compare_and_swap 
value_type compare_and_swap( value_type new_value, value_type 
comparand ) 

Effects 
Let x be the value of *this. Atomically compares x with comparand, and if they are 
equal, sets x=new_value.  

Returns 
Original value of x. 

6.2.6 value_type fetch_and_store( value_type 
new_value ) 

Effects 
Let x be the value of *this. Atomically exchanges old value of x with new_value. 

Returns 
Original value of x. 



 
Intel(R) Threading Building Blocks 

 

102   315415-001US 

7 Timing 
Parallel programming is about speeding up wall clock time, which is the real time that 
it takes a program to run. Unfortunately, some of the obvious wall clock timing 
routines provided by operating systems do not always work reliably across threads, 
because the hardware thread clocks are not synchronized. The library provides 
support for timing across threads. The routines are wrappers around operating 
services that we have verified as safe to use across threads.  

7.1 tick_count Class 
Summary 
Class for computing wall-clock times. 

Syntax 
class tick_count; 

Header 
#include "tbb/tick_count.h" 

Description 
A tick_count is an absolute timestamp. Two tick_count objects may be subtracted 
to compute a  relative time tick_count::interval_t, which can be converted to 

seconds.  

Example 
using namespace tbb; 
 
void Foo() { 
    tick_count t0 = tick_count::now(); 
    ...action being timed... 
    tick_count t1 = tick_count::now(); 
    printf("time for action = %g seconds\n", (t1-t0).seconds() ); 
} 

Members 
namespace tbb { 
 
    class tick_count { 
    public: 



 
Timing 

 

Reference Manual    103 103 

        class interval_t; 
        static tick_count now(); 
    }; 
 
    tick_count::interval_t  operator-( const tick_count& t1,  
                                       const tick_count& t0 ); 
} // tbb 

7.1.1 static tick_count tick_count::now() 

Returns  
Current wall clock timestamp. 

7.1.2 tick_count::interval_t operator−( const 
tick_count& t1, const tick_count& t0 ) 

Returns 
Relative time that t1 occurred after t0.  

7.1.3 tick_count::interval_t Class 

Summary 
Class for relative wall-clock time. 

Syntax 
class tick_count::interval_t; 

Header 
#include "tbb/tick_count.h" 

Description 
A tick_count::interval_t represents relative wall clock duration.  

Members 
namespace tbb { 
 
    class tick_count::interval_t { 
    public: 
        interval_t(); 
        explicit interval_t( double sec ); 
        double seconds() const; 



 
Intel(R) Threading Building Blocks 

 

104   315415-001US 

        interval_t operator+=( const interval_t& i ); 
        interval_t operator-=( const interval_t& i ); 
    }; 
 
    tick_count::interval_t  operator+( const 
tick_count::interval_t& i,  
                                       const 
tick_count::interval_t& j ); 
    tick_count::interval_t  operator-( const 
tick_count::interval_t& i,  
                                       const 
tick_count::interval_t& j ); 
 
} // namespace tbb 

7.1.3.1 interval_t() 

Effects 
Constructs interval_t representing zero time duration. 

7.1.3.2 interval_t( double sec ) 
Effects 

Constructs interval_t representing specified number of seconds. 

7.1.3.3 double seconds() const 

Returns 
Time interval measured in seconds. 

7.1.3.4 interval_t operator+=( const interval_t& i ) 

Effects 
*this = *this + i 

Returns 
Reference to *this. 

7.1.3.5 interval_t operator−=( const interval_t& i ) 

Effects 
*this = *this − i 



 
Timing 

 

Reference Manual    105 105 

Returns 
Reference to *this. 

7.1.3.6 interval_t operator+ ( const interval_t& i, const interval_t& j ) 

Returns 
Interval_t representing sum of intervals i and j. 

7.1.3.7 interval_t operator− ( const interval_t& i, const interval_t& j ) 

Returns 
Interval_t representing difference of intervals i and j. 



 
Intel(R) Threading Building Blocks 

 

106   315415-001US 

8 Task Scheduling 
The library provides a task scheduler, which is the engine that drives the algorithm 
templates (Section 512H488H 3). You may also call it directly. Using tasks is often simpler and 
more efficient than using threads, because the task scheduler takes care of a lot of 
details.  

The tasks are quanta of computation. The scheduler maps these onto physical 
threads. The mapping is non-preemptive. Each thread has a method execute(). Once 
a thread starts running execute(), the task is bound to that thread until execute() 

returns. During that time, the thread services other tasks only when it waits on child 
tasks, at which time it may run the child tasks, or if there are no pending child tasks, 
service tasks created by other threads. 

The task scheduler is intended for parallelizing computationally intensive work. 
Because task objects are not scheduled preemptively, they should not make calls that 
might block for long periods, because meanwhile that thread is precluded from 
servicing other tasks. 

CAUTION: There is no guarantee that potentially parallel tasks actually execute in parallel, 
because the scheduler adjusts actual parallelism to fit available worker threads. For 
example, given a single worker thread, the scheduler creates no actual parallelism. 
For example, it is generally unsafe to use tasks in a producer consumer relationship, 
because there is no guarantee that the consumer runs at all while the producer is 
running. 

Potential parallelism is typically generated by a split/join pattern. Two basic patterns 
of split/join are supported. The most efficient is continuation-passing form, in which 
the programmer constructs an explicit “continuation” task. The parent task splits child 
tasks and specifies a continuation task to be executed when the children complete. 
The continuation inherits the parent’s ancestor. The parent task then exits; i.e., it 
does not block on its children. The children subsequently run, and after they (or their 
continuations) finish, the continuation task starts running. 513H489HFigure 3 shows the steps. 
The running tasks at each step are shaded. 

continuation continuationcontinuation parent parent 

child child child child

 



 
Task Scheduling 

 

Reference Manual    107 107 

Figure 3: Continuation-passing Style 

Explicit continuation passing is efficient, because it decouples the thread’s stack from 
the tasks. However, it is more difficult to program. A second pattern is "blocking 
style", which uses implicit continuations. It is sometimes less efficient in performance, 
but more convenient to program. In this pattern, the parent task blocks until its 
children complete, as shown in 514H490HFigure 4. 

parent parent 

child child child child

parent parent 

 

Figure 4: Blocking Style 

The convenience comes with a price. Because the parent blocks, its thread’s stack 
cannot be popped yet. The thread must be careful about what work it takes on, 
because continually stealing and blocking could cause the stack to grow without 
bound. To solve this problem, the scheduler constrains a blocked thread such that it 
never executes a task that is less deep than its deepest blocked task. This constraint 
may impact performance because it limits available parallelism, and tends to cause 
threads to select smaller (deeper) subtrees than they would otherwise choose. 

8.1 Scheduling Algorithm 
The scheduler employs a technique known as work stealing. Each thread keeps a 
"ready pool" of tasks that are ready to run. The ready pool is structured as an array of 
lists of task, where the list for the ith element corresponds to tasks at level i in the 

tree. The lists are manipulated in last-in first-out order. A task at level i spawns child 
tasks at level i+1. A thread chooses its next task according to the first rule below that 
applies:  

1. The task returned by task::execute() that the thread invoked previously. 

2. The task whose lastly completed child was completed by this thread. 

3. A task from the deepest non-empty list in the array.  

4. A task with affinity for the thread. 

5. A task from the shallowest list in another randomly chosen thread’s array.  

Work stealing tends to strike a good balance between locality of reference, space 
efficiency, and parallelism. The work-stealing algorithm in the task scheduler is similar 
to that used by Cilk (224H2HBlumofe 1995). The notion of work-stealing dates back to the 
1980s (3HKumar 1987). The thread affinity support is more recent (4HAcar 2000).  



 
Intel(R) Threading Building Blocks 

 

108   315415-001US 

8.2 task_scheduler_init Class 
Summary 
Class that represents thread's interest in task scheduling services. 

Syntax 
class task_scheduler_init; 

Header 
#include "tbb/task_scheduler_init.h" 

Description 
A task_scheduler_init is either "active" or "inactive". Each thread that uses a task 
should have one active task_scheduler_init object that stays active over the 
duration that the thread uses task objects. A thread may have more than one active 
task_scheduler_init at any given moment. 

The default constructor for a task_scheduler_init activates it, and the destructor 

uninitializes it. To defer initialization, pass the value 
task_scheduler_init::deferred to the constructor. Such a task_scheduler_init 
may be initialized later by calling method initialize. Destruction of an initialized 
task_scheduler_init implicitly deactivates it. To deactivate it earlier, call method 
terminate. 

An optional parameter to the constructor and method initialize allow you to specify 
the number of threads to be used for task execution. This parameter is useful for 

scaling studies during development, but should not be set for production use. The 
Tutorial document says more about this topic. 

To minimize time overhead, it is best to have a thread create a single 
task_scheduler_init object whose activation spans all uses of the library's task 
scheduler. A task_scheduler_init is not assignable or copy-constructible.  

Important 
The template algorithms (Section 515H491H 3) implicitly use class task. Hence creating a 
task_scheduler_init is a prerequisite to using the template algorithms. The debug 
version of the library reports failure to create the task_scheduler_init. 

Example 
#include "tbb/task_scheduler_init" 
 
int main() { 
    task_scheduler_init init; 
     ... use task or template algorithms here... 
    return 0; 



 
Task Scheduling 

 

Reference Manual    109 109 

} 

Members 
namespace tbb { 
    typedef unsigned-integral-type stack_size_type; 
 
    class task_scheduler_init { 
    public: 
        static const int automatic = implementation-defined; 
        static const int deferred = implementation-defined; 
        task_scheduler_init( int number_of_threads=automatic,  
                             stack_size_type thread_stack_size=0 
); 
        ~task_scheduler_init(); 
        void initialize( int number_of_threads=automatic ); 
        void terminate(); 
        static int default_num_threads(); 
    }; 
} // namespace tbb 

8.2.1 task_scheduler_init( int 
number_of_threads=automatic, 
stack_size_type thread_stack_size=0 ) 

Requirements 
The value number_of_threads shall be one of the values in 516H492HTable 24. 

Effects 
If number_of_threads==task_scheduler_init::deferred, nothing happens, and the 
task_scheduler_init remains inactive. Otherwise, the task_scheduler_init is 
activated as follows. If the thread has no other active task_scheduler_init objects, 
the thread allocates internal thread-specific resources required for scheduling task 
objects. If there were no threads with active task_scheduler_init objects yet, then 

internal worker threads are created as described in 517H493HTable 24. These workers sleep 
until needed by the task scheduler. 

The optional parameter thread_stack_size specifies the stack size of each worker 
thread. A value of 0 specifies use of a default stack size.  

Table 24: Values for number_of_threads 

number_of_threads Semantics 

task_scheduler_init::automatic Let library determine number_of_threads 
based on hardware configuration. 



 
Intel(R) Threading Building Blocks 

 

110   315415-001US 

number_of_threads Semantics 

task_scheduler_init::deferred Defer activation actions. 

positive integer If no worker threads exist yet, create 
number_of_threads−1 worker threads. If 
worker threads exist, do not change the 
number of worker threads. 

8.2.2 ~task_scheduler_init() 

Effects 
If the task_scheduler_init is inactive, nothing happens. Otherwise, the 
task_scheduler_init is deactivated as follows. If the thread has no other active 
task_scheduler_init objects, the thread deallocates internal thread-specific 
resources required for scheduling task objects. If no existing thread has any active 
task_scheduler_init objects, then the internal worker threads are terminated. 

8.2.3 void initialize( int 
number_of_threads=automatic ) 

Requirements 
The task_scheduler_init shall be inactive. 

Effects 
Similar to constructor (518H494H 8.2.1). 

8.2.4 void terminate() 

Requirements 
The task_scheduler_init shall be active. 

Effects 
Deactivates the task_scheduler_init without destroying it. The description of the 
destructor (519H495H 8.2.2) specifies what deactivation entails. 

8.2.5 int default_num_threads() 

Returns 
One more than the number of worker threads that task_scheduler_init creates by 
default.  



 
Task Scheduling 

 

Reference Manual    111 111 

8.2.6 bool is_active() const 
Returns 
True if *this is active as described in Section 496H 8.2; false otherwise.  

8.2.7 Mixing with OpenMP  
Mixing OpenMP with Intel® Threading Building Blocks is supported. Performance may 
be less than a pure OpenMP or pure Intel® Threading Building Blocks solution if the 
two forms of parallelism are nested. 

An OpenMP parallel region that plans to use the task scheduler should create a 
task_scheduler_init inside the parallel region, because the parallel region may 

create new threads unknown to Intel® Threading Building Blocks. Each of these new 
OpenMP threads, like native threads, must create a task_scheduler_init object 

before using Intel® Threading Building Blocks algorithms. The following example 
demonstrates how to do this. 

void OpenMP_Calls_TBB( int n ) { 
#pragma omp parallel 
    { 
        task_scheduler_init init; 
#pragma omp for 
        for( int i=0; i<n; ++i ) { 
            ...can use class task or  
               Intel® Threading Building Blocks algorithms here 
... 
        } 
    } 
} 

8.3 task Class 

Summary 
Base class for tasks. 

Syntax 
class task; 

Header 
#include "tbb/task.h" 



 
Intel(R) Threading Building Blocks 

 

112   315415-001US 

Description 
Class task is the base class for tasks. You are expected to derive classes from task, 
and at least override the virtual method task* task::execute().  

Each instance of task has associated attributes, that while not directly visible, must 
be understood to fully grasp how task objects are used. The attributes are described 

in 520H497HTable 25. 

Table 25: Task Attributes 

Attribute Description 

owner  The worker thread that is currently in charge of the task. 

parent Either null, or a pointer to another task whose refcount field will 
be decremented after the present task completes. Typically, the 
other task is the parent or a continuation of the parent. 

depth The depth of the task in the task tree. 

refcount The number of Tasks that have this is their parent. Increments 
and decrement of refcount are always atomic. 

TIP: Always allocate memory for task objects using special overloaded new operators 
(521H498H 8.3.2) provided by the library, otherwise the results are undefined. Destruction of a 
task is normally implicit. The copy constructor and assignment operators for task are 
not accessible. This prevents accidental copying of a task, which would be ill-defined 
and corrupt internal data structures. 

Notation 
Some member descriptions illustrate effects by diagrams such as 522H499HFigure 5.  

depth depth depth 

parent parent null 

this this result 

0 refcount refcount 
 

Figure 5: Example Effect Diagram 

Conventions in these diagrams are as follows: 

• The big arrow denotes the transition from the old state to the new state. 

• Each task's state is shown as a box divided into parent, depth, and refcount sub-
boxes. 

• Gray denotes state that is ignored. Sometimes ignored state is simply left blank.. 

• Black denotes state that is read. 

• Blue denotes state that is written.  



 
Task Scheduling 

 

Reference Manual    113 113 

Members 
In the description below, types proxy1...proxy4 are internal types. Methods returning 
such types should only be used in conjunction with the special overloaded new 
operators, as described in Section  (523H500H 8.3.2).  
namespace tbb { 
    class task { 
    protected: 
        task(); 
 
    public: 
        virtual ~task() {} 
 
        virtual task* execute() = 0; 
 
        // task allocation and destruction 
        static proxy1 allocate_root(); 
        proxy2 allocate_continuation(); 
        proxy3 allocate_child(); 
        proxy4 allocate_additional_child_of( task& t ); 
 
        // Explicit task destruction 
        void destroy( task& victim ); 
 
        // Recycling 
        void recycle_as_continuation(); 
        void recycle_as_child_of( task& new_parent ); 
        void recycle_to_reexecute(); 
 
        // task depth 
        typedef implementation-defined-signed-integral-type 
depth_type; 
        depth_type depth() const; 
        void set_depth( depth_type new_depth ); 
        void add_to_depth( int delta ); 
 
        // Synchronization 
        void set_ref_count( int count ); 
        void wait_for_all(); 
        void spawn( task& child ); 
        void spawn( task_list& list ); 
        void spawn_and_wait_for_all( task& child );   
        void spawn_and_wait_for_all( task_list& list );   
        static void spawn_root_and_wait( task& root ); 
        static void spawn_root_and_wait( task_list& root ); 



 
Intel(R) Threading Building Blocks 

 

114   315415-001US 

 
        // task context 
        static task& self(); 
        task* parent() const; 
        bool is_stolen_task() const; 
 
        // Cancellation 
        bool cancel_group_execution(); 
        bool is_cancelled() const; 
         
        // Affinity 
        typedef implementation-defined-unsigned-type affinity_id; 
        virtual void note_affinity( affinity_id id ); 
        void set_affinity( affinity_id id ); 
        affinity_id affinity() const; 
 
        // task debugging 
        enum state_type { 
            executing, 
            reexecute, 
            ready, 
            allocated, 
            freed 
        }; 
        int ref_count() const; 
        state_type state() const; 
    }; 
} // namespace tbb 
 
void *operator new( size_t bytes, const proxy1& p ); 
void operator delete( void* task, const proxy1& p ); 
void *operator new( size_t bytes, const proxy2& p ); 
void operator delete( void* task, const proxy2& p ); 
void *operator new( size_t bytes, const proxy3& p ); 
void operator delete( void* task, const proxy3& p ); 
void *operator new( size_t bytes, proxy4& p ); 
void operator delete( void* task, proxy4& p ); 

8.3.1 task Derivation 
Class task is an abstract base class. You must override method task::execute. 
Method execute should perform the necessary actions for running the task, and then 
return the next task to execute, or NULL if the scheduler should choose the next task 
to execute. Typically, if non-NULL, the returned task is one of the children of this. 
Unless one of the recycle/reschedule methods described in Section (524H501H 8.3.4) is called 



 
Task Scheduling 

 

Reference Manual    115 115 

while method execute() is running,  the this object will be implicitly destroyed after 
method execute returns. 

Override the virtual destructor if necessary to release resources allocated by the 
constructor. 

Override note_affinity to improve cache reuse across tasks, as described in Section 
502H 8.3.9. 

8.3.1.1 Processing of execute() 
When the scheduler decides that a thread should begin executing a task, it performs 
the following steps: 

1. Invokes execute() and waits for it to return. 

2. If the task has not been marked by a method recycle_∗: 

a. If the task's parent is not null, then atomically decrements parent->refcount, 
and if becomes zero, puts the parent into the ready pool.  

b. Calls the task's destructor.  

c. Frees the memory of the task for reuse. 

3. If the task has been marked for recycling: 

a. If marked by recycle_to_reexecute, puts the task back into the ready pool. 

b. Otherwise it was marked by recycle_as_child or 
recycle_as_continuation.  

8.3.2 task Allocation 
Always allocate memory for task objects using one of the special overloaded new 
operators. The allocation methods do not construct the task. Instead, they return a 

proxy object that can be used as an argument to an overloaded version of operator 
new provided by the library.  

In general, the allocation methods must be called before any of the tasks allocated are 
spawned. The exception to this rule is allocate_additional_child_of(t), which can 
be called even if task t is already running. The proxy types are defined by the 
implementation. The only guarantee is that the phrase “new(proxy) T(...)”allocates 

and constructs a task of type T. Because these methods are used idiomatically, the 
headings in the subsection show the idiom, not the declaration. The argument this is 

typically implicit, but shown explicitly in the headings to distinguish instance methods 
from static methods. 

TIP: Allocating tasks larger than 216 bytes might be significantly slower than allocating 
smaller tasks. In general, task objects should be small lightweight entities. 



 
Intel(R) Threading Building Blocks 

 

116   315415-001US 

8.3.2.1 new( task::allocate_root( task_group_context& group ) ) T 
Allocate a task of type T with the specified cancellation group, with a depth of one 
more than the depth of the innermost task currently being executed by the current 

native thread. 525H503HFigure 6 summarizes the state transition. 

depth 

null 

result 

0  

Figure 6: Effect of task::allocate_root() 

Use method spawn_root_and_wait (526H504H 8.3.6.7) to execute the task. 

8.3.2.2 new( task::allocate_root() ) 

Like new(task::allocate_root(task_group_context&)) except that cancellation 
group is the current innermost cancellation group. 

8.3.2.3 new( this. allocate_continuation() ) T 
Allocate and construct a task of type T at the same depth as this, and transfers the 
parent from this to the new task. No reference counts change. 527H505HFigure 7  summarizes 
the state transition. 

depth depth depth 

parent parent null 

this this result 

0 refcount refcount 
 

Figure 7: Effect of allocate_continuation() 

8.3.2.4 new( this. allocate_child() ) T 

Effects 
Allocates a task with a depth one more than this, with this as its parent. 528H506HFigure 8 
summarizes the state transition. 



 
Task Scheduling 

 

Reference Manual    117 117 

depth depth 

depth+1 

 

this this 

result 

refcount refcount 

0 

parent parent 

 

Figure 8: Effect of allocate_child() 

If using explicit continuation passing, then the continuation, not the parent, should call 
the allocation method, so that parent is set correctly. The task this must be owned 

by the current thread. 

If the number of tasks is not a small fixed number, consider building a task_list 
(507H 8.5) of the children first, and spawning them with a single call to task::spawn 
(508H 8.3.6.3). If a task must spawn some children before all are constructed, it should 
use task::allocate_additional_child_of(*this) instead, because that method 

atomically increments refcount, so that the additional child is properly accounted. 
However, if doing so, the task must protect against premature zeroing of refcount by 
using a blocking-style task pattern. 

8.3.2.5 new( this.task::allocate_additional_child_of( parent )) 

Effects 
Allocates a task as a child of another task parent. The result becomes a child of 
parent, not this. The parent may be owned by another thread, and may be already 
running or have other children running. The task object this must be owned by the 

current thread, and the result has the same owner as the current thread, not the 
parent. 531H509HFigure 9 summarizes the state transition. 



 
Intel(R) Threading Building Blocks 

 

118   315415-001US 

depth 

depth+1 

 

parent 

result 

refcount+1 

0 

grandparent

depth 

parent 

refcount 

grandparent

(result.owner=this. owner) 

 

this 

 

 

 

this 

 

 

 

Figure 9: Effect of allocate_additional_child_of(parent) 

Because parent may already have running children, the increment of parent.refcount 

is thread safe (unlike the other allocation methods, where the increment is not thread 
safe). When adding a child to a parent with other children running, it is up to the 
programmer to ensure that the parent’s refcount does not prematurely reach 0 and 
trigger execution of the parent before the child is added. 

8.3.3 Explicit task Destruction 
Usually, a task is automatically destroyed by the scheduler after its method execute 
returns. But sometimes task objects are used idiomatically (e.g. for reference 
counting) without ever running  execute. Such tasks should be disposed of with 
method destroy.  

8.3.3.1 void destroy( task& victim ) 

Requirements 
The reference count of victim should be 0. This requirement is checked in the debug 
version of the library. The calling thread must own this. 

Effects 
Calls destructor and deallocates memory for victim. If this has non-null parent, 
atomically decrements parent->refcount. The parent is not put into the ready pool if 
parent->refcount becomes zero. 532H510HFigure 10 summarizes the state transition. 

The implicit argument this is used internally, but not visibly affected. A task is 
allowed to destroy itself; e.g., “this->destroy(*this)” is permitted unless the task 
has been spawned but has not yet completed method execute.  



 
Task Scheduling 

 

Reference Manual    119 119 

depth 

 

victim 

0 

 

this 

 

 

 

 

parent 

refcount 

 

this 

 

 

 

 

parent 

refcount-1 

refcount adjustment skipped if if parent is null 

(can be null) 

 

Figure 10: Effect of destroy(victim) 

8.3.4 Recycling Tasks 
It is often more efficient to recycle a task object rather than reallocate one from 

scratch. Often the parent can become the continuation, or one of the children.  

8.3.4.1 void recycle_as_continuation() 

Requirements 
Must be called while method execute() is running. 

The refcount for the recycled task should be set to n, where n is the number of 
children of the continuation task. 

NOTE: The caller must guarantee that the task’s refcount does not become zero until after 
the method execute() returns. If this is not possible, use the method 
recycle_as_safe_continuation() instead, and set refcount to n+1. 

Effects 
Causes this to not be destroyed when method execute() returns. 

8.3.4.2 void recycle_as_safe_continuation() 

Requirements 
Must be called while method execute() is running. 

The refcount for the recycled task should be set to n+1, where n is the number of 
children of the continuation task. The additional +1 represents the task to be recycled. 



 
Intel(R) Threading Building Blocks 

 

120   315415-001US 

Effects 
Causes this to not be destroyed when method execute() returns.  

This method avoids race conditions that can arise from using the method 
recycle_as_continuation. The race occurs when: 

The method execute() recycles this as a continuation. 

The continuation creates children. 

All the children finish before method execute() completes, so the continuation 
executes before the scheduler is done running this, which corrupts the scheduler. 

Method recycle_as_safe_continuation avoids this race because the additional +1 in 
the refcount prevents the continuation from executing until the task completes. 

8.3.4.3 void recycle_as_child_of( task& new_parent ) 

Requirements 
Must be called while method execute() is running. 

Effects 
Causes this to become a child of new_parent, and not be destroyed when method 
execute() returns. 

8.3.4.4 void recycle _to_reexecute() 

Requirements 
Only valid to call while method execute() is running. When method execute() 
returns, it must return a pointer to another task. 

Effects 
Causes this to be automatically spawned after execute() returns.  

8.3.5 task Depth 
For general fork-join parallelism, there is no need to explicitly set the depth of a task. 
However, in specialized task patterns that do not follow the fork-join pattern, it may 
be useful to explicitly set or adjust the depth of a task. 

8.3.5.1 depth_type  
The type task::depth_type is an implementation-defined signed integral type. 



 
Task Scheduling 

 

Reference Manual    121 121 

8.3.5.2 depth_type depth() const 

Returns 
Current depth attribute for the task. 

8.3.5.3 void set_depth( depth_type new_depth ) 

Requirements 
The value new_depth must be non-negative. 

Effects 
Sets the depth attribute of the task to new_depth. 533H511HFigure 11 shows the update.  

new_depth depth 

this this 

refcount refcount 

parent parent 

 

Figure 11: Effect of set_depth 

8.3.5.4 void add_to_depth( int delta ) 

Requirements 
The task must not be in the ready pool. The sum depth+delta must be non-negative. 

Effects 
Sets the depth attribute of the task to depth+delta. 534H512HFigure 12 illustrates the effect. 
The update is not atomic. 

depth+delta depth 

this this 

refcount refcount 

parent parent 

 

Figure 12: Effect of add_to_depth(delta) 

8.3.6 Synchronization 
Spawning a task task either causes the calling thread to invoke task.execute(), or 
causes task to be put into the ready pool. Any thread participating in task scheduling 
may then acquire the task and invoke task.execute(). Section 535H513H 8.1 describes the 
structure of the ready pool. 



 
Intel(R) Threading Building Blocks 

 

122   315415-001US 

The calls that spawn come in two forms: 

• Spawn a single task. 

• Spawn multiple task objects specified by a task_list and clear task_list. 

The calls distinguish between spawning root tasks and child tasks. A root task is one 
that was created using method allocate_root. 

Important 
A task should not spawn any child until it has called method set_ref_count to 

indicate both the number of children and whether it intends to use one of the 
"wait_for_all" methods. 

8.3.6.1 void set_ref_count( int count ) 

Requirements 
count>0. If the intent is to subsequently spawn n children and wait, then count should 
be n+1. Otherwise count should be n. 

Effects 
Sets the refcount attribute to count. 

8.3.6.2 void wait_for_all() 

Requirements 
refcount=n+1, where n is the number of children who are still running.  

Effects 
Executes tasks in ready pool until refcount is 1. Afterwards sets refcount to 0. 536H514HFigure 
13 summarizes the state transitions. 

Also, wait_for_all()automatically resets the cancellation state of the 
task_group_context implicitly associated with the task (515H 8.6), when all of the 
following conditions hold: 

o The task was allocated without specifying a context. 

o The calling thread is a user-created thread, not a TBB worker thread. 

o It is the outermost call to wait_for_all() by the thread. 

TIP: Under such conditions there is no way to know afterwards if the task_group_context 
was cancelled. Use an explicit task_group_context if you need to know. 



 
Task Scheduling 

 

Reference Manual    123 123 

depth depth 

this this 

0 n+1 

dependent dependent 

n = previously spawned 
children who are still running

 

Figure 13: Effect of wait_for_all 

8.3.6.3 void spawn( task& child ) 

Requirements 
child.refcount>0 

The calling thread must own this and child. 

Effects 

Puts the task into the ready pool and immediately returns. The this task that does 
the spawning must be owned by the caller thread. A task may spawn itself if it is 
owned by the caller thread. If no convenient task owned by the current thread is 
handy, use task::self().spawn(task) to spawn task.  

The parent must call set_ref_count before spawning any child tasks, because once 
the child tasks are going, their completion will cause refcount to be decremented 
asynchronously. The debug version of the library detects when a required call to 
set_ref_count is not made, or is made too late. 

8.3.6.4 void spawn ( task_list& list ) 

Requirements 

For each task in list, refcount>0. The calling thread must own this and each task in 
list. Each task in list must be the same value for its depth attribute. 

Effects 

Equivalent to executing spawn on each task in list and clearing list, but more efficient. 
If list is empty, there is no effect. 



 
Intel(R) Threading Building Blocks 

 

124   315415-001US 

8.3.6.5 void spawn_and_wait_for_all( task& child ) 

Requirements 

Any other children of this must already be spawned. The task child must have a non-
null attribute parent. There must be a chain of parent links from the child to the 
calling task. Typically, this chain contains a single link. That is, child is typically a 
child of this.  

Effects 

Similar to {spawn(task); wait_for_all();}, but often more efficient. Furthermore, 
it guarantees that task is executed by the current thread. This constraint can 
sometimes simplify synchronization. 537H516HFigure 14 illustrates the state transitions.  

depth depth 

this this 

0 refcount 

depth+1 

 

child 

0 

dependent dependent 

previously spawned children 
who have not completed. 

 

Figure 14: Effect of spawn_and_wait_for_all 

8.3.6.6 void spawn_and_wait_for_all( task_list& list ) 

Effects 

Similar to {spawn(list); wait_for_all();}, but often more efficient.  

8.3.6.7 static void spawn_root_and_wait( task& root ) 

Requirements 

The memory for task root was allocated by task::allocate_root(). The calling 
thread must own root. 

Effects 

Sets parent attribute of root to an undefined value and execute root as described in 
Section 538H517H 8.3.1.1. Destroys root afterwards unless root was recycled. 



 
Task Scheduling 

 

Reference Manual    125 125 

8.3.6.8 static void spawn_root_and_wait( task_list& root_list ) 

Requirements 

each task object t in root_list must meet the requirements in Section 539H518H 8.3.6.7. 

Effects 

For each task object t in root_list, performs spawn_root_and_wait(t), possibly in 
parallel. Section 540H519H 8.3.6.7 describes the actions of  spawn_root_and_wait(t). 

8.3.7 task Context 
These methods expose relationships between task objects, and between task objects 
and the underlying physical threads. 

8.3.7.1 static task& self() 

Returns 

Reference to innermost task that calling thread is running. A task is considered 
“running” if its methods execute(), note_affinity(), or destructor are running. If 
the calling thread is a user-created thread that is not running any task, self() 
returns a reference to an implicit dummy task associated with the thread. 

8.3.7.2 task* parent() const 

Returns 
Value of the attribute parent. The result is an undefined value if the task was allocated 
by allocate_root and is currently running under control of spawn_root_and_wait. 

8.3.7.3 bool is_stolen_task() const 

Requirements 

The attribute parent is not null and this.execute() is running. The calling task must 
not have been allocated with allocate_root. 

Returns 

true if the attribute owner of this is unequal to owner of parent. 

8.3.8 Cancellation 
A task is a quantum of work that is cancelled or executes to completion. A cancelled 
task skips its method execute() if that method has not yet started. Otherwise 



 
Intel(R) Threading Building Blocks 

 

126   315415-001US 

cancellation has no direct effect on the task. A task can poll task::is_cancelled() to 
see if cancellation was requested after it started running. 

Tasks are cancelled in groups as explained in Section 520H 8.6. 

8.3.8.1 bool cancel_group_execution() 

Effects 
Requests cancellation of all tasks in its group and its subordinate groups.  

Returns 
False if the task’s group already received a cancellation request; true otherwise. 

8.3.8.2 bool is_cancelled() const 

Returns 
True if task’s group has received a cancellation request; false otherwise. 

8.3.9 Affinity 
These methods enable optimizing for cache affinity. They enable you to hint that a 
later task should run on the same thread as another task that was executed earlier. 
To do this: 

1. In the earlier task, override note_affinity(id) with a definition that records id. 

2. Before spawning the later task, run set_affinity(id) using the id recorded in 
step 1,  

The id is a hint and may be ignored by the scheduler. 

8.3.9.1 affinity_id  
The type task::affinity_id is an implementation-defined unsigned integral type. A 

value of 0 indicates no affinity. Other values represent affinity to a particular thread.  
Do not assume anything about non-zero values. The mapping of non-zero values to 

threads is internal to the TBB implementation.  

8.3.9.2 virtual void note_affinity ( affinity_id id ) 

The task scheduler invokes note_affinity before invoking execute() when: 

• The task has no affinity, but will execute on a thread different than the one that 
spawned it.  

• The task has affinity, but will execute on a thread different than the one specified 
by the affinity.  

You can override this method to record the id, so that it can be used as the argument 
to set_affinity(id) for a later task. 



 
Task Scheduling 

 

Reference Manual    127 127 

Effects 

The default definition has no effect. 

8.3.9.3 void set_affinity( affinity_id id ) 

Effects 
Sets affinity of this task to id. The id should be either 0 or obtained from 
note_affinity.  

8.3.9.4 affinity_id affinity() const 

Returns 
Affinity of this task as set by set_affinity. 

8.3.10 task Debugging 
Methods in this subsection are useful for debugging. They may change in future 
implementations.  

8.3.10.1 state_type state() const 

CAUTION: This method is intended for debugging only. Its behavior or performance may change 
in future implementations. The definition of task::state_type may change in future 
implementations. This information is being provided because it can be useful for 
diagnosing problems during debugging.  

Returns 

Current state of the task. 541H521HTable 26 describes valid states. Any other value is the result 
of memory corruption, such as using a task whose memory has been deallocated. 

Table 26: Values Returned by task::state() 

Value Description 

allocated Task is freshly allocated or recycled. 

ready Task is in ready pool, or is in process of being transferred to/from 
there.  

executing Task is running, and will be destroyed after method execute() returns. 

freed Task is on internal free list, or is in process of being transferred 
to/from there.  

reexecute Task is running, and will be respawned after method execute() 
returns.  



 
Intel(R) Threading Building Blocks 

 

128   315415-001US 

542H522HFigure 15 summarizes possible state transitions for a task.  

freed 

allocated 

reexecute 

allocate_...(t) 

(implicit)

spawn(t)

s
p
a
w
n
_
a
n
d
_
w
a
i
t
_
f
o
r
_
a
l
l
(
t
)
 

return from t.execute()

return from 
t.execute()

t.recycle_to_reexecute 

ready 

executing
t.recycle_as... 

(implicit)

storage returned to heap

d
e
s
t
r
o
y
(
t
)

allocate_...(t)

storage from heap

 

Figure 15: Typical task::state() Transitions 

8.3.10.2 int ref_count() const 

CAUTION: This method is intended for debugging only. Its behavior or performance may change 
in future implementations. 

Returns 
The value of the attribute refcount. 



 
Task Scheduling 

 

Reference Manual    129 129 

8.4 empty_task Class 
Summary 

Subclass of task that represents doing nothing. 

Syntax 
class empty_task; 

Header 
#include "tbb/task.h" 

Description 
An empty_task is a task that does nothing. It is useful as a continuation of a parent 

task when the continuation should do nothing except wait for its children to complete. 

Members 
namespace tbb { 
    class empty_task: public task { 
        /*override*/ task* execute() {return NULL;} 
    };   
}  

8.5 task_list Class 

Summary 

List of task objects. 

Syntax 
class task_list; 

Header 
#include "tbb/task.h" 

Description 

A task_list is a list of references to task objects. The purpose of task_list is to 
allow a task to create a list of child tasks and spawn them all at once via the method 
task::spawn(task_list&), as described in 543H523H 8.3.6.4. 



 
Intel(R) Threading Building Blocks 

 

130   315415-001US 

A task can belong to at most one task_list at a time, and on that task_list at 
most once. A task that has been spawned, but not started running, must not belong 
to a task_list. A task_list cannot be copy-constructed or assigned. 

Members 
namespace tbb { 
   class task_list { 
    public: 
        task_list(); 
        ~task_list(); 
        bool empty() const; 
        void push_back( task& task ); 
        task& pop_front(); 
        void clear(); 
    }; 
}  

8.5.1 task_list() 

Effects 

Constructs an empty list. 

8.5.2 ~task_list() 

Effects 

Destroys the list. Does not destroy the task objects. 

8.5.3 bool empty() const 

Returns 

True if list is empty; false otherwise. 

8.5.4 push_back( task& task ) 

Effects 

Inserts a reference to task at back of the list. 



 
Task Scheduling 

 

Reference Manual    131 131 

8.5.5 task& task pop_front() 

Effects 

Removes a task reference from front of list. 

Returns 

The reference that was removed. 

8.5.6 void clear() 

Effects 

Removes all task references from the list. Does not destroy the task objects. 

8.6 task_group_context 
Summary 

A cancellable group of tasks. 

Syntax 
class task_group_context; 

Header 
#include “tbb/task.h” 

Description 

A task_group_context represents a group of tasks that can be cancelled together. 
The task_group_context objects form a forest of trees. Each tree’s root is a 
task_group_context constructed as isolated. 

A task_group_context is cancelled explicitly by request, or implicitly when an 
exception is thrown out of a task. Cancelling a task_group_context causes the entire 
subtree rooted at it to be cancelled.  

Each user thread that creates a task_scheduler_init (524H 8.2) implicitly has an 
isolated task_group_context that acts as the root of its initial tree. This context is 
associated with the dummy task returned by task::self() when the user thread is 
not running any task (525H 8.3.7.1). 

Members 
namespace tbb { 



 
Intel(R) Threading Building Blocks 

 

132   315415-001US 

    class task_group_context { 
    public: 
        enum kind_t { 
            isolated = implementation-defined, 
            bound = implementation-defined 
        }; 
        task_group_context( kind_t relation_to_parent = bound ); 
        ~task_group_context(); 
        void reset(); 
        bool cancel_group_execution(); 
        bool is_group_execution_cancelled() const; 
    };   
} 

8.6.1 task_group_context( kind_t 
relation_to_parent=bound ) 

Effects 

Constructs an empty task_group_context. If relation_to_parent is bound, the 
task_group_context becomes a child of the current innermost task_group_context. If 
relation_to_parent is isolated, it has no parent task_group_context.  

8.6.2 ~task_group_context() 

Effects 

Destroys an empty task_group_context. It is a programmer error if there are still 
extant tasks in the group. 

8.6.3 bool cancel_group_execution() 

Effects 

Requests that tasks in group be cancelled. 

Returns 

False if group is already cancelled; true otherwise. If concurrently called by multiple 
threads, exactly one call returns true and the rest return false. 



 
Task Scheduling 

 

Reference Manual    133 133 

8.6.4 bool is_group_execution_cancelled() const  

Returns 

True if group has received cancellation.  

8.6.5 void reset() 

Effects 

Reinitializes this to uncancelled state. 

CAUTION: This method is only safe to call once all tasks associated with the group's subordinate 
groups have completed. This method must not be invoked concurrently by multiple 
threads. 

8.7 task_scheduler_observer 
Summary 
Class that represents thread's interest in task scheduling services. 

Syntax 
class task_scheduler_observer; 

Header 
#include "tbb/task_scheduler_observer.h" 

Description 

A task_scheduler_observer permits clients to observe when a thread starts or stops 
participating in task scheduling. You typically derive your own observer class from 
task_scheduler_observer, and override virtual methods on_scheduler_entry or 
on_scheduler_exit.  

Members 
namespace tbb { 
    class task_scheduler_observer { 
    public: 
        task_scheduler_observer(); 
        virtual ~task_scheduler_observer(); 
        void observe( bool state=true ); 
        bool is_observing() const; 
        virtual void on_scheduler_entry( bool is_worker ) {} 



 
Intel(R) Threading Building Blocks 

 

134   315415-001US 

        virtual void on_scheduler_exit( bool is_worker } {} 
    };   
} 

8.7.1 task_scheduler_observer() 

Effects 

Constructs instance with observing disabled. 

8.7.2 ~task_scheduler_observer() 

Effects 
Disables observing. Waits for extant invocations of on_scheduler_entry or 
on_scheduler_exit to complete. 

8.7.3 void observe( bool state=true ) 

Effects 

Enables observing if state is true; disables observing if state is false. 

8.7.4 bool is_observing() const 

Returns 

True if observing is enabled; false otherwise. 

8.7.5 virtual void on_scheduler_entry( bool 
is_worker) 

Description 

The task scheduler invokes this method when a thread starts participating in task 
scheduling. If the instance of task_scheduler_observer is created after threads 
started participating, then this method is invoked once for each such thread, before it 
executes the first task it steals afterwards.  

The flag is_worker is true if the thread was created by the TBB scheduler; false 
otherwise. 



 
Task Scheduling 

 

Reference Manual    135 135 

NOTE: If a thread creates a task_scheduler_observer before spawning a task, it is 
guaranteed that the thread that executes the task will have invoked 
on_scheduler_entry before executing the task.  

Effects 

The default behavior does nothing. 

8.7.6 virtual void on_scheduler_exit( bool is_worker 
) 

Description 

The task scheduler invokes this method when a thread stops participating in task 
scheduling.  

CAUTION: Sometimes on_scheduler_exit is invoked for a thread but not on_scheduler_entry. 

This situation can arise if a thread never steals a task.  

Effects 

The default behavior does nothing. 

8.8 Catalog of Recommended task Patterns 
This section catalogues recommended task patterns. In each pattern, class T is 
assumed to derive from class task. Subtasks are labeled t1, t2, ... tk. The 

subscripts indicate the order in which the subtasks execute if no parallelism is 
available. If parallelism is available, the subtask execution order is non-deterministic, 
except that t1 is guaranteed to be executed by the spawning thread. 

Recursive task patterns are recommended for efficient scalable parallelism, because 
they allow the task scheduler to unfold potential parallelism to match available 
parallelism. A recursive task pattern begins by creating a root task t0 and running it as 
as follows.  
T& t0 = *new(allocate_root()) T(...);   
task::spawn_root_and_wait(*t0); 

The root task’s method execute() recursively creates more tasks as described in 
subsequent subsections.  

8.8.1 Blocking Style With k Children 
The following shows the recommended style for a recursive task of type T where each 
level spawns k children. 

task* T::execute() { 



 
Intel(R) Threading Building Blocks 

 

136   315415-001US 

    if( not recursing any further ) { 
        ... 
    } else { 
        set_ref_count(k+1); 
        task& tk = *new(allocate_child()) T(...);  spawn(tk); 
        task& tk-1= *new(allocate_child()) T(...);  spawn(tk-1); 
        ... 
        task& t1 = *new(allocate_child()) T(...);    
        spawn_and_wait_for_all(t1); 
    } 
    return NULL; 
} 

Child construction and spawning may be reordered if convenient, as long as a task is 
constructed before it is spawned.  

The key points of the pattern are: 

• The call to set_ref_count uses k+1 as its argument. The extra 1 is critical. 

• Each task is allocated by allocate_child. 

• The call spawn_and_wait_for_all combines spawning and waiting. A more uniform 
but slightly less efficient alternative is to spawn all tasks with spawn and wait by 
calling wait_for_all.  

8.8.2 Continuation-Passing Style With k Children 
There are two recommended styles. They differ in whether it is more convenient to 
recycle the parent as the continuation or as a child. The decision should be based 
upon whether the continuation or child acts more like the parent. 

Optionally, as shown in the following examples, the code can return a pointer to one 
of the children instead of spawning it. Doing so causes the child to execute 
immediately after the parent returns. This option often improves efficiency because it 
skips pointless overhead of putting the task into the task pool and taking it back out. 

8.8.2.1 Recycling Parent as Continuation 
This style is useful when the continuation needs to inherit much of the state of the 
parent and the child does not need the state. The continuation must have the same 
type as the parent. 

task* T::execute() { 
    if( not recursing any further ) { 
        ... 
        return NULL; 
    } else { 
        set_ref_count(k); 
        recycle_as_continuation(); 
        task& tk  = *new(allocate_child()) T(...); spawn(tk); 



 
Task Scheduling 

 

Reference Manual    137 137 

        task& tk−1 = *new(allocate_child()) T(...); spawn(tk−1); 
        ... 
        // Return pointer to first child instead of spawning it, 
        // to remove unnecessary overhead. 
        task& t1 = *new(allocate_child()) T(...); 
        return &t1; 
    } 
} 

The key points of the pattern are: 

• The call to set_ref_count uses k as its argument. There is no extra +1 as there is 
in blocking style discussed in Section 544H526H 8.8.1. 

• Each child task is allocated by allocate_child. 

• The continuation is recycled from the parent, and hence gets the parent's state 
without doing copy operations. 

8.8.2.2 Recycling Parent as a Child 
This style is useful when the child inherits much of its state from a parent and the 
continuation does not need the state of the parent. The child must have the same type 
as the parent. In the example, C is the type of the continuation, and must derive from 
class task. If C does nothing except wait for all children to complete, then C can be 
the class empty_task (545H527H 8.4). 

task* T::execute() { 
    if( not recursing any further ) { 
        ... 
        return NULL; 
    } else { 
        set_ref_count(k); 
        // Construct continuation 
        C& c = allocate_continuation(); 
        // Recycle self as first child 
        task& tk  = *new(c.allocate_child()) T(...); spawn(tk); 

        task& tk−1 = *new(c.allocate_child()) T(...); spawn(tk−1); 
        ... 
        task& t2 = *new(c.allocate_child()) T(...);  spawn(t2); 
        // task t1 is our recycled self. 
        recycle_as_child_of(c); 
        update fields of *this to subproblem to be solved by t1 
        return this; 
    } 
} 

The key points of the pattern are: 

• The call to set_ref_count uses k as its argument. There is no extra 1 as there is in 
blocking style discussed in Section 546H528H 8.8.1. 



 
Intel(R) Threading Building Blocks 

 

138   315415-001US 

• Each child task except for t1 is allocated by c.allocate_child. It is critical to use 
c.allocate_child, and not (*this).allocate_child; otherwise the task graph 
will be wrong. 

• Task t1 is recycled from the parent, and hence gets the parent's state without 
performing copy operations. Do not forget to update the state to represent a child 
subproblem; otherwise infinite recursion will occur. 

8.8.3 Letting Main Thread Work While Child Tasks 
Run 

Sometimes it is desirable to have the main thread continue execution while child tasks 
are running. The following pattern does this by using a dummy empty_task (529H 8.4). 
task* dummy = new( task::allocate_root() ) empty_task; 
dummy->set_ref_count(k+1); 
task& tk = *new( dummy->allocate_child() ) T;  dummy->spawn(tk); 
task& tk-1= *new( dummy->allocate_child() ) T;  dummy->spawn(tk-1); 
... 
task& t1 = *new( dummy->allocate_child() ) T;  dummy->spawn(t1); 
...do any other work... 
dummy->wait_for_all(); 
dummy->destroy(*dummy); 

The key points of the pattern are: 

• The dummy task is a placeholder and never runs.  

• The call to set_ref_count uses k+1 as its argument.  

• The dummy task must be explicitly destroyed. 

 



 
Exceptions 

 

Reference Manual    139 139 

9 Exceptions 
TBB propagates exceptions along logical paths in a tree of tasks. Because these paths 
cross between thread stacks, support for moving an exception between stacks is 
necessary.  

When an exception is thrown out of a task, it is caught inside the TBB run-time and 
handled as follows: 

1. If the cancellation group for the task has already been cancelled, the exception is 
ignored. 

2. Otherwise the exception is captured as follows: 

a. If it is a tbb_exception x, it is captured by x.move() 

b. If it is a std::exception x, it is captured as a 
captured_exception(typeid(x).name(),x.what()).  

c. Otherwise it is captured as a captured exception with implementation-
specified value for name() and what(). 

3. The captured exception is rethrown from the root of the cancellation group after 
all tasks in the group have completed or have been successfully cancelled.  

9.1 tbb_exception 
Summary 

Exception that can be moved to another thread. 

Syntax 
class tbb_exception; 

Header 
#include "tbb/tbb_exception.h" 

Description 
In a parallel environment, exceptions sometimes have to be propagated across 
threads. Class tbb_exception subclasses std::exception to add support for such 

propagation.  

Members 
namespace tbb { 



 
Intel(R) Threading Building Blocks 

 

140   315415-001US 

    class tbb_exception: public std::exception { 
        virtual tbb_exception* move() = 0; 
        virtual void destroy() throw() = 0; 
        virtual void throw_self() = 0; 
        virtual const char* name() throw() = 0; 
        virtual const char* what() throw() = 0; 
    };   
} 

Derived classes should define the abstract virtual methods as follows: 

• move() should create a pointer to a copy of the exception that can outlive the 
original. It may move the contents of the original. 

• destroy() should destroy a copy created by move(). 

• throw_self() should throw *this.  

• name() typically returns the RTTI name of the originally intercepted exception. 

• what() returns a null-terminated string describing the exception. 

9.2 captured_exception 
Summary 

Class used by TBB to propagate exception that is not a tbb_exception. 

Syntax 
class captured_exception; 

Header 
#include "tbb/tbb_exception.h" 

Description 
When a task throws an exception and the exception is not a tbb_exception, TBB 
converts the exception to a captured_exception before propagating it. Conversion is 

necessary so that the exception can be propagated across threads. 

Members 
namespace tbb { 
    class captured_exception: public tbb_exception { 
        captured_exception( const captured_exception& src ); 
        captured_exception( const char* name, const char* info ); 
        ~captured_exception() throw(); 
        captured_exception& operator=( const captured_exception& 
src ); 



 
Exceptions 

 

Reference Manual    141 141 

        captured_exception* move() throw(); 
        void destroy() throw(); 
        void throw_self(); 
        const char* name() const throw(); 
        const char* what() const throw(); 
    }; 
} 

Only the additions that captured_exception makes to tbb_exception are described 
here. Section 530H 9.1 describes the rest of the interface. 

9.2.1 captured_exception( const char* name, const 
char* info ) 

Effects 

Constructs a captured_exception with the specified name and info. 

9.3 movable_exception<ExceptionData> 
Summary 

Subclass of tbb_exception interface that supports propagating copy-constructible 
data. 

Syntax 
template<typename ExceptionData> class movable_exception; 

Header 
#include "tbb/tbb_exception.h" 

Description 
This template provides a convenient way to implement a subclass of tbb_exception 
that propagates arbitrary copy-constructible data.  

Members 
template<typename ExceptionData> 
namespace tbb { 
    class movable_exception: public tbb_exception { 
    public: 
        movable_exception( const ExceptionData& src ); 
        movable_exception( const movable_exception& src )throw(); 
        ~movable_exception() throw(); 



 
Intel(R) Threading Building Blocks 

 

142   315415-001US 

        movable_exception& operator=( const movable_exception& 
src ); 
        ExceptionData& data() throw(); 
        const ExceptionData& data() const throw(); 
        movable_exception* move() throw(); 
        void destroy() throw(); 
        void throw_self(); 
        const char* name() const throw(); 
        const char* what() const throw(); 
    }; 
} 

Only the additions that movable_exception makes to tbb_exception are described 
here. Section 531H 9.1 describes the rest of the interface.  

9.3.1 movable_exception( const ExceptionData& src 
) 

Effects 

Construct movable_exception containing copy of src. 

9.3.2 ExceptionData& data() throw() 

Returns 

Reference to contained data. 

9.3.3 const ExceptionData& data() const throw() 

Returns 

Const reference to contained data. 

 

 



 
Threads 

 

Reference Manual    143 143 

10 Threads 
TBB provides a wrapper around the platform’s native threads, based upon proposal 
N2497 for C++ 200x. Using this wrapper has two benefits: 

• It makes threaded code portable across platforms. 

• It eases later migration to ISO C++ 200x threads. 

The significant departures from N2497 are shown in 532HTable 27.  

Table 27: Differences Between N2497 and TBB Thread Class 

N2497 TBB 

std::thread tbb::tbb_thread 

std::this_thread tbb::tbb_this_thread 

std::this_thread::sleep ( system_time 
); 

tbb::tbb_this_thread::sleep(tick_count
::interval_t ) 

rvalue reference parameters Parameter changed to plain value, or 
function removed, as appropriate. 

constructor for std::thread takes 
arbitrary number of arguments. 

constructor for tbb::tbb_thread takes 
0-3 arguments. 

The name changes prevent identifier collisions when using directives are employed. 
The other changes are for compatibility with the current C++ standard or TBB. For 
example, constructors that have an arbitrary number of arguments require the 
variadic template features of C++ 200x. 

CAUTION: Threads are heavy weight on most systems, and running too many threads on a 
system can seriously degrade performance. Consider using a task based solution 
instead if practical.  

10.1 tbb_thread Class 
Summary 
Represents a thread of execution. 

Syntax 
class tbb_thread; 



 
Intel(R) Threading Building Blocks 

 

144   315415-001US 

Header 
#include "tbb/tbb_thread.h" 

Description 
Cass tbb_thread provides a platform independent interface to native threads. An 
instance represents a thread. A platform-specific thread handle can be obtained via 
method native_handle(). 

Members 
namespace tbb {     
    class tbb_thread { 
    public: 
#if _WIN32||_WIN64 
        typedef HANDLE native_handle_type; 
#else 
        typedef pthread_t native_handle_type; 
#endif // _WIN32||_WIN64 
 
        class id; 
 
        tbb_thread(); 
        template <typename F> explicit tbb_thread(F f); 
        template <typename F, typename X> tbb_thread(F f, X x); 
        template <typename F, typename X, typename Y>  
            tbb_thread (F f, X x, Y y); 
        ~tbb_thread(); 
 
        bool joinable() const; 
        void join(); 
        void detach(); 
        id get_id() const; 
        native_handle_type native_handle(); 
 
        static unsigned hardware_concurrency(); 
    }; 
}  

10.1.1 tbb_thread() 

Effects 

Constructs tbb_thread that does not represent a thread of execution, with 
get_id()==id(). 



 
Threads 

 

Reference Manual    145 145 

template<typename F> tbb_thread(F f) 

Effects 

Construct tbb_thread that evaluates f() 

10.1.2 template<typename F, typename X> 
tbb_thread(F f, X x) 

Effects 

Constructs tbb_thread that evaluates f(x). 

10.1.3 template<typename F, typename X, typename 
Y> tbb_thread(F f, X x, Y y) 

Effects 

Constructs tbb_thread that evaluates f(x,y). 

10.1.4 ~tbb_thread 

Effects 

if( joinable() ) detach(). 

10.1.5 bool joinable() const 

Returns 
get_id()!=id() 

10.1.6 void join() 

Requirements 

joinable()==true 

Effects 

Wait for thread to complete. Afterwards, joinable()==false. 



 
Intel(R) Threading Building Blocks 

 

146   315415-001US 

10.1.7 void detach() 

Requirements 

joinable()==true 

Effects 

Sets *this to default constructed state and returns without blocking. The thread 
represented by *this continues execution.  

10.1.8 id get_id() const 

Returns 

id of the thread, or a default-constructed id if *this does not represent a thread. 

10.1.9 native_handle_type native_handle() 

Returns 

Native thread handle. The handle is a HANDLE on Windows* systems and a pthread_t 
on Linux* Systems and Mac OS* X Systems. For these systems, native_handle() 
returns 0 if joinable()==false. 

10.1.10 static unsigned hardware_concurrency() 

Returns 

The number of hardware threads. For example, 4 on a system with a single Intel® 
Core™2 Quad processor.  

10.2 tbb_thread:: id 
Summary 
Unique identifier for a thread. 

Syntax 
class tbb_thread::id; 

Header 
#include "tbb/tbb_thread.h" 



 
Threads 

 

Reference Manual    147 147 

Description 
A tbb_thread::id is an identifier value for a thread that remains unique over the 
thread’s lifetime. A special value tbb_thread::id() represents no thread of execution. 
The instances are totally ordered.  

Members 

namespace tbb {     
    class tbb_thread::id { 
    public: 
        id(); 
    }; 
    template<typename charT, typename traits> 
    std::basic_ostream<charT, traits>&  
        operator<< (std::basic_ostream<charT, traits> &out, 
                    tbb_thread::id id) 
         
    bool operator==(tbb_thread::id x, tbb_thread::id y); 
    bool operator!=(tbb_thread::id x, tbb_thread::id y); 
    bool operator<(tbb_thread::id x, tbb_thread::id y); 
    bool operator<=(tbb_thread::id x, tbb_thread::id y); 
    bool operator>(tbb_thread::id x, tbb_thread::id y); 
    bool operator>=(tbb_thread::id x, tbb_thread::id y); 
} // namespace tbb 

10.3 this_tbb_thread Namespace 

Description 

Namespace this_tbb_thread contains global functions related to threading. 

Members 
namepace tbb { 
    namespace this_tbb_thread { 
        tbb_thread::id get_id(); 
        void yield(); 
        void sleep( const tick_count::interval_t ); 
    } 
} 
 

10.3.1 tbb_thread::id get_id() 

Returns 



 
Intel(R) Threading Building Blocks 

 

148   315415-001US 

Id of the current thread. 

10.3.2 void yield() 
Effects 

Offers to suspend current thread so that another thread may run.  

10.3.3 void sleep( const tick_count::interval_t & i) 

Effects 
Current thread blocks for at least time interval i. 

Example 

using namespace tbb; 
 
void Foo() { 
    // Sleep 30 seconds 
    this_tbb_thread::sleep( tick_count::interval_t(30) ); 
} 
 

 



 
References 

 

Reference Manual    149 149 

11 References 
Umut A. Acar, Guy E. Blelloch, Robert D. Blumofe, The Data Locality of Work Stealing. 
ACM Symposium on Parallel Algorithms and Architectures (2000):1-12. 

Robert D.Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson, 
Keith H. Randall, and Yuli Zhou. Cilk: An Efficient Multithreaded Runtime System. 
Proceedings of the 5th ACM SIGPLAN Symposium on Principles and Practice of Parallel 
Programming (July 1995):207–216. 

H. Hinnant, L. Crowl, Beman Dawes, A. WIlliams, J. Garland, Multi-threading Library 
for Standard C++ (Revision 1), ISO/IEC JTC1 SC22 WG21 5HN2497. 

Steve MacDonald, Duane Szafron, and Jonathan Schaeffer. Rethinking the Pipeline as 
Object-Oriented States with Transformations. 9th International Workshop on High-
Level Parallel Programming Models and Supportive Environments (April 2004):12-21. 

V. Kumar and V. N. Rao, "Parallel Depth First Search. Part II. Analysis", International 
Journal of Parallel Programming (December 1987): 501-519. 

ISO/IEC 14882, Programming Languages – C++  

Ping An, Alin Jula, Silvius Rus, Steven Saunders, Tim Smith, Gabriel Tanase, Nathan 
Thomas, Nancy Amato, Lawrence Rauchwerger. STAPL: An Adaptive, Generic Parallel 
C++ Library. Workshop on Language and Compilers for Parallel Computing (LCPC 
2001), Cumberland Falls, Kentucky Aug 2001. Lecture Notes in Computer Science 
2624 (2003): 193-208. 

S. G. Akl and N. Santoro, "Optimal Parallel Merging and Sorting Without Memory 
Conflicts", IEEE Transactions on Computers, Vol. C-36 No. 11, Nov. 1987. 



 
Intel(R) Threading Building Blocks 

 

150   315415-001US 

Appendix A Compatibility Features 
This appendix describes features of TBB that remain for compatibility with previous 
versions. These features are deprecated and may disappear in future versions of TBB. 

A.1 parallel_while Template Class 
Summary 
Template class that processes work items.  

TIP: This class is deprecated. Use parallel_do (533H 3.7) instead. 

Syntax 
template<typename Body>  
class parallel_while; 

Header 
#include "tbb/parallel_while.h" 

Description 
A parallel_while<Body> performs parallel iteration over items. The processing to be 
performed on each item is defined by a function object of type Body. The items are 

specified in two ways: 

• A stream of items.  

• Additional items that are added while the stream is being processed. 

477H534HTable 28 shows the requirements on the stream and body. 

Table 28: parallel_while Requirements for Stream S and Body B 

Pseudo-Signature Semantics 

bool S::pop_if_present( B::argument_type& 
item ) 

Get next stream item. 
parallel_while does not 
concurrently invoke the method 
on the same this. 

B::operator()( B::argument_type& item ) 
const 

Process item. parallel_while 
may concurrently invoke the 
operator for the same this but 
different item. 



 
References 

 

Reference Manual    151 151 

Pseudo-Signature Semantics 

B::argument_type() Default constructor. 

B::argument_type( const B::argument_type& 
) 

Copy constructor. 

~B::argument_type() Destructor. 

For example, a unary function object, as defined in Section 20.3 of the C++ standard, 
models the requirements for B. A concurrent_queue (535H 4.3)  models the requirements 

for S. 

TIP: To achieve speedup, the grainsize of B::operator() needs to be on the order of at 
least ~10,000 instructions. Otherwise, the internal overheads of parallel_while 
swamp the useful work. The parallelism in parallel_while is not scalable if all the 

items come from the input stream. To achieve scaling, design your algorithm such 
that method add often adds more than one piece of work.  

Members 
namespace tbb { 
    template<typename Body> 
    class parallel_while { 
    public: 
        parallel_while(); 
        ~parallel_while(); 
 
        typedef typename Body::argument_type value_type; 
 
        template<typename Stream> 
        void run( Stream& stream, const Body& body ); 
 
        void add( const value_type& item ); 
    }; 
}  

A.1.1 parallel_while<Body>() 

Effects 
Constructs a parallel_while that is not yet running. 

A.1.2 ~parallel_while<Body>() 

Effects 
Destroys a parallel_while. 



 
Intel(R) Threading Building Blocks 

 

152   315415-001US 

A.1.3 Template <typename Stream> void run( Stream& stream, 
const Body& body )  

Effects 
Applies body to each item in stream and any other items that are added by method 
add. Terminates when both of the following conditions become true: 

• stream.pop_if_present returned false.  

• body(x) returned for all items x generated from the stream or method add.  

A.1.4 void add( const value_type& item )  

Requirements 
Must be called from a call to body.operator() created by parallel_while. 
Otherwise, the termination semantics of method run are undefined. 

Effects 
Adds item to collection of items to be processed.  

A.2 Interface for constructing a pipeline filter  
The interface for constructing a filter evolved over several releases of TBB. The two 
following subsections describe obsolete aspects of the interface. 

A.2.1 filter::filter( bool is_serial ) 

Effects 
Constructs a serial in order filter if is_serial is true, or a parallel filter if is_serial is 
false. This deprecated constructor is superseded by the constructor filter( 
filter::mode ) described in Section 536H 3.8.6.1. 

A.2.2 filter::serial 
The filter mode value filter::serial is now named filter::serial_in_order. 
The new name distinguishes it more clearly from the mode 
filter::serial_out_of_order. 



 
References 

 

Reference Manual    153 153 

A.3 Debugging Macros 
The names of the debugging macros have changed as shown in 537HTable 29. If you define 
the old macros, TBB sets each undefined new macro in a way that duplicates the 
behavior the old macro settings. 

The old TBB_DO_ASSERT enabled assertions, full support for Intel® Threading Tools, 
and performance warnings. These three distinct capabilities are now controlled by 
three separate macros as described in Section 538H 2.6.  

TIP: To enable all three capabilities with a single macro, define TBB_USE_DEBUG to be 1. If 
you had code under “#if TBB_DO_ASSERT” that should be conditionally included only 
when assertions are enabled, use “#if TBB_USE_ASSERT” instead. 

Table 29: Deprecated Macros 

Deprecated Macro New Macro 

TBB_DO_ASSERT TBB_USE_DEBUG or TBB_USE_ASSERT, 
depending on context. 

TBB_DO_THREADING_TOOLS TBB_USE_THREADING_TOOLS 

 


	Disclaimer and Legal Information
	Revision History
	Contents
	1 Overview
	2 General Conventions
	2.1 Notation
	2.2 Terminology
	2.2.1 Concept
	2.2.2 Model
	2.2.3 CopyConstructible

	2.3 Identifiers
	2.3.1 Case
	2.3.2 Reserved Identifier Prefixes

	2.4 Namespaces
	2.4.1 tbb Namespace
	2.4.2 tbb::internal Namespace

	2.5 Thread Safety
	2.6 Enabling Debugging Features
	2.6.1 TBB_USE_ASSERT Macro
	2.6.2 TBB_USE_THREADING_TOOLS Macro
	2.6.3 TBB_USE_PERFORMANCE_WARNINGS Macro

	2.7 Version Information
	2.7.1 Version Macros 
	2.7.2 TBB_VERSION Environment Variable
	2.7.3 TBB_runtime_interface_version Function


	3 Algorithms
	3.1 Splittable Concept
	3.1.1 split Class

	3.2 Range Concept
	3.2.1 blocked_range<Value> Template Class
	3.2.1.1 size_type
	3.2.1.2 blocked_range( Value begin, Value end, size_t grainsize=1 )
	3.2.1.3 blocked_range( blocked_range& range, split )
	3.2.1.4 size_type size() const
	3.2.1.5 bool empty() const
	3.2.1.6 size_type grainsize() const
	3.2.1.7 bool is_divisible() const
	3.2.1.8 const_iterator begin() const
	3.2.1.9 const_iterator end() const

	3.2.2 blocked_range2d Template Class
	3.2.2.1 row_range_type
	3.2.2.2 col_range_type
	3.2.2.3 blocked_range2d<RowValue,ColValue>( RowValue row_begin, RowValue row_end, typename row_range_type::size_type row_grainsize, ColValue col_begin, ColValue col_end, typename col_range_type::size_type col_grainsize )
	3.2.2.4 blocked_range2d<RowValue,ColValue>( RowValue row_begin, RowValue row_end, ColValue col_begin, ColValue col_end)
	3.2.2.5 blocked_range2d<RowValue,ColValue> ( blocked_range2d& range, split )
	3.2.2.6 bool empty() const
	3.2.2.7 bool is_divisible() const
	3.2.2.8 const row_range_type& rows() const
	3.2.2.9 const col_range_type& cols() const

	3.2.3 blocked_range3d Template Class

	3.3 Partitioners
	3.3.1 simple_partitioner Class
	3.3.1.1 simple_partitioner()
	3.3.1.2 ~simple_partitioner()

	3.3.2 auto_partitioner Class
	3.3.2.1 auto_partitioner()
	3.3.2.2 ~auto_partitioner()

	3.3.3 affinity_partitioner
	3.3.3.1 affinity_partitioner()
	3.3.3.2 ~affinity_partitioner()


	3.4 parallel_for<Range,Body> Template Function
	3.5 parallel_reduce<Range,Body> Template Function
	3.6 parallel_scan<Range,Body> Template Function
	3.6.1 pre_scan_tag and final_scan_tag Classes
	3.6.1.1 bool is_final_scan()


	3.7 parallel_do<InputIterator,Body> Template Function
	3.7.1 parallel_do_feeder<Item> class
	3.7.1.1 void add( const Item& item ) 


	3.8 pipeline Class
	3.8.1 pipeline() 
	3.8.2 ~pipeline()
	3.8.3 void add_filter( filter& f )
	3.8.4 void run( size_t max_number_of_live_tokens )
	3.8.5 void clear()
	3.8.6 filter Class
	3.8.6.1 filter( mode filter_mode )
	3.8.6.2 ~filter()
	3.8.6.3 bool is_serial() const
	3.8.6.4 bool is_ordered() const
	3.8.6.5 virtual void* operator()( void * item )
	3.8.6.6 virtual void finalize( void * item )


	3.9 parallel_sort<RandomAccessIterator, Compare> Template Function

	4 Containers
	4.1 Container Range Concept
	4.2 concurrent_hash_map<Key,T,HashCompare,Allocator> Template Class
	4.2.1 Whole Table Operations
	4.2.1.1 concurrent_hash_map()
	4.2.1.2 concurrent_hash_map( const concurrent_hash_map& table, const allocator_type& a = allocator_type() )
	4.2.1.3 template<typename  InputIterator> concurrent_hash_map(InputIterator first, InputIterator last,  const allocator_type& a = allocator_type())
	4.2.1.4 ~concurrent_hash_map()
	4.2.1.5 concurrent_hash_map& operator= ( concurrent_hash_map& source )
	4.2.1.6 void swap( concurrent_hash_map& table )
	4.2.1.7 void clear()
	4.2.1.8 allocator_type get_allocator() const

	4.2.2 Concurrent Access
	4.2.2.1 const_accessor
	4.2.2.1.1 bool empty() const
	4.2.2.1.2 void release() 
	4.2.2.1.3 const value_type& operator*() const
	4.2.2.1.4 const value_type* operator->() const
	4.2.2.1.5 const_accessor()
	4.2.2.1.6 ~const_accessor

	4.2.2.2 accessor
	4.2.2.2.1 value_type& operator*() const
	4.2.2.2.2 value_type* operator->() const


	4.2.3 Concurrent Operations 
	4.2.3.1 size_type count( const Key& key ) const
	4.2.3.2 bool find( const_accessor& result, const Key& key ) const
	4.2.3.3 bool find( accessor& result, const Key& key )
	4.2.3.4 bool insert( const_accessor& result, const Key& key )
	4.2.3.5 bool insert( accessor& result, const Key& key )
	4.2.3.6 bool insert( const_accessor& result, const value_type& value )
	4.2.3.7 bool insert( accessor& result, const value_type& value )
	4.2.3.8 bool insert( const value_type& value )
	4.2.3.9 template<typename InputIterator> void insert( InputIterator first, InputIterator last )
	bool erase( const Key& key )
	4.2.3.11 bool erase( const_accessor& item_accessor )
	4.2.3.12 bool erase( accessor& item_accessor )

	4.2.4 Parallel Iteration
	4.2.4.1 const_range_type range( size_t grainsize=1 ) const
	4.2.4.2 range_type range( size_t grainsize=1 )

	4.2.5 Capacity
	4.2.5.1 size_type size() const
	4.2.5.2 bool empty() const
	4.2.5.3 size_type max_size() const

	4.2.6 Iterators
	4.2.6.1 iterator begin()
	4.2.6.2 iterator end()
	4.2.6.3 const_iterator begin() const
	4.2.6.4 const_iterator end() const
	4.2.6.5 std::pair<iterator, iterator> equal_range( const Key& key );
	4.2.6.6 std::pair<const_iterator, const_iterator> equal_range( const Key& key ) const;

	4.2.7 Global Functions
	4.2.7.1 template<typename Key, typename T, typename HashCompare, typename A1, typename A2> bool operator==( const concurrent_hash_map<Key,T,HashCompare,A1>& a, const concurrent_hash_map<Key,T,HashCompare,A2>& b);
	4.2.7.2 template<typename Key, typename T, typename HashCompare, typename A1, typename A2> bool operator!=(const concurrent_hash_map<Key,T,HashCompare,A1> &a,   const concurrent_hash_map<Key,T,HashCompare,A2> &b);
	4.2.7.3 template<typename Key, typename T, typename HashCompare, typename A> void swap(concurrent_hash_map<Key, T, HashCompare, A> &a, concurrent_hash_map<Key, T, HashCompare, A> &b)


	4.3 concurrent_queue<T,Allocator> Template Class
	4.3.1 concurrent_queue( const Allocator& a = Allocator() )
	4.3.2 concurrent_queue( const concurrent_queue& src, const Allocator& a = Allocator() )
	4.3.3 template<typename InputIterator> concurrent_queue( InputIterator first, InputIterator last, const Allocator& a = Allocator() )
	4.3.4 ~concurrent_queue()
	4.3.5 void push( const T& source )
	4.3.6 void pop( T& destination )
	4.3.7 bool pop_if_present( T& destination )
	4.3.8 void clear()
	4.3.9 size_type size() const
	4.3.10 bool empty() const
	4.3.11 size_type capacity() const
	4.3.12 void set_capacity( size_type capacity )
	4.3.13 Allocator get_allocator() const
	4.3.14 Iterators
	4.3.14.1 iterator begin()
	4.3.14.2 iterator end()
	4.3.14.3 const_iterator begin() const
	4.3.14.4 const_iterator end() const


	4.4 concurrent_vector
	4.4.1 Construction, Copy, and Assignment
	4.4.1.1 concurrent_vector( const allocator_type& a = allocator_type() )
	4.4.1.2 concurrent_vector( size_type n, const_reference t=T(), const allocator_type& a = allocator_type() );
	4.4.1.3 template<typename InputIterator> concurrent_vector( InputIterator first, InputIterator last, const allocator_type& a = allocator_type() )
	4.4.1.4 concurrent_vector( const concurrent_vector& src )
	4.4.1.5 concurrent_vector& operator=( const concurrent_vector& src )
	4.4.1.6 template<typename M>  concurrent_vector& operator=( const concurrent_vector<T, M>& src )
	4.4.1.7 void assign( size_type n, const_reference t )
	4.4.1.8 template<class InputIterator >  void assign( InputIterator first, InputIterator last )

	4.4.2 Whole Vector Operations
	4.4.2.1 void reserve( size_type n )
	4.4.2.2 void compact()
	4.4.2.3 void swap( concurrent_vector& x )
	4.4.2.4 void clear()
	4.4.2.5 ~concurrent_vector()

	4.4.3 Concurrent Growth
	4.4.3.1 size_type grow_by( size_type delta, const_reference  t=T() )
	4.4.3.2 void grow_to_at_least( size_type n )
	4.4.3.3 size_t push_back( const_reference value );

	4.4.4 Access
	4.4.4.1 reference operator[]( size_type index )
	4.4.4.2 const_refrence operator[]( size_type index ) const
	4.4.4.3 reference at( size_type index )
	4.4.4.4 const_reference at( size_type index ) const
	4.4.4.5 reference front()
	4.4.4.6 const_reference front() const
	4.4.4.7 reference back()
	4.4.4.8 const_reference back() const

	4.4.5 Parallel Iteration
	4.4.5.1 range_type range( size_t grainsize=1 )
	4.4.5.2 const_range_type range( size_t grainsize=1 ) const

	4.4.6 Capacity
	4.4.6.1 size_type size() const
	4.4.6.2 bool empty() const
	4.4.6.3 size_type capacity() const
	4.4.6.4 size_type max_size() const

	4.4.7 Iterators
	4.4.7.1 iterator begin()
	4.4.7.2 const_iterator begin() const
	4.4.7.3 iterator end()
	4.4.7.4 const_iterator end() const
	4.4.7.5 reverse_iterator rbegin()
	4.4.7.6 const_reverse_iterator rbegin() const
	4.4.7.7 iterator rend()
	4.4.7.8 const_reverse_iterator rend()



	5 Memory Allocation
	5.1 Allocator Concept
	5.2 tbb_allocator<T> Template Class
	5.3 scalable_allocator<T> Template Class
	5.3.1 C Interface to Scalable Allocator

	5.4 cache_aligned_allocator<T> Template Class
	5.4.1 pointer allocate( size_type n, const void* hint=0 )
	5.4.2 void deallocate( pointer p, size_type n )
	5.4.3 char* _Charalloc( size_type size )

	5.5 aligned_space Template Class
	5.5.1 aligned_space()
	5.5.2 ~aligned_space()
	5.5.3 T* begin()
	5.5.4 T* end()


	6 Synchronization
	6.1 Mutexes
	6.1.1 Mutex Concept
	6.1.2 mutex Class
	6.1.3 recursive_mutex Class
	6.1.4 spin_mutex Class
	6.1.5 queuing_mutex Class
	6.1.6 ReaderWriterMutex Concept
	6.1.6.1 ReaderWriterMutex()
	6.1.6.2 ~ReaderWriterMutex()
	6.1.6.3 ReaderWriterMutex::scoped_lock()
	6.1.6.4 ReaderWriterMutex::scoped_lock( ReaderWriterMutex& rw, bool write =true)
	6.1.6.5 ReaderWriterMutex::~scoped_lock()
	6.1.6.6 void ReaderWriterMutex:: scoped_lock:: acquire( ReaderWriterMutex& rw,  bool write=true )
	6.1.6.7 bool ReaderWriterMutex:: scoped_lock::try_acquire( ReaderWriterMutex& rw,  bool write=true )
	6.1.6.8 void ReaderWriterMutex:: scoped_lock::release()
	6.1.6.9 bool ReaderWriterMutex:: scoped_lock::upgrade_to_writer()
	6.1.6.10 bool ReaderWriterMutex:: scoped_lock::downgrade_to_reader()

	6.1.7 spin_rw_mutex Class
	6.1.8 queuing_rw_mutex Class
	6.1.9 null_mutex Class
	6.1.10 null_rw_mutex Class

	6.2 atomic<T> Template Class
	6.2.1 enum memory_semantics
	6.2.2 value_type fetch_and_add( value_type addend )
	6.2.3 value_type fetch_and_increment()
	6.2.4 value_type fetch_and_decrement()
	6.2.5 value_type compare_and_swap
	6.2.6 value_type fetch_and_store( value_type new_value )


	7 Timing
	7.1 tick_count Class
	7.1.1 static tick_count tick_count::now()
	7.1.2 tick_count::interval_t operator(( const tick_count& t1, const tick_count& t0 )
	7.1.3 tick_count::interval_t Class
	7.1.3.1 interval_t()
	7.1.3.2 interval_t( double sec )
	7.1.3.3 double seconds() const
	7.1.3.4 interval_t operator+=( const interval_t& i )
	7.1.3.5 interval_t operator(=( const interval_t& i )
	7.1.3.6 interval_t operator+ ( const interval_t& i, const interval_t& j )
	7.1.3.7 interval_t operator( ( const interval_t& i, const interval_t& j )



	8 Task Scheduling
	8.1 Scheduling Algorithm
	8.2 task_scheduler_init Class
	8.2.1 task_scheduler_init( int number_of_threads=automatic, stack_size_type thread_stack_size=0 )
	8.2.2 ~task_scheduler_init()
	8.2.3 void initialize( int number_of_threads=automatic )
	8.2.4 void terminate()
	8.2.5 int default_num_threads()
	8.2.6 bool is_active() const
	8.2.7 Mixing with OpenMP 

	8.3 task Class
	8.3.1 task Derivation
	8.3.1.1 Processing of execute()

	8.3.2 task Allocation
	8.3.2.1 new( task::allocate_root( task_group_context& group ) ) T
	8.3.2.2 new( task::allocate_root() )
	8.3.2.3 new( this. allocate_continuation() ) T
	8.3.2.4 new( this. allocate_child() ) T
	8.3.2.5 new( this.task::allocate_additional_child_of( parent ))

	8.3.3 Explicit task Destruction
	8.3.3.1 void destroy( task& victim )

	8.3.4 Recycling Tasks
	8.3.4.1 void recycle_as_continuation()
	8.3.4.2 void recycle_as_safe_continuation()
	8.3.4.3 void recycle_as_child_of( task& new_parent )
	8.3.4.4 void recycle _to_reexecute()

	8.3.5 task Depth
	8.3.5.1 depth_type 
	8.3.5.2 depth_type depth() const
	8.3.5.3 void set_depth( depth_type new_depth )
	8.3.5.4 void add_to_depth( int delta )

	8.3.6 Synchronization
	8.3.6.1 void set_ref_count( int count )
	8.3.6.2 void wait_for_all()
	8.3.6.3 void spawn( task& child )
	8.3.6.4 void spawn ( task_list& list )
	8.3.6.5 void spawn_and_wait_for_all( task& child )
	8.3.6.6 void spawn_and_wait_for_all( task_list& list )
	8.3.6.7 static void spawn_root_and_wait( task& root )
	8.3.6.8 static void spawn_root_and_wait( task_list& root_list )

	8.3.7 task Context
	8.3.7.1 static task& self()
	8.3.7.2 task* parent() const
	8.3.7.3 bool is_stolen_task() const

	8.3.8 Cancellation
	8.3.8.1 bool cancel_group_execution()
	8.3.8.2 bool is_cancelled() const

	8.3.9 Affinity
	8.3.9.1 affinity_id 
	8.3.9.2 virtual void note_affinity ( affinity_id id )
	8.3.9.3 void set_affinity( affinity_id id )
	8.3.9.4 affinity_id affinity() const

	8.3.10 task Debugging
	8.3.10.1 state_type state() const
	8.3.10.2 int ref_count() const


	8.4 empty_task Class
	8.5 task_list Class
	8.5.1 task_list()
	8.5.2 ~task_list()
	8.5.3 bool empty() const
	8.5.4 push_back( task& task )
	8.5.5 task& task pop_front()
	8.5.6 void clear()

	8.6 task_group_context
	8.6.1 task_group_context( kind_t relation_to_parent=bound )
	8.6.2 ~task_group_context()
	8.6.3 bool cancel_group_execution()
	8.6.4 bool is_group_execution_cancelled() const 
	8.6.5 void reset()

	8.7 task_scheduler_observer
	8.7.1 task_scheduler_observer()
	8.7.2 ~task_scheduler_observer()
	8.7.3 void observe( bool state=true )
	8.7.4 bool is_observing() const
	8.7.5 virtual void on_scheduler_entry( bool is_worker)
	8.7.6 virtual void on_scheduler_exit( bool is_worker )

	8.8 Catalog of Recommended task Patterns
	8.8.1 Blocking Style With k Children
	8.8.2 Continuation-Passing Style With k Children
	8.8.2.1 Recycling Parent as Continuation
	8.8.2.2 Recycling Parent as a Child

	8.8.3 Letting Main Thread Work While Child Tasks Run


	9 Exceptions
	9.1 tbb_exception
	9.2 captured_exception
	9.2.1 captured_exception( const char* name, const char* info )

	9.3 movable_exception<ExceptionData>
	9.3.1 movable_exception( const ExceptionData& src )
	9.3.2 ExceptionData& data() throw()
	9.3.3 const ExceptionData& data() const throw()


	10 Threads
	10.1 tbb_thread Class
	10.1.1 tbb_thread()
	10.1.2 template<typename F, typename X> tbb_thread(F f, X x)
	10.1.3 template<typename F, typename X, typename Y> tbb_thread(F f, X x, Y y)
	10.1.4 ~tbb_thread
	10.1.5 bool joinable() const
	10.1.6 void join()
	10.1.7 void detach()
	10.1.8 id get_id() const
	10.1.9 native_handle_type native_handle()
	10.1.10 static unsigned hardware_concurrency()

	10.2 tbb_thread:: id
	10.3 this_tbb_thread Namespace
	10.3.1 tbb_thread::id get_id()
	10.3.2 void yield()
	10.3.3 void sleep( const tick_count::interval_t & i)


	11 References
	Appendix A Compatibility Features
	A.1 parallel_while Template Class
	A.2 Interface for constructing a pipeline filter 
	A.3 Debugging Macros


