
1

graphs 1

Graphs - Shortest Paths

Application
n In a graph in which edges have costs ..
n Find the shortest path from a source to a destination
n Surprisingly ..
w While finding the shortest path from a source to one

destination,
w we can find the shortest paths to all over destinations as well!

n Common algorithm for
single-source shortest paths

is due to Edsger Dijkstra

graphs 2

Dijkstra’s Algorithm - Data
Structures

For a graph,
G = (V, E)

Dijkstra’s algorithm keeps two sets of vertices:

 S Vertices whose shortest paths have already been
determined

V-S Remainder

Also

 d Best estimates of shortest path to each vertex
π Predecessors for each vertex

graphs 3

2 3

4

56

1

3

7

10

5

8 1

2

6

6

5

The Shortest Path:
from vertex 1 to vertex 5

0∞28∞∞6

70∞∞∞∞5

∞60∞∞∞4

∞150∞∞3

10∞∞70∞2

5∞∞∞301

654321-

Adjacency
matrix

graphs 4

Predecessor Sub-graph

Array of vertex indices, π[j], j = 1 .. |V|
n π[j] contains the predecessor for node j
n π[j]’s predecessor is inπ[π[j]], and so on
n The edges in the predecessor sub-graph are

(π[j], j)

graphs 5

Dijkstra’s Algorithm -
Operation

Initialise d and π
n For each vertex, j, in V
w dj = ∞
• πj = nil

n Source distance, ds = 0
Set S to empty

While V-S is not empty
n Sort V-S based on d
n Add u, the closest vertex in V-S, to S
n Relax all the vertices still in V-S connected to u

Initial estimates are all ∞
No connections

Add s first!

graphs 6

Operation
The Relaxation process

Relax the node v
attached to node u

relax(Node u, Node v, double w[][])
if (d[v] > d[u] + w[u][v]){

d[v] = d[u] + w[u][v];
pi[v] = u;

}

If the current best
estimate to v is
greater than the
path through u ..

Edge cost matrix

Update the
estimate to v

Make v’s predecessor
point tou

2

graphs 7

Dijkstra’s Algorithm - Full
The Shortest Paths algorithm

Given a graph, g, and a source, s

shortest_paths(Graph g, Node s){
initialise_single_source(g, s);
S = { 0 }; /* Make S empty */
Q = Vertices(g); /* Put the vertices in a PQ */
while (! Empty(Q)){

u = removeMin(Q);
AddNode(S, u); /* Add u to S */
for each vertex v in Adjacent(u)

relax(u, v, w)
}

}

graphs 8

Dijkstra’s Algorithm - Initialise
The Shortest Paths algorithm

Given a graph, g,
and a source, s

shortest_paths(Graph g, Node s){
initialise_single_source(g, s);
S = { 0 }; /* Make S empty */
Q = Vertices(g) /* Put the vertices in a PQ */
while (! Empty(Q)){

u = removeMin(Q);
AddNode(S, u); /* Add u to S */
for each vertex v in Adjacent(u)

relax(u, v, w);
}

}

Initialize d, π, S,
vertex Q

graphs 9

Dijkstra’s Algorithm - Loop
The Shortest Paths algorithm

Given a graph, g,
and a source, s

shortest_paths(Graph g, Node s){
initialise_single_source(g, s);
S = { 0 }; /* Make S empty */
Q = Vertices(g); /* Put the vertices in a PQ */
while (! Empty(Q)){

u = removeMin(Q);
AddNode(S, u); /* Add u to S */
for each vertex v in Adjacent(u)

relax(u, v, w);
}

}

Greedy!

While there are
still nodes in Q

graphs 10

Dijkstra’s Algorithm -
neighbours

The Shortest Paths algorithm
Given a graph, g,
and a source, s

shortest_paths(Graph g, Node s)
initialise_single_source(g, s)
S = { 0 } /* Make S empty */
Q = Vertices(g) /* Put the vertices in a PQ */
while (! Empty(Q)){

u = removeMin(Q);
AddNode(S, u); /* Add u to S */
for each vertex v in Adjacent(u)

relax(u, v, w);
}

}

Greedy!

Update the
estimate of the

shortest paths to
all nodes

attached to u

graphs 11

Dijkstra’s Algorithm - Operation
Initial Graph

Distance to all
nodes marked ∞

Source
Mark 0

graphs 12

Dijkstra’s Algorithm - Operation
Initial Graph

Source

Relax vertices adjacent to
source

3

graphs 13

Dijkstra’s Algorithm - Operation
Initial Graph

Source

Red arrows show
pre-decessors

graphs 14

Dijkstra’s Algorithm - Operation

Source is now in S Sort vertices and
choose closest

graphs 15

Dijkstra’s Algorithm - Operation

Source is now in S

Relax u because a
shorter path via x

exists

Relax y because a
shorter path via x

exists

graphs 16

Dijkstra’s Algorithm - Operation

Source is now in S

Change u’s
pre-decessor also

Relax y because a
shorter path via x

exists

graphs 17

Dijkstra’s Algorithm - Operation

S is now { s, x } Sort vertices and
choose closest

graphs 18

Dijkstra’s Algorithm - Operation

S is now { s, x }
Sort vertices and

choose closest

Relax v because a
shorter path via y

exists

4

graphs 19

Dijkstra’s Algorithm - Operation

S is now { s, x, y } Sort vertices and
choose closest, u

graphs 20

Dijkstra’s Algorithm - Operation

S is now { s, x, y, u } Finally add v

graphs 21

Dijkstra’s Algorithm - Operation

S is now { s, x, y, u } Pre-decessors show
shortest paths sub-graph

graphs 22

Dijkstra’s Algorithm - Time
Complexity

Dijkstra’s Algorithm
n Similar to MST algorithms
n Key step is sort on the edges
n Complexity is
wO((|E|+|V|)log|V|) or

wO(n2 log n)
 for a dense graph with n = |V| and |E| ≈ |V|2

