Graphs - Shortest Paths

# Application

= In a graph in which edges have costs ..
= Find the shortest path from a sourceto a destination
= Surprisingly ..

+ While finding the shortest path from a source to one

destination,

+ we can find the shortest paths to all over destinations as well!

= Common algorithm for
single-source shortest paths
is due to Edsger Dijkstra
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Dijkstra’s Algorithm - Data
Structures

# For a graph,

G=(V,E)

# Dijkstra’s algorithm keeps two sets of vertices:

S Vertices whose shortest paths have already been

determined

V-S  Remainder
#® Also

d Best estimates of shortest path to each vertex

P Predecessors for each vertex
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The Shortest Path:
from vertex 1 to vertex 5

redecessor Sub-graph

# Array of vertex indices, p[j], j=1.. V|
= p[j] contains the predecessor for node j

= p[j]’ s predecessor is inp[p[j]], and so on ...
= The edges in the predecessor sub-graph are

= 7 5 :
Adjacency T ¥ ¥ ¥ ]
matrix r r r T
N
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Dijkstra’s Algorithm -
ion
® |nitialise d and p
= For each vertex, j, in

+d =¥ al

- g =il 0 connections
= Source distance, dg =0

# Set Sto empty
# While V-Sis not empty

= Sort V-S based on d cﬁ
= Add u, the closest vertex in V-S, to S STIrst!

= Relax all the vertices still in V-S connected to u
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Operation
ian process
elax the node v
aftached to node u Edge c trix
rel ax( Node u, Node v, double w][ the current best
if (d[lv] >d[u] +wul[v]){ Shtimate to v is
= d[u] + wu] . gfreater than the
- path througn u ..

} Update the
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Dijkstra’s Algorithm - Full

#The Shortest Paths algorithm

a
|Given agraph, g, and a source, s |
T

shortest _paths( Graph g, Node s ){

initialise_single_source( g, s );
S={0}; /* Make S enpty */
Q= Vertices(g); /* Put the vertices in a PQ */
while (! Enpty(Q){

u =removeMn( Q);

AddNode( S, u ); /* Add uto S */

for each vertex v in Adjacent( u )

relax( u, v, w)
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Dijkstra’s Algorithm - Initialise
#The Shortest Paths algorithm

biven a graph, g,
nd a source, s
T

jnitialise_single_source( g, s );
S={0}; /* Make S enpty */
whiTe (I Empty(Q){ 7777
u = removeMn( Q);
AddNode( S, u ); /* Add uto S */
for each vertex v in Adjacent( u )
relax( u, v, w);
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Dijkstra’s Algorithm - Loop

ost Paths algorithm
Given agraph, g,

shortest_pat hs| \while thereare |5 ){
initialisel sunandestno-—Jd: S ):
S={0}; voke S enpty */
—Qé-\/er-t-i-ees-e-g--)—;—/-r Put the vertices in a PQ */
e & Empt )+

u =removeMn( Q);

AddNode( S, u ); /* Add uto S */

for each vertex v in Adjacent( u )

relax( u, v, w);
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neighbours
st Paths algorithm

iven agraph, g,

Update the
estimate of the
shortest_pat hs( Glportest paths to

initialise_si all nodes s )

S={0} d pty */
Q= Vertices( g ) /* t the vertices in a PQ */
while (! Errpty(@)% E

u = renoveM n( , <=@

Addode(—S— t-)- + Add t-te S i —
for each vertex v in Adj acent( u ) I
- —eta(—u—vr W)y —— — — — —
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Dijkstra’s Algorithm - Operation

Distance to all

nodes marked ¥
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Dijkstra’s Algorithm - Operation
4 |nitial Graph

urce

5

2
x ¥

Relax vertices adjacent to |
source
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Dijkstra’s Algorithm - Operation
# Initial Graph

Red arrows show
pre-decessors
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Dijkstra’s Algorithm - Operation

LIV y

Source is now in S Sort vertices and

choose closest
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Dijkstra’s Algorithm - Operation

Relax ubecause a
u [ shorter path viax L d

exists

W Relax y because a

shorter path via x

exists

Dijkstra’s Algorithm - Operation

5] @]
FS—— Relax y because

shorter path via x

exists

Dijkstra’s Algorithm -
Relax v because a
shorter path viay

jm—n m

Sort vertices and
—__choose closest




Dijkstra’s Algorithm - Operation

Sisnow {s,x,y} Sort vertices and

choose closest, u
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Dijkstra’s Algorithm - Operation

e -
x b4 X ¥y
Sisnow {s x,y,u} Finally add v
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Dijkstra’s Algorithm - Operation

H
x
ec

e
X

e

Dijkstra’s Algorithm - Time
omplexity

# Dijkstra’s Algorithm
= Similar to MST algorithms
= Key step is sort on the edges
= Complexity is
* O((IE[+IV]log|V[) or
+O(n%logn)
for a dense graph withn=|V|and |E| » |[VP




