Graphs - Shortest Paths

Application

= In a graph in which edges have costs ..
= Find the shortest path from a sourceto a destination
= Surprisingly ..

+ While finding the shortest path from a source to one

destination,

+ we can find the shortest paths to all over destinations as well!

= Common algorithm for
single-source shortest paths
is due to Edsger Dijkstra

graphs 1

Dijkstra’s Algorithm - Data
Structures

For a graph,

G=(V,E)

Dijkstra’s algorithm keeps two sets of vertices:

S Vertices whose shortest paths have already been

determined

V-S Remainder
#® Also

d Best estimates of shortest path to each vertex

P Predecessors for each vertex

graphs 2

The Shortest Path:
from vertex 1 to vertex 5

redecessor Sub-graph

Array of vertex indices, p[j], j=1.. V|
= p[j] contains the predecessor for node j

= p[j]’ s predecessor is inp[p[j]], and so on ...
= The edges in the predecessor sub-graph are

= 7 5 :
Adjacency T ¥ ¥ ¥]
matrix r r r T
N
- - - —
7 v v ¥ 7 5]
¥ ¥ ¥ ¥ 0 ol
v " v v v v v v ;
graphs 3
i , .
Dijkstra’s Algorithm -
ion
® |nitialise d and p
= For each vertex, j, in

+d =¥ al

- g =il 0 connections
= Source distance, dg =0

Set Sto empty
While V-Sis not empty

= Sort V-S based on d cﬁ
= Add u, the closest vertex in V-S, to S STIrst!

= Relax all the vertices still in V-S connected to u

graphs 5

(plli)
graphs "
Operation
ian process
elax the node v
aftached to node u Edge c trix
rel ax(Node u, Node v, double w][the current best
if (d[lv] >d[u] +wul[v]){ Shtimate to v is
= d[u] + wu] . gfreater than the
- path througn u ..

} Update the

graphs 6

Dijkstra’s Algorithm - Full

#The Shortest Paths algorithm

a
|Given agraph, g, and a source, s |
T

shortest _paths(Graph g, Node s){

initialise_single_source(g, s);
S={0}; /* Make S enpty */
Q= Vertices(g); /* Put the vertices in a PQ */
while (! Enpty(Q){

u =removeMn(Q);

AddNode(S, u); /* Add uto S */

for each vertex v in Adjacent(u)

relax(u, v, w)

graphs 7

Dijkstra’s Algorithm - Initialise
#The Shortest Paths algorithm

biven a graph, g,
nd a source, s
T

jnitialise_single_source(g, s);
S={0}; /* Make S enpty */
whiTe (I Empty(Q){ 7777
u = removeMn(Q);
AddNode(S, u); /* Add uto S */
for each vertex v in Adjacent(u)
relax(u, v, w);

graphs 8

Dijkstra’s Algorithm - Loop

ost Paths algorithm
Given agraph, g,

shortest_pat hs| \while thereare |5){
initialisel sunandestno-—Jd: S):
S={0}; voke S enpty */
—Qé-\/er-t-i-ees-e-g--)—;—/-r Put the vertices in a PQ */
e & Empt)+

u =removeMn(Q);

AddNode(S, u); /* Add uto S */

for each vertex v in Adjacent(u)

relax(u, v, w);

graphs 9

neighbours
st Paths algorithm

iven agraph, g,

Update the
estimate of the
shortest_pat hs(Glportest paths to

initialise_si all nodes s)

S={0} d pty */
Q= Vertices(g) /* t the vertices in a PQ */
while (! Errpty(@)% E

u = renoveM n(, <=@

Addode(—S— t-)- + Add t-te S i —
for each vertex v in Adj acent(u) I
- —eta(—u—vr W)y —— — — — —

graphs 10

Dijkstra’s Algorithm - Operation

Distance to all

nodes marked ¥

graphs 11

Dijkstra’s Algorithm - Operation
4 |nitial Graph

urce

5

2
x ¥

Relax vertices adjacent to |
source

graphs 12

Dijkstra’s Algorithm - Operation
Initial Graph

Red arrows show
pre-decessors

graphs 13

Dijkstra’s Algorithm - Operation

LIV y

Source is now in S Sort vertices and

choose closest

graphs 14

Dijkstra’s Algorithm - Operation

Relax ubecause a
u [shorter path viax L d

exists

W Relax y because a

shorter path via x

exists

Dijkstra’s Algorithm - Operation

5] @]
FS—— Relax y because

shorter path via x

exists

Dijkstra’s Algorithm -
Relax v because a
shorter path viay

jm—n m

Sort vertices and
—__choose closest

Dijkstra’s Algorithm - Operation

Sisnow {s,x,y} Sort vertices and

choose closest, u

graphs 19

Dijkstra’s Algorithm - Operation

e -
x b4 X ¥y
Sisnow {s x,y,u} Finally add v

graphs 20

Dijkstra’s Algorithm - Operation

H
x
ec

e
X

e

Dijkstra’s Algorithm - Time
omplexity

Dijkstra’s Algorithm
= Similar to MST algorithms
= Key step is sort on the edges
= Complexity is
* O((IE[+IV]log|V[) or
+O(n%logn)
for a dense graph withn=|V|and |E| » |[VP

