
1

Graphs

ORD

DFW

SFO

LAX

80
2

174
3

1843

1233

337

graphs 2

What are graphs?
Graphs are collections of nodes in which various

pairs of nodes are connected by line segments.
Basic Concepts
n Definition
n Applications
n Terminology
n Properties
n ADT

Data structures for graphs
n Adjacency list structure
n Adjacency matrix structure

graphs 3

Graph
A graph is a pair (V, E), where
n V is a set of nodes, called vertices
n E is a collection of pairs of vertices, called edges
n Vertices and edges are nodes and store elements

Example:
n A vertex represents an airport and stores the three -letter airport code
n An edge represents a flight route between two airports and stores the

mileage of the route

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

849

80
2

138
7174

3

1843

1099
1120

1233

337

2555

142

graphs 4

Edge Types
Directed edge
n ordered pair of vertices (u,v)
n first vertex u is the origin
n second vertex v is the destination
n e.g., a flight

Undirected edge
n unordered pair of vertices (u,v)
n e.g., a flight route

Directed graph
n all the edges are directed
n e.g., route network

Undirected graph
n all the edges are undirected
n e.g., flight network

ORD PVD
flight

AA 1206

ORD PVD
849

miles

graphs 5

Applications
Electronic circuits
n Printed circuit board
n Integrated circuit

Transportation networks
n Highway network
n Flight network

Computer networks
n Local area network
n Internet
n Web

Databases
n Entity-relationship diagram

internet

graphs 6

Terminology
End vertices (or endpoints) of an
edge
n U and V are the endpoints of a

Edges incident on a vertex
n a, d, and b are incident on V

Adjacent vertices
n U and V are adjacent

Degree of a vertex
n X has degree 5

Parallel edges
n h and i are parallel edges

Self-loop
n j is a self-loop

XU

V

W

Z

Y

a

c

b

e

d

f

g

h

i

j

2

graphs 7

P 1

Terminology (cont.)
Path
n sequence of alternating

vertices and edges
n begins with a vertex
n ends with a vertex
n each edge is preceded and

followed by its endpoints
Simple path
n path such that all its vertices

and edges are distinct
Examples
n P1=(V,b,X,h,Z) is a simple path
n P2=(U,c,W,e,X,g,Y,f,W,d,V) is a

path that is not simple

XU

V

W

Z

Y

a

c

b

e

d

f

g

hP 2

graphs 8

Terminology (cont.)
Cycle
n circular sequence of alternating

vertices and edges
n each edge is preceded and

followed by its endpoints
Simple cycle
n cycle such that all its vertices

and edges are distinct

Examples
n C1=(V,b,X,g,Y,f,W,c,U,a,↵) is a

simple cycle
n C2=(U,c,W,e,X,g,Y,f,W,d,V,a,↵)

is a cycle that is not simple

C 1

XU

V

W

Z

Y

a

c

b

e

d

f

g

hC 2

graphs 9

Properties
Notation

n number of vertices
m number of edges

deg(v) degree of vertex v

Property 1

Σ v deg(v) = 2m
Proof: each endpoint

is counted twice
Property 2

In an undirected
graph with no self-
loops and no
multiple edges
m ≤ n (n − 1)/2

Proof: each vertex
has degree at most
(n − 1)

Example:
n n = 4

n m = 6
n deg(v) = 3

n Σv deg(v) = 12

graphs 10

Main Methods of the Graph ADT

Vertices and edges
n are nodes
n store elements

Accessor functions
n incidentEdges(v)
n endVertices(e)
n isDirected(e)
n origin(e)
n destination(e)
n opposite(v, e)
n areAdjacent(v, w)

Update functions
n insertVertex(o)

n insertEdge(v, w)
n insertDirectedEdge (v, w)
n removeVertex(v)
n removeEdge(e)

Generic functions
n numVertices()
n numEdges()
n vertices()
n edges()

graphs 11

Graphs - Data Structures

Vertices
n Map to consecutive integers
n Store vertices in an array

Edges
n Adjacency Matrix
w Booleans -

1 - edge exists
0 - no edge

w O(|V|2) space (where |V| refers to the number of vertices)

v5v4v3v2v1

00101

00110

01011

01000

10010

0 1 2 3 4

0
1
2
3
4

graphs 12

Graphs - Data Structures

Edges
n Adjacency Lists
w For each vertex

n List of vertices “attached” to it

wO(|E|) space
∴ Better for sparse graphs Undirected representation

1
5

4

3

2

5

3

graphs 13

Performance

n2n + mSpace

n2deg(v)removeVertex(v)

11insertEdge(v, w)

n21insertVertex(o)

11removeEdge(e)

1min(deg(v), deg(w))areAdjacent (v, w)

ndeg(v)incidentEdges(v)

Adjacency
Matrix

Adjacency
List

n vertices
m edges

no parallel edges
no self-loops

graphs 14

Graphs - Traversing

Choices
n Depth-First / Breadth-first

Depth First Search (DFS)
n Use an array of flags to mark

“visited” nodes

graphs 15

Subgraphs
A subgraph S of a
graph G is a graph
such that
n The edges of S are a

subset of the edges of G
n The edges of S are a

subset of the edges of G

A spanning subgraph of
G is a subgraph that
contains all the vertices
of G

Subgraph

Spanning subgraph

graphs 16

Connectivity

A graph is
connected if there is
a path between
every pair of
vertices
A connected
component of a
graph G is a
maximal connected
subgraph of G

Connected graph

Non connected graph with two
connected components

graphs 17

Trees and Forests
A (free) tree is an
undirected graph T such
that
n T is connected
n T has no cycles
This definition of tree is

different from the one of
a rooted tree

A forest is an undirected
graph without cycles
The connected
components of a forest
are trees

Tree

Forest

graphs 18

Spanning Trees and Forests
A spanning tree of a
connected graph is a
spanning subgraph that is
a tree
A spanning tree is not
unique unless the graph is
a tree
Spanning trees have
applications to the design
of communication
networks
A spanning forest of a
graph is a spanning
subgraph that is a forest

Graph

Spanning tree

4

graphs 19

Depth-First Search
Depth-first search (DFS)
is a general technique
for traversing a graph
A DFS traversal of a
graph G
n Visits all the vertices and

edges of G
n Determines whether G is

connected
n Computes the connected

components of G
n Computes a spanning

forest of G

DFS on a graph with n
vertices and m edges
takes O(n + m) time
DFS can be further
extended to solve other
graph problems
n Find and report a path

between two given
vertices

n Find a cycle in the graph

graphs 20

Preliminary Graph Searching Strategy

void GraphSearch(G, v)

/* Search graph G starting at vertex v */

{
(let G = (V,E) and let v in V be a vertex of G.)

for (each vertex w in V that is accessible from v) {

Visit(w);
}

}

graphs 21

Program Strategy: First Refinement
typedef enum {false, true} Boolean;

void GraphSearch (G,v) /* Search graph G beginning at vertex v */
{

(Let G = (V,E) be a graph.)
(Let C be an empty container.)

for (each vertex x in V) {
x.Visited = false; /* mark each vertex x in V as being unvisited */

}
/* Use vertex v in V as a starting point, and put v in container C */

(Put v into C);
while (C is non-empty) {

(Remove a vertex x from container C);
if (!(x.Visited)) { /* if vertex hasn't been visited already */

Visit(x); /* visit x, and then */
x.Visited = true; /* mark x as having been visited */
for (each vertex w in Vx) { /* Enter all unvisited vertices of Vx into C */

if (!(w.Visited)) (Put w into C);
}

}
}

}

graphs 22

Example

DB

A

C

E

DB

A

C

E

DB

A

C

E

discovery edge
back edge

A visited vertex

A unexplored vertex

unexplored edge

graphs 23

Example (cont.)

DB

A

C

E

DB

A

C

E

DB

A

C

E

DB

A

C

E

graphs 24

DFS and Maze Traversal
The DFS algorithm is
similar to a classic
strategy for exploring
a maze
n We mark each

intersection, corner
and dead end (vertex)
visited

n We mark each corridor
(edge) traversed

n We keep track of the
path back to the
entrance (start vertex)
by means of a rope
(recursion stack)

5

graphs 25

Properties of DFS

Property 1
DFS(G, v) visits all the
vertices and edges in
the connected
component of v

Property 2
The discovery edges
labeled by DFS(G, v)
form a spanning tree of
the connected
component of v

DB

A

C

E

graphs 26

Graphs - Depth-First
typedef struct t_graph {
int n_nodes;
graph_node *nodes;
int *visited;
AdjMatrix am;

} graph;
static int search_index = 0;

void search(graph *g) {
int k;
for(k=0;k<g->n_nodes;k++) g->visited[k] = 0;
search_index = 0;
for(k=0;k<g->n_nodes;k++) {
if (!g->visited[k]) visit(g, k);

}
}

Graph data
structure

Adjacency Matrix ADT

Mark all nodes “not visited”

Visit all the nodes
attached to node 0,
then ..

graphs 27

Graphs - Depth-First

Mark the order in which
this node was visited

Visit all the nodes adjacent
to this one

void visit(graph *g, int k) {
int j;
g->visited[k] = ++search_index;
for(j=0;j<g->n_nodes;j++) {
if (adjacent(g->am, k, j)) {

if (!g->visited[j]) visit(g, j);
}

graphs 28

Graphs - Depth-First

Mark the order in which
this node was visited

Visit all the nodes adjacent
to this one

void visit(graph *g, int k) {
int j;
g->visited[k] = ++search_index;
for(j=0;j<g->n_nodes;j++) {
if (adjacent(g->am, k, j)) {

if (!g->visited[j]) visit(g, j);
}

C hack ...
Should be g->visited[j] != 0

Search_index == 0 means not visited yet!

graphs 29

Analysis of DFS: adjacency matrix
Setting/getting a vertex/edge label takes O(1) time

Each vertex is labeled twice (n vertices)
n once as UNEXPLORED
n once as VISITED

Each edge is visited twice (m edges)
n one for each end-vertex

Method adjacent is called once for each vertex
DFS runs in O(n + m) time provided the graph is
represented by the adjacency matrix structure

graphs 30

Graphs - Depth-First
Adjacency List version of visit

void visit(graph *g, int k) {
AdjListNode al_node;
g->visited[k] = ++search_index;
al_node = ListHead(g->adj_list[k]);
while(n != NULL) {
j = ANodeIndex(ListItem(al_node));
if (!g->visited[j]) visit(g, j);
al_node = ListNext(al_node);

}
} Assumes a List ADT with methods

ListHead
ANodeIndex
ListItem
ListNext

6

graphs 31

Adjacency List
n Time complexity
w Visited set for each node
w Each edge visited twice

n Once in each adjacency list
w O(|V| + |E|) i.e. O(n + m)
çO(|V|2) for dense |E| ~ |V|2 graphs
w but O(|V|) for sparse |E| ~ |V| graphs

Adjacency Lists perform better for sparse
graphs

Analysis of DFS: adjacency list

graphs 32

Graph - Breadth-first Traversal
Breadth-first requires a FIFO queue

static queue q;
void search(graph *g) {

q = ConsQueue(g->n_nodes);
for(k=0;k<g->n_nodes;k++) g->visited[k] = 0;
search_index = 0;
for(k=0;k<g->n_nodes;k++) {

if (!g->visited[k]) visit(g, k);
}

void visit(graph *g, int k) {
al_node al_node;
int j;
AddIntToQueue(q, k);
while(!Empty(q)) {

k = QueueHead(q);
g->visited[k] = ++search_index;
......

graphs 33

void visit(graph *g, int k) {
al_node al_node;
int j;
AddIntToQueue(q, k);
while(!Empty(q)) {

k = QueueHead(q);
g->visited[k] = ++search_index;
al_node = ListHead(g->adj_list[k]);
while(al_node != NULL) {
j = ANodeIndex(al_node);
if (!g->visited[j]) {

AddIntToQueue(g, j);
g->visited[j] = -1; /* C hack, 0 = false! */
al_node = ListNext(al_node);
}

}
}

}

Graph - Breadth-first Traversal

Put this node on the queue

