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What are graphs?
Graphs are collections of nodes in which various 

pairs of nodes are connected by line segments.
Basic Concepts 
n Definition
n Applications
n Terminology
n Properties
n ADT

Data structures for graphs 
n Adjacency list structure
n Adjacency matrix structure
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Graph
A graph is a pair (V, E), where
n V is a set of nodes, called vertices
n E is a collection of pairs of vertices, called edges
n Vertices and edges are nodes and store elements

Example:
n A vertex represents an airport and stores the three -letter airport code
n An edge represents a flight route between two airports and stores the 

mileage of the route
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Edge Types
Directed edge
n ordered pair of vertices (u,v)
n first vertex u is the origin
n second vertex v is the destination
n e.g., a flight

Undirected edge
n unordered pair of vertices (u,v)
n e.g., a flight route

Directed graph
n all the edges are directed
n e.g., route network

Undirected graph
n all the edges are undirected
n e.g., flight network
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Applications
Electronic circuits
n Printed circuit board
n Integrated circuit

Transportation networks
n Highway network
n Flight network

Computer networks
n Local area network
n Internet
n Web

Databases
n Entity-relationship diagram

internet
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Terminology
End vertices (or endpoints) of an 
edge
n U and V are the endpoints of a

Edges incident on a vertex
n a, d, and b are incident on V

Adjacent vertices
n U and V are adjacent

Degree of a vertex
n X has degree 5 

Parallel edges
n h and i are parallel edges

Self-loop
n j is a self-loop
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P 1

Terminology (cont.)
Path
n sequence of alternating 

vertices and edges 
n begins with a vertex
n ends with a vertex
n each edge is preceded and 

followed by its endpoints
Simple path
n path such that all its vertices 

and edges are distinct
Examples
n P1=(V,b,X,h,Z) is a simple path
n P2=(U,c,W,e,X,g,Y,f,W,d,V) is a 

path that is not simple
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Terminology (cont.)
Cycle
n circular sequence of alternating 

vertices and edges 
n each edge is preceded and 

followed by its endpoints
Simple cycle
n cycle such that all its vertices 

and edges are distinct

Examples
n C1=(V,b,X,g,Y,f,W,c,U,a,↵) is a 

simple cycle
n C2=(U,c,W,e,X,g,Y,f,W,d,V,a,↵)

is a cycle that is not simple
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Properties
Notation

n number of vertices
m number of edges

deg(v) degree of vertex v

Property 1

Σ v deg(v) = 2m
Proof: each endpoint 

is counted twice
Property 2

In an undirected 
graph with no self-
loops and no 
multiple edges
m ≤ n (n − 1)/2

Proof: each vertex 
has degree at most 
(n − 1)

Example:
n n = 4

n m = 6
n deg(v) = 3

n Σv deg(v) = 12
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Main Methods of the Graph ADT

Vertices and edges
n are nodes
n store elements

Accessor functions
n incidentEdges(v)
n endVertices(e)
n isDirected(e)
n origin(e)
n destination(e)
n opposite(v, e)
n areAdjacent(v, w)

Update functions
n insertVertex(o)

n insertEdge(v, w)
n insertDirectedEdge (v, w)
n removeVertex(v)
n removeEdge(e)

Generic functions
n numVertices()
n numEdges()
n vertices()
n edges()
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Graphs - Data Structures

Vertices
n Map to consecutive integers
n Store vertices in an array

Edges
n Adjacency Matrix

w Booleans -
1 - edge exists
0 - no edge

w O(|V|2) space (where |V| refers to the number of vertices)
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Graphs - Data Structures

Edges
n Adjacency Lists
w For each vertex

n List of vertices “attached” to it

wO(|E|) space
∴ Better for sparse graphs Undirected representation
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Performance

n2n + mSpace

n2deg(v)removeVertex(v)

11insertEdge(v, w )

n21insertVertex(o)

11removeEdge(e)

1min(deg(v), deg(w))areAdjacent (v, w)

ndeg(v)incidentEdges(v)

Adjacency 
Matrix

Adjacency
List

n vertices
m edges

no parallel edges
no self-loops

graphs 14

Graphs - Traversing

Choices
n Depth-First / Breadth-first

Depth First Search (DFS)
n Use an array of flags to mark

“visited” nodes

graphs 15

Subgraphs
A subgraph S of a 
graph G is a graph 
such that 
n The edges of S are a 

subset of the edges of G
n The edges of S are a 

subset of the edges of G

A spanning subgraph of 
G is a subgraph that 
contains all the vertices 
of G

Subgraph

Spanning subgraph
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Connectivity

A graph is 
connected if there is 
a path between 
every pair of 
vertices
A connected 
component of a 
graph G is a 
maximal connected 
subgraph of G

Connected graph

Non connected graph with two 
connected components
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Trees and Forests
A (free) tree is an 
undirected graph T such 
that
n T is connected
n T has no cycles
This definition of tree is 

different from the one of 
a rooted tree

A forest is an undirected 
graph without cycles
The connected 
components of a forest 
are trees

Tree

Forest
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Spanning Trees and Forests
A spanning tree of a 
connected graph is a 
spanning subgraph that is 
a tree
A spanning tree is not 
unique unless the graph is 
a tree
Spanning trees have 
applications to the design 
of communication 
networks
A spanning forest of a 
graph is a spanning 
subgraph that is a forest

Graph

Spanning tree
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Depth-First Search
Depth-first search (DFS) 
is a general technique 
for traversing a graph
A DFS traversal of a 
graph G 
n Visits all the vertices and 

edges of G
n Determines whether G is 

connected
n Computes the connected 

components of G
n Computes a spanning 

forest of G

DFS on a graph with n
vertices and m edges 
takes O(n + m ) time
DFS can be further 
extended to solve other 
graph problems
n Find and report a path 

between two given 
vertices

n Find a cycle in the graph
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Preliminary Graph Searching Strategy

void GraphSearch(G, v)              

/* Search graph G starting at vertex v */

{
(let G = (V,E) and let v in V be a vertex of G.)

for (each vertex w in V that is accessible from v) {

Visit(w);
}

}
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Program Strategy: First Refinement
typedef enum {false, true} Boolean;

void GraphSearch (G,v)            /* Search graph G beginning at vertex v */
{

(Let G = (V,E) be a graph.)
(Let C be an empty container.)

for (each vertex x in V) {
x.Visited = false; /* mark each vertex x in V as being unvisited */

}
/* Use vertex v in V as a starting point, and put v in container C */

(Put v into C);
while (C is non-empty) {

(Remove a vertex x from container C);
if (!(x.Visited)) {     /* if vertex hasn't been visited already */

Visit(x);                                /* visit x, and then */
x.Visited = true;            /* mark x as having been visited */
for (each vertex w in Vx) {   /* Enter all unvisited vertices of Vx into C */ 

if (!(w.Visited))  (Put w into C);      
}

}
}

}
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Example
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Example (cont.)
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DFS and Maze Traversal 
The DFS algorithm is 
similar to a classic 
strategy for exploring 
a maze
n We mark each 

intersection, corner 
and dead end (vertex) 
visited

n We mark each corridor 
(edge ) traversed

n We keep track of the 
path back to the 
entrance (start vertex) 
by means of a rope 
(recursion stack)
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Properties of DFS

Property 1
DFS(G, v) visits all the 
vertices and edges in 
the connected 
component of v

Property 2
The discovery edges 
labeled by DFS(G, v) 
form a spanning tree of 
the connected 
component of v

DB

A

C

E
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Graphs - Depth-First
typedef struct t_graph {
int n_nodes;
graph_node *nodes;
int *visited;
AdjMatrix am;

} graph;
static int search_index = 0;

void search( graph *g ) {
int k;
for(k=0;k<g->n_nodes;k++) g->visited[k] = 0;
search_index = 0;
for(k=0;k<g->n_nodes;k++) {
if ( !g->visited[k] ) visit( g, k );

}
}

Graph data
structure

Adjacency Matrix ADT

Mark all nodes “not visited”

Visit all the nodes
attached to node 0,
then ..
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Graphs - Depth-First

Mark the order in which
this node was visited

Visit all the nodes adjacent 
to this one

void visit( graph *g, int k ) {
int j;
g->visited[k] = ++search_index;
for(j=0;j<g->n_nodes;j++) {
if ( adjacent( g->am, k, j ) ) {

if ( !g->visited[j] ) visit( g, j );
}
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Graphs - Depth-First

Mark the order in which
this node was visited

Visit all the nodes adjacent 
to this one

void visit( graph *g, int k ) {
int j;
g->visited[k] = ++search_index;
for(j=0;j<g->n_nodes;j++) {
if ( adjacent( g->am, k, j ) ) {

if ( !g->visited[j] ) visit( g, j );
}

C hack ...
Should be  g->visited[j] != 0

Search_index == 0 means not visited yet!
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Analysis of DFS: adjacency matrix
Setting/getting a vertex/edge label takes O(1) time

Each vertex is labeled twice (n vertices)
n once as UNEXPLORED
n once as VISITED

Each edge is visited twice (m edges)
n one for each end-vertex

Method adjacent is called once for each vertex
DFS runs in O(n + m) time provided the graph is 
represented by the adjacency matrix structure
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Graphs - Depth-First
Adjacency List version of visit

void visit( graph *g, int k ) {
AdjListNode al_node;
g->visited[k] = ++search_index;
al_node = ListHead( g->adj_list[k] );
while( n != NULL ) {
j = ANodeIndex( ListItem( al_node ) );
if ( !g->visited[j] ) visit( g, j );
al_node = ListNext( al_node );

}
} Assumes a List ADT with methods

ListHead
ANodeIndex
ListItem
ListNext
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Adjacency List
n Time complexity

w Visited set for each node
w Each edge visited twice

n Once in each adjacency list
w O(|V| + |E|) i.e. O(n + m)
çO(|V|2) for dense |E| ~ |V|2 graphs
w but O(|V|) for sparse |E| ~ |V| graphs

Adjacency Lists perform better for sparse 
graphs 

Analysis of DFS: adjacency list
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Graph - Breadth-first Traversal
Breadth-first requires a FIFO queue

static queue q;
void search( graph *g ) {

q = ConsQueue( g->n_nodes );
for(k=0;k<g->n_nodes;k++) g->visited[k] = 0;
search_index = 0;
for(k=0;k<g->n_nodes;k++) {

if ( !g->visited[k] ) visit( g, k );
}

void visit( graph *g, int k ) {
al_node al_node;
int j;
AddIntToQueue( q, k );
while( !Empty( q ) ) {

k = QueueHead( q );
g->visited[k] = ++search_index;
......
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void visit( graph *g, int k ) {
al_node al_node;
int j;
AddIntToQueue( q, k );
while( !Empty( q ) ) {

k = QueueHead( q );
g->visited[k] = ++search_index;
al_node = ListHead( g->adj_list[k]);
while( al_node != NULL ) {
j = ANodeIndex(al_node);
if ( !g->visited[j] ) {

AddIntToQueue( g, j );
g->visited[j] = -1; /* C hack, 0 = false! */
al_node = ListNext( al_node );
}

}
}

}

Graph - Breadth-first Traversal

Put this node on the queue


