Graphs

What are graphs?

o+ Graphs are collections of nodes in which various
pairs of nodes are connected by line segments.
Basic Concepts
= Definition
= Applications
= Terminology
= Properties
= ADT
#® Data structures for graphs
= Adjacency list structure
= Adjacency matrix structure

graphs 2

® A graph is a pair (V, E), where
= Vs a set of nodes, called vertices
= E is a collection of pairs of vertices, called edges
= Vertices and edges are nodes and store elements
& Example:
= A vertex represents an airport and stores the three -letter airport code

= An edge represents a flight route between two airports and stores the
mileage of the route

graphs 3

dge Types
Directed edge

= ordered pair of vertices (u,v) W@
first vertex u is the origin
X g AA 1206 ~

= second vertex v is the destination

= e.g., aflight

Undirected edge

= unordered pair of vertices (uv) M
= e.g., aflight route miles

Directed graph

= all the edges are directed

= e.g., route network
Undirected graph

= all the edges are undirected
= e.g., flight network

graphs 4

tions

® Electronic circuits
= Printed circuit board
= Integrated circuit
#® Transportation networks intgrnet
= Highway network
= Flight network
® Computer networks
= Local area network
= Internet
= Web
#® Databases
= Entity-relationship diagram

graphs 5

ology

End vertices (or endpoints) of an
edge

= Uand V are the endpoints of a
Edges incident on a vertex

= a, d, and b are incident on V
Adjacent vertices

= UandV are adjacent

Degree of a vertex

= X has degree 5

Parallel edges

= handiare parallel edges
Self-loop

= jis aselfloop

graphs 6

Terminology (cont.)

* Path
= sequence of alternating
vertices and edges
begins with a vertex
= ends with a vertex
= each edge is preceded and
followed by its endpoints
#* Simple path
= path such that all its vertices
and edges are distinct
Examples
= P;=(V,b,X,h,Z) is a simple path
= P,=(U,c,W,e,X,0,Y,f,W,d,V) is a
path that is not simple

Terminology (cont.)

Cycle
= circular sequence of alternating
vertices and edges
= each edge is preceded and
followed by its endpoints
Simple cycle

= cycle such that all its vertices
and edges are distinct

Examples
= C,=(V,bXgY.fWcUag)isa
simple cycle
= C,=(U,c,W,eX,g,Y,f,W,dV,a,.;)
is a cycle that is not simple

graphs 8

ain Methods of the Graph ADT

#® Vertices and edges
= are nodes
= store elements

Accessor functions

Update functions
= insertVertex(0)
= insertEdge(v, w)
= insertDirectedEdge (v, w)

graphs 7
Properties
Property 1 Notation
Svdeg(v) =2m n number of vertices
Proof: each endpoint m number of edges
is counted twice deg(v) degree of vertex v
Property 2
In an undirected Example:
graph with no self- +
loops and no =n=4
multiple edges "= m=6
mEn(n- 1y2 L
Proof: each vertex » deg(v) =3
?rells dﬁgree at most ™ SV deg(v) =12
graphs 9

= incidentEdges (v) = removeVertex(v)
= endVertices (€) R ®| removeEdge(e)
= isDirected(e) Generic functions
= origin(e) = numVertices()

= destination(e) L] numnges()

= opposite(v, e) = vertices()

= areAdjacent (v, w) = edges()

graphs 0

Graphs - Data Structures
o (%)

+Vertices @
= Map to consecutive integers “
= Store vertices in an array o
v 373 3 w 5 U 4 i
0 0o f1 o fo |1
+Edges 1 folofofslo
. . 2 1)1 fo |1 o
= Adjacency Matrix s Tt To T
+ Booleans - 4 BN o o
1 - edge exists
0 - no edge

+ O(|V|) space (where |V| refers to the number of vertices)

graphs 11

Graphs - Data Structur

+ Edges 3
= Adjacency Lists

+ For each vertex
= List of vertices “attached” to it

[T T

+ O(|E|) space
\ Better for sparse graphs Undirected representation

graphs 12

nPerformance

®n vertices
= m edges Adjacency Adjacency
no parallel edges List Matrix
o selfloops

Space n+m n?
incidentEdges(v) deg(v) n
areAdjacent (v, w) | min(deg(v), deg(w)) 1
insertVertex(o) 1 n?
insertEdge(v, w) 1 1
removevertex(v) deg(v) n?
removeEdge(e) 1 1

graphs 13

Graphs - Traversing

+ Choices
= Depth-First / Breadth-first
+ Depth First Search (DFS)

= Use an array of flags to mark
“visited” nodes

graphs 14

#® A subgraph S of a
graph G is a graph
such that
= The edges of S are a
subset of the edges of G
= The edges of S are a
subset of the edges of G
A spanning subgraph of
G is a subgraph that
contains all the vertices
of G

Spanning subgraph

graphs 15

onnectivity

A graph is
connected if there is
a path between

every pair of Connected graph
vertices

A connected
component of a o—=o0O
graph G is a
maximal connected
subgraph of G Non connected graph with two

connected components

graphs 16

and Forests

& A (free) tree is an
undirected graph T such
that
= T is connected
= T has no cycles Tree

This definition of tree is
different from the one of

a rooted tree
® A forest is an undirected O
graph without cycles

® The connected
components of a forest
are trees Forest

graphs 17

ing Trees and Fgxests

A spanning tree of a
connected graph is a
spanning subgraph that is
a tree

® A spanning tree is not
unique unless the graph is
a tree

Spanning trees have
applications to the design
of communication
networks

A spanning forest of a
graph is a spanning
subgraph that is a forest

Spanning tree

graphs 18

Depth-First Search

® Depth-first search (DFS) # DFS on a graph with n

is a general technique vertices and m edges
for traversing a graph takes O(n + m) time
® A DFS traversal of a # DFS can be further
graph G extended to solve other
= Visits all the vertices and
edges of G graph problems
= Determines whether G is = Find and report a path
connected between two given
= Computes the connected vertices

components of G
= Computes a spanning
forest of G

Find a cycle in the graph

graphs 19

Preliminary Graph Searching Strategy

void GraphSearch(G, v)
/* Search graph G starting at vertex v */

{
(let G = (V,E) and let v in V be a vertex of G.)

for (each vertex w in V that is accessible from v) {
Visit(w);

graphs 20

Program Strategy: First Refinement

typedef enum {false, true} Boolean;
Void Graphsearch (G, v) /* Search graph G beginning at vertex v */

(Let G = (V,E) be a graph.)
(Let C be an empty container.)
for (each vertex x in V) {

x.Visited = false; /* mark each vertex x in V as being unvisited */
¥
/* Use vertex v in V as a starting point, and put v in container C */
(Put v into C);
while (C is non-empty) {

(Remove a vertex x from container C);

if (1(x.Visited)) { /* if vertex hasn't been visited already */
Visit(); /% visit x, and then */
x.Visited = true; /= mark x as having been visited */
for (each vertex win Vx) { /* Enter all unvisited vertices of Vx into C */

if ({(w.Visited)) (Put w into C);
¥
}

graphs 21

b unexplored vertex
A

visited vertex gg\
unexplored edge

» discovery edge #
» back edge ﬂ

A
I
g N |

A

C
graphs 22

graphs 23

d Maze Traversal

& The DFS algorithm is
similar to a classic
strategy for exploring
a maze

= We mark each
intersection, corner
and dead end (vertex)
visited

We mark each corridor

(edge) traversed

We keep track of the

path back to the

entrance (start vertex)
by means of a rope

(recursion stack)

graphs 24

Properties of DFS

Property 1
DFS(G, v) visits all the
vertices and edges in
the connected
component of v

Property 2
The discovery edges
labeled by DFS(G, V)
form a spanning tree of
the connected
component of v

graphs 25

Graphs - Depth-First

typedef struct t_graph {
© int n_nodes; Graph data
graph_node *nodes; structure
int *visited;
Adj Matrix am <<———Adjacency Matrix ADT
} graph;
tatic int search_index = O;
i *
0: gt S;.amh(graph *g) { Mark all nodes “not visited”
f or (k=0; k<g->n_nodes; k++) g- >visited[k] = 0;
search_i ndex = 0;

for (k=0; k<g->n_nodes; k++) { Visit all the nodes
if (!g->visited[k]) visit(g, k); attached tonodeO,
then ..
}
graphs 26

Graphs - Depth-First

oid visit(graph *g, int k) {
int j; 5 .
g->visited[k] = ++search_i ndex;] Mark he order '<n<Wh'Ch

for(j=0;j<g >n_nodes;j ++) {
if (adjacent(g->am k, j)) {
if (!g>visited[j]) visit(g, j):

Visit all the nodes adjacent

tothisone

graphs 27

Graphs - Depth-First

?fFi_d visit(graph *g, int k) {
int j; <FMark the order in which

g->visited[k] = ++search_i ndex; p

is-node-was-visitad

for(j=0;j<g>n_nodes;j ++) {

if (adjacentCg=>am-k, j)) {
) if (lo>visited[j]) visit(g j):
| A

isit all the nodes adjacent

tlothis-one

Chack ...
Should be g->visited[j] != 0

Sear ch_i ndex == 0 means not visited yet!

graphs 28

is of DFS: adjacency matrix

Setting/getting a vertex/edge label takes O(1) time

#® Each vertex is labeled twice (n vertices)
= once as UNEXPLORED
= once as VISITED

Each edge is visited twice (m edges)
= one for each end-vertex

Method adjacent is called once for each vertex
DFS runs in O(n + m) time provided the graph is
represented by the adjacency matrix structure

graphs 29

Graphs - Depth-First

Adjacency List version of vi si t

void visit(graph *g, int k) {
Adj Li st Node al _node;
g->visited[k] = ++search_i ndex;
al _node = ListHead(g->adj_list[k]);
while(n!= NULL) {
j = ANodel ndex(Listltenf al _node));
if (!'g->visited[j]) visit(g, j);
al _node = ListNext(al_node);
}
} Assumes a Li st ADT with methods
Li st Head
ANodel ndex
Listltem
Li st Next

graphs 30

Analysis of DFS: adjacency list

+ Adjacency List

= Time complexity
+ Visited set for each node
+ Each edge visited twice
= Once in each adjacency list
« O(|V| + |E[) i.e. O(n + m)
€O(|V|) for dense |E| ~|V|2graphs
+ but O(|V|) for sparse |E| ~|V| graphs

Adjacency Lists perform better for sparse
graphs

graphs 31

Graph - Breadth-first Traversal
« Breadth-first requires a FIFO queue

static queue q;
voi d search(graph *g) {
q = ConsQueue(g->n_nodes);
for(k=0; k<g->n_nodes; k++) g->visited[k] = 0;
search_index = 0;
for(k=0; k<g->n_nodes; k++) {
if (!'g->visited[k]) visit(g, k);
}

void visit(graph *g, int k) {
al _node al _node;
intj;
Addl nt ToQueue(q, k);
while('Enpty(g)) {
k = QueueHead(q);
g >visited[k] = ++search_i ndex;

graphs 32

Graph - Breadth-first Traversal

void visit(graph *g, int k) {
al _node al _node;
intj;
Addl nt ToQueue(q, k);
while('Empty(q)) {
k = QueueHead(q);
g >visited[k] = ++search_i ndex;
al _node = ListHead(g->adj _list[k]);
while(al _node !'= NULL) {
j = ANodel ndex(al _node);
if (1g>visitedj]) {
Addl nt ToQueue(g, j);

Put this node on the queue

g->visited[j] = -1; /* C hack, 0 = falsel */
al _node = ListNext (al _node);
}
}
}

}

graphs 33

