Analysis of Algorithms

-l

Input Algorithm

Outline and Reading

+ Running time (83.1)

+ Pseudo-code (83.2)

+ Counting primitive operations (83.3-3.5)
+ Asymptotic notation (83.6)

+ Asymptotic analysis (83.7)

Case study

Analysis of Algorithms 2

Running Time

#® The running time of an Dibest case
algorithm varies with the o o
. . Eworst case
input and typically grows

with the input size

#® Average case difficult to
determine

#® \We focus on the worst
case running time
= Easier to analyze
= Crucial to applications such

0
as games, finance and ™ PP 5T ™
robotics Input Size

Running Time

Analysis of Algorithms 3

xperimental Studies

® \Write a program 2000 o
implementing the 8000 o
algorithm 7000 T

Run the program with _ e000 A
inputs of varying size 2 co00 "
and composition by @

: E 400]

Use a method like F 3000 o'a
System.currentTimeMillis() to 8
get an accurate measure &
of the actual running 1000 g]
time 0+ T

0 50 100
® Plot the results Input Size
Analysis of Algorithms 4

lons of Experiments

|t is necessary to implement the
algorithm, which may be difficult

Results may not be indicative of the
running time on other inputs not
included in the experiment.

+ |n order to compare two algorithms, the
same hardware and software
environments must be used

Analysis of Algorithms 5

tical Analysis

+ Uses a high-level description of the
algorithm instead of an implementation

+ Takes into account all possible inputs

+ Allows us to evaluate the speed of an
algorithm independent of the
hardware/software environment

Analysis of Algorithms 6

Pseudocode

Example: find max

High-level description
element of an array

of an algorithm

* More structured than [AlgorithmarrayMax(A, n)

English prose Input array A of n integers
| ess detailed than a Output maximum element of A
program

Preferred notation for | currentMax— A[0]
describing algorithms | fori= 1ton- 1do

Hides program design| 1T Ali]> currentMax then
issues currentMax - A[i]

return currentMax

Analysis of Algorithms 7

Pseudocode Details

#® Control flow #® Method call
w if .. then.. [dse..] var.method (arg [, arg...])
= while ... do... # Return value
= repeat ... until ... returnexpression
= for ...do... # Expressions
= Indentation replaces braces - Assignment
Method decl . (like = in Java)
et O eciarafion = Equality testing
Algorithm method (arg [, arg...]) (like == in Java)
Input ... n2 Superscripts and other
Output ... mathematical

formatting allowed

Analysis of Algorithms 8

Primitive Operations

Basic computations # Examples:
performed by an algorithm Evaluating an

N 1 expression
* |dentifiable in pseudocode Assigning a value

Largely independent from to a variable
the programming language Indexing into an
L) array
* fExact definition r_10t Calling a method
important (we will see why Returning from a
later) method

Analysis of Algorithms 9

ounting Primitive Operations

#® By inspecting the pseudocode, we can determine the
maximum number of primitive operations executed by
an algorithm, as a function of the input size

AlgorithmarrayMax(A, n) # operations
currentMax ~ A[0]

fori- 1ton- 1do 2+n

if A[i] > currentMax then 2n-1)

currentMax - A[i] 2n-1)

{ increment counter i } 2n-1)
return currentMax 1

Total 7n-1

Analysis of Algorithms 10

ting Running Time

Algorithm arrayMax executes 7n - 1 primitive
operations in the worst case
Define
a Time taken by the fastest primitive operation
b Time taken by the slowest primitive operation
#| et T(n) be the actual worst-case running
time of arrayMax. We have
a(’n- 1)£T(n) £b(7n- 1)
#Hence, the running time T(n) is bounded by
two linear functions

Analysis of Algorithms 11

Rate of Running Time

Changing the hardware/ software
environment
= Affects T(n) by a constant factor, but
= Does not alter the growth rate of T(n)

+ The linear growth rate of the running
time T(n) is an intrinsic property of
algorithm arrayMax

Analysis of Algorithms 12

Growth Rates

Constant Factors

1E+30 . . 1E+26
® Growth rates of 1E+28 1T cune The growth rate is 1g+24 { Quadratic T
functions: BT — ouacrate not affected by iEIiS 1 T(L)‘:zz:auc ‘
= Linear » n 1E2 = _ oo = constant factors or 1g+18 H— Linear e
= Quadratic » n? e = lower-order terms _ i?ﬁ s
])l + -
=r-Clbics iy g jee Examples £ e
=t = 1020+ 105is a linear 15;2 O
* In a log-log chart, e function 1E46
the slope of the line 3¢, = 105M2 + 108n'is a 1E+4 T
corresponds to the 1= quadratic function i*g
growth rate of the iew0 i
. 1E+0 1E+2 1E+4 1E+6 1E+8 1E+10
function 1E+0 1E+2 1E+4 n 1E+6 1E+8 1E+10 N
Analysis of Algorithms 13 Analysis of Algorithms 14
|
i) 10,000
Given functions f(n) and -~ an 1000000 -prees
i - #® Example: the function
g(n), we say that f(n) is 1000 L —ane10 - e p 100,000 -+ 1000 =
O(g(n)) if there are nZis not O(n) - 10 / :
positive constants - = m£cn 1000044 —n & _
cand ng such that 120 / = nfc
The above inequality 1,000 = =
3 = - - =
f(n) £cg(n) forn 2 n, 5 — cannot be satisfied = z
Example: 2n+10is O(n) = == since ¢ must be a 100 ===
e 2n+10£cn constant ol
« (C-2)n3 10 !
. N2 10(c- 2) 1 10 " 100 1,000 h
= Pick c=3and n,=10 1 10 = 100 1,000
Analysis of Algorithms 15 Analysis of Algorithms 16

and Growth Rate

#® The big-Oh notation gives an upper bound on the
growth rate of a function

#® The statement “f(n) is O(g(n))” means that the growth
rate of f(n) is no more than the growth rate of g(n)

#® \We can use the big -Oh notation to rank functions
-accordingto-theirgrowth rate

f\l) s OO I)} u(ll} is 1S)

g(N) grows more Yes No
f(n) grows more No Yes
Same growtn Yes Yes
Analysis of Algorithms 17

of Functions

#Let {g(n)} denote the class (set) of functions
that are O(g(n))

#\\e have
{n}i N1 {P3}i {1 {5}
e . Y

31

22

Analysis of Algorithms 18

Big-Oh Rules

#|f is f(n) a polynomial of degree d, then f(n) is
o(nd), i.e.,
1. Drop lower-order terms
2. Drop constant factors
#Use the smallest possible class of functions
= Say “2n is O(n)” instead of “2n is O(n?)”
#Use the simplest expression of the class
= Say “3 +5is O(n)” instead of “3n +5 is O(3n)”

Analysis of Algorithms 19

Asymptotic Algorithm Analysis

#® The asymptotic analysis of an algorithm determines
the running time in big -Oh notation
#® To perform the asymptotic analysis

= We find the worst-case number of primitive operations
executed as a function of the input size

= We express this function with big-Oh notation
® Example:
= We determine that algorithm arrayMax executes at most
7n- 1 primitive operations

= We say that algorithm arrayMax “runs in O(n) time”
® Since constant factors and lower-order terms are
eventually dropped anyhow, we can disregard them
when counting primitive operations

Analysis of Algorithms 20

Computing Prefix Averages

\We further illustrate
- mil| k3

asymptotic analysis with O x
two algorithms for prefix oA
averages —

The i-th prefix average of
an array X is average of the
first (i + 1) elements of X

Ali] =(X[0] +X[1] +... +X[I])/(i+1)

#® Computing the array A of
prefix averages of another
array X has applications to
financial analysis

g

o o B & B W
I

Analysis of Algorithms 21

refix Averages (Quadratic)

The following algorithm computes prefix averages in
quadratic time by applying the definition

Algorithm prefixAverages1(X, n)
Input array X of n integers
Output aray A of prefix averagesof X #operations
A - new array of n integers n
fori- Oton- 1do n
s= X[O n
forj- 1toido 1+2+..+(n- 1)
s= s+X[j] 1+2+..+(n- 1)
Ali]- s/(i+1) n
return A 1
Analysis of Algorithms 22

etic Progression

#® The running time of

prefixAveragesl is
O(1+2+...+n)
#® The sum of the first n
integersisn(n+1)/2
= There is a simple visual
proof of this fact
#® Thus, algorithm
prefixAveragesl runs in

o B N W H» O O N

O(n?) time

Analysis of Algorithms 23

verages (Linear)

The following algorithm computes prefix averages in
i : : !

Algorithm prefixAverages2(X, n)
Input array X of n integers
Output aray A of prefix averagesof X #operations
A - newaray of n integers
s= 0
fori-= Oton- 1do

s= s+X[i]
Ali]= s/(i+1)

H3> 335 F,3

Tewrm A
#® Algorithm prefixAverages2 runs in O(n) time

Analysis of Algorithms 24

Asymptotic Notation
terminology):

Special classes of algorithms:

logarithmic: O(log n)
linear: o(n)
quadratic: 0o(n2)
polynomiat o(nk), k=1
exponential: Oo(an),n>1

#“Relatives” of the Big-Oh
= W (f(n)): Big Omega--asymptotic lower bound
= Q (f(n)): Big Theta--asymptotic tight bound

Analysis of Algorithms 25

A table of functions wrtinput n, assume that each primitive

operation takes one microsecond (1 second = 10¢ microsecond).

Val

(g(n)) 1| Second Hour Month 1| Century
1bg, n »[10300000 1010° 100.8*1012 J1010%
»1012 1.3*1019 $6.8*1024 »P.7*1030
1ps .6*10° 2.6*1012 »3.12*101°
log,n »L0° 109 1011 1014
2 1poo *104 1.6*106 »5.6*107
g 1bo 1500 14000 »1500000
q 1P 1 1 q1
! 9 2 5 17

Analysis of Algorithms

26

