Graphs

What are graphs?

o+ Graphs are collections of nodes in which various
pairs of nodes are connected by line segments.
# Basic Concepts
= Definition
= Applications
= Terminology
= Properties
= ADT
#® Data structures for graphs
= Adjacency list structure
= Adjacency matrix structure
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® A graph is a pair (V, E), where
= Vs a set of nodes, called vertices
= E is a collection of pairs of vertices, called edges
= Vertices and edges are nodes and store elements
& Example:
= A vertex represents an airport and stores the three -letter airport code

= An edge represents a flight route between two airports and stores the
mileage of the route
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dge Types
Directed edge

= ordered pair of vertices (u,v) W@
first vertex u is the origin
X g AA 1206 ~

= second vertex v is the destination

= e.g., aflight

Undirected edge

= unordered pair of vertices (uv) M
= e.g., aflight route miles

Directed graph

= all the edges are directed

= e.g., route network
Undirected graph

= all the edges are undirected
= e.g., flight network
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tions

® Electronic circuits
= Printed circuit board
= Integrated circuit
#® Transportation networks intgrnet
= Highway network
= Flight network
® Computer networks
= Local area network
= Internet
= Web
#® Databases
= Entity-relationship diagram
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ology

End vertices (or endpoints) of an
edge

= Uand V are the endpoints of a
Edges incident on a vertex

= a, d, and b are incident on V
Adjacent vertices

= UandV are adjacent

Degree of a vertex

= X has degree 5

Parallel edges

= handiare parallel edges
Self-loop

= jis aselfloop
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Terminology (cont.)

* Path
= sequence of alternating
vertices and edges
begins with a vertex
= ends with a vertex
= each edge is preceded and
followed by its endpoints
#* Simple path
= path such that all its vertices
and edges are distinct
# Examples
= P;=(V,b,X,h,Z) is a simple path
= P,=(U,c,W,e,X,0,Y,f,W,d,V) is a
path that is not simple

Terminology (cont.)

Cycle
= circular sequence of alternating
vertices and edges
= each edge is preceded and
followed by its endpoints
Simple cycle

= cycle such that all its vertices
and edges are distinct

# Examples
= C,=(V,bXgY.fWcUag)isa
simple cycle
= C,=(U,c,W,eX,g,Y,f,W,dV,a,.;)
is a cycle that is not simple
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ain Methods of the Graph ADT

#® Vertices and edges
= are nodes
= store elements

# Accessor functions

# Update functions
= insertVertex(0)
= insertEdge(v, w)
= insertDirectedEdge (v, w)
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Properties
Property 1 Notation
Svdeg(v) =2m n number of vertices
Proof: each endpoint m  number of edges
is counted twice deg(v) degree of vertex v
Property 2
In an undirected Example:
graph with no self- +
loops and no =n=4
multiple edges "= m=6
mEn(n- 1y2 L
Proof: each vertex » deg(v) =3
?rells dﬁgree at most ™ SV deg(v) =12
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= incidentEdges (v) = removeVertex(v)
= endVertices (€) R ®| removeEdge(e)
= isDirected(e) Generic functions
= origin(e) = numVertices()

= destination(e) L] numnges()

= opposite(v, e) = vertices()

= areAdjacent (v, w) = edges()
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Graphs - Data Structures
o (%)

+Vertices @
= Map to consecutive integers “
= Store vertices in an array o
v 373 3 w 5 U 4 i
0 0o f1 o fo |1
+Edges 1 folofofslo
. . 2 1)1 fo |1 o
= Adjacency Matrix s Tt To T
+ Booleans - 4 BN o o
1 - edge exists
0 - no edge

+ O(|V|) space (where |V| refers to the number of vertices)
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Graphs - Data Structur

+ Edges 3
= Adjacency Lists

+ For each vertex
= List of vertices “attached” to it

[T T

+ O(|E|) space
\ Better for sparse graphs Undirected representation
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nPerformance

®n vertices
= m edges Adjacency Adjacency
# no parallel edges List Matrix
# o selfloops

Space n+m n?
incidentEdges(v) deg(v) n
areAdjacent (v, w) | min(deg(v), deg(w)) 1
insertVertex(o) 1 n?
insertEdge(v, w) 1 1
removevertex(v) deg(v) n?
removeEdge(e) 1 1
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Graphs - Traversing

+ Choices
= Depth-First / Breadth-first
+ Depth First Search (DFS)

= Use an array of flags to mark
“visited” nodes
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#® A subgraph S of a
graph G is a graph
such that
= The edges of S are a
subset of the edges of G
= The edges of S are a
subset of the edges of G
# A spanning subgraph of
G is a subgraph that
contains all the vertices
of G

Spanning subgraph
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onnectivity

# A graph is
connected if there is
a path between

every pair of Connected graph
vertices

# A connected
component of a o—=o0O
graph G is a
maximal connected
subgraph of G Non connected graph with two

connected components
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and Forests

& A (free) tree is an
undirected graph T such
that
= T is connected
= T has no cycles Tree

This definition of tree is
different from the one of

a rooted tree
® A forest is an undirected O
graph without cycles

® The connected
components of a forest
are trees Forest
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ing Trees and Fgxests

A spanning tree of a
connected graph is a
spanning subgraph that is
a tree

® A spanning tree is not
unique unless the graph is
a tree

Spanning trees have
applications to the design
of communication
networks

A spanning forest of a
graph is a spanning
subgraph that is a forest

Spanning tree
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Depth-First Search

® Depth-first search (DFS)  # DFS on a graph with n

is a general technique vertices and m edges
for traversing a graph takes O(n + m) time
® A DFS traversal of a # DFS can be further
graph G extended to solve other
= Visits all the vertices and
edges of G graph problems
= Determines whether G is = Find and report a path
connected between two given
= Computes the connected vertices

components of G
= Computes a spanning
forest of G

Find a cycle in the graph
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Preliminary Graph Searching Strategy

void GraphSearch(G, v)
/* Search graph G starting at vertex v */

{
(let G = (V,E) and let v in V be a vertex of G.)

for (each vertex w in V that is accessible from v) {
Visit(w);
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Program Strategy: First Refinement

typedef enum {false, true} Boolean;
Void Graphsearch (G, v) /* Search graph G beginning at vertex v */

(Let G = (V,E) be a graph.)
(Let C be an empty container.)
for (each vertex x in V) {

x.Visited = false; /* mark each vertex x in V as being unvisited */
¥
/* Use vertex v in V as a starting point, and put v in container C */
(Put v into C);
while (C is non-empty) {

(Remove a vertex x from container C);

if (1(x.Visited)) { /* if vertex hasn't been visited already */
Visit(); /% visit x, and then */
x.Visited = true; /= mark x as having been visited */
for (each vertex win Vx) {  /* Enter all unvisited vertices of Vx into C */

if ({(w.Visited)) (Put w into C);
¥
}
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b unexplored vertex
A

visited vertex gg\
unexplored edge

» discovery edge #
» back edge ﬂ

A
I
g N |

A

C
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d Maze Traversal

& The DFS algorithm is
similar to a classic
strategy for exploring
a maze

= We mark each
intersection, corner
and dead end (vertex)
visited

We mark each corridor

(edge ) traversed

We keep track of the

path back to the

entrance (start vertex)
by means of a rope

(recursion stack)
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Properties of DFS

Property 1
DFS(G, v) visits all the
vertices and edges in
the connected
component of v

Property 2
The discovery edges
labeled by DFS(G, V)
form a spanning tree of
the connected
component of v
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Graphs - Depth-First

typedef struct t_graph {
© int n_nodes; Graph data
graph_node *nodes; structure
int *visited;
Adj Matrix am <<———Adjacency Matrix ADT
} graph;
tatic int search_index = O;
i *
0: gt S;.amh( graph *g ) { Mark all nodes “not visited”
f or (k=0; k<g->n_nodes; k++) g- >visited[k] = 0;
search_i ndex = 0;

for (k=0; k<g->n_nodes; k++) { Visit all the nodes
if (!g->visited[k] ) visit( g, k); attached tonodeO,
then ..
}
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Graphs - Depth-First

oid visit( graph *g, int k) {
int j; 5 .
g->visited[ k] = ++search_i ndex; ] Mark he order '<n<Wh'Ch

for(j=0;j<g >n_nodes;j ++) {
if ( adjacent( g->am k, j ) ) {
if (!g>visited[j] ) visit( g, j ):

Visit all the nodes adjacent

tothisone
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Graphs - Depth-First

?fFi_d visit( graph *g, int k) {
int j; <FMark the order in which

g->visited[ k] = ++search_i ndex; p

is-node-was-visitad

for(j=0;j<g>n_nodes;j ++) {

if (adjacentCg=>am-k, j ) ) {
) if ( lo>visited[j] ) visit( g j):
| A

isit all the nodes adjacent

tlothis-one

Chack ...
Should be g->visited[j] != 0

Sear ch_i ndex == 0 means not visited yet!
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is of DFS: adjacency matrix

# Setting/getting a vertex/edge label takes O(1) time

#® Each vertex is labeled twice (n vertices)
= once as UNEXPLORED
= once as VISITED

# Each edge is visited twice (m edges)
= one for each end-vertex

# Method adjacent is called once for each vertex
# DFS runs in O(n + m) time provided the graph is
represented by the adjacency matrix structure
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Graphs - Depth-First

Adjacency List version of vi si t

void visit( graph *g, int k) {
Adj Li st Node al _node;
g->visited[k] = ++search_i ndex;
al _node = ListHead( g->adj_list[k] );
while( n!= NULL ) {
j = ANodel ndex( Listltenf al _node ) );
if (!'g->visited[j] ) visit( g, j );
al _node = ListNext( al_node );
}
} Assumes a Li st ADT with methods
Li st Head
ANodel ndex
Listltem
Li st Next
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Analysis of DFS: adjacency list

+ Adjacency List

= Time complexity
+ Visited set for each node
+ Each edge visited twice
= Once in each adjacency list
« O(|V| + |E[) i.e. O(n + m)
€O(|V|) for dense |E| ~|V|2graphs
+ but O(|V|) for sparse |E| ~|V| graphs

# Adjacency Lists perform better for sparse
graphs
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Graph - Breadth-first Traversal
«  Breadth-first requires a FIFO queue

static queue q;
voi d search( graph *g ) {
q = ConsQueue( g->n_nodes );
for(k=0; k<g->n_nodes; k++) g->visited[k] = 0;
search_index = 0;
for(k=0; k<g->n_nodes; k++) {
if (!'g->visited[k] ) visit( g, k);
}

void visit( graph *g, int k) {
al _node al _node;
intj;
Addl nt ToQueue( q, k );
while( 'Enpty( g ) ) {
k = QueueHead( q );
g >visited[k] = ++search_i ndex;
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Graph - Breadth-first Traversal

void visit( graph *g, int k) {
al _node al _node;
intj;
Addl nt ToQueue( q, k );
while( 'Empty( q) ) {
k = QueueHead( q );
g >visited[k] = ++search_i ndex;
al _node = ListHead( g->adj _list[k]);
while( al _node !'= NULL ) {
j = ANodel ndex(al _node);
if (1g>visitedj] ) {
Addl nt ToQueue( g, j );

Put this node on the queue

g->visited[j] = -1; /* C hack, 0 = falsel */
al _node = ListNext ( al _node );
}
}
}

}
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