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Hashing:

A method for directly referencing items 
in a dictionary by doing arithmetic 
transformations on keys into dictionary 
addresses.
A hush function is perfect if there is no 
key collision, that is, two keys hash to 
the same hash value.
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Why Hash Tables?

All search structures so far
n Relied on a comparison operation
n Performance O(n) or    O( log n)

Assume I have a function
n f ( key )    → integer
 ie one that maps a key to an integer

What performance might I expect now?
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Hash Tables - Structure
Simplest case:
n Assume items have integer 

keys in the range 1 .. m
n Use the value of the key itself

to select a slot in a 
direct access table
in which to store the item

n To search for an item with key, 
k, just look in slot k
w If there’s an item there,

you’ve found it
w If the tag is 0, it’s missing.

n Constant time,  O(1)
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Hash Tables - Constraints

Constraints
n Keys must be unique
n Keys must lie in a small range
n For storage efficiency,

keys must be dense in the range
n If they’re sparse (lots of gaps between 

values), a lot of space is used to obtain 
speed
w Space for speed trade-off
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Hash Tables - Relaxing the 
constraints

Keys must be unique
n Construct a linked list of 

duplicates : “attached” to each 
slot

n If a search can be satisfied
by any item with key, k,
performance is still O(1)

 but
n If the item has some 

other distinguishing feature
which must be matched,
we get O(nmax)

 where nmax is the largest number
of duplicates - or length of the 

longest chain
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Hash Tables - Relaxing the 
constraints

Keys are integers
n Need a hash function

h( key )    → integer
 ie one that maps a key to 

an integer
n Applying this function to the

key produces an address

n If h maps each key to a 
unique integer in the range 
0 .. m -1, then search is 
O(1)
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An Example: Perfect Hash
suppose: MagicNumber = 15

int h(String s) { 
return ((s[0] + s[1])% MagicNumber);

}

suppose: 
typedef struct {

String name;
int numMoons;
double sunDistance;

} planet;

planet solarSystem[MagicNumber];
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Suppose: 
solarSystem[h(“Mercury”)] = {“Mercury”, 0, 36.0};
solarSystem[h(“Venus”)] = {“Venus”, 0, 67.27};
solarSystem[h(“Earth”)] = {“Earth”, 1, 93.0};
solarSystem[h(“Mars”)] = {“Mars”, 2, 141.71};
solarSystem[h(“Jupiter”)] = {“Jupiter”, 16, 483.88};
solarSystem[h(“Saturn”)] = {“Saturn”, 12, 887.14};
solarSystem[h(“Uranus”)] = {“Uranus”, 5, 1783.98};
solarSystem[h(“Neptune”)] = {“Neptune”, 2, 2795};
solarSystem[h(“Pluto”)] = {“Pluto”, 1, 3675};

Where are they located
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“Ju” in ASCII are 74 and 117, 74 + 117 = 191;
191 % 15 = 11;

h(“Mercury”) = 13
h(“Venus”) =  7
h(“Earth”) =  1
h(“Mars”) =  9
h(“Jupiter”) =  11
h(“Saturn”) =  0
h(“Uranus”) =  4
h(“Neptune”) = 14 
h(“Pluto”) =  8

Thus, our search function is simply:
planet search(String s){ return solarSystem[h(s)]; }
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Hash Functions
A hash function h maps keys of a given type 
to integers in a fixed interval [0, N − 1]
Example:

h(x) = x mod N
is a hash function for integer keys
The integer h(x) is called the hash 
value of key x
The goal of a hash function is to 
uniformly disperse keys in the range 
[0, N − 1]
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Choosing the Hash Function
Uniform hashing
n Ideal hash function
w P(k) = probability that a key, k, occurs

w If there are m slots in our hash table,
w a uniform hashing function, h(k), would ensure:

w or, in plain English,
w the number of keys that map to each slot is equal

Σ P(k) =
k | h(k) = 0

Σ P(k) =     ....
k | h(k) = 1

Σ P(k) =
k | h(k) = m-1

1
m

Read as sum over all k such that h(k) = 0



3

Hash tables 13

Read as 0 ≤ k < r

If the keys are integers
randomly distributed in [ 0 , r ),

 then

 is a uniform hash function
Most hashing functions can be made to map the keys 
to  [ 0 , r ) for some  r
n eg adding the ASCII codes for characters mod 255

will give values in [ 0, 256 ) or [ 0, 255 ]
n Replace + by xor   

çsame range without the mod operation

Hash Tables - A Uniform Hash Function

h(k) = 
mk
r 
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A  hash table for a given key type consists of
n Hash function h
n Array (called table) of size N

When implementing a dictionary with a hash table, the 
goal is to store item (k, o) at index i = h (k)
A  collision occurs when two keys in the 
dictionary have the same hash value, i.e.,

h(k) == h(k’), whereas k != k’
Collision handing schemes:
n Chaining: colliding items are stored in a 

sequence
n Open addressing: the colliding item is placed 

in a different cell of the table

Hash Tables
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Example

We design a hash table 
for a dictionary storing 
items (SSN, Name), 
where SSN (social 
security number) is a 
nine-digit positive 
integer
Our hash table uses an 
array of sizeN = 10,000
and the hash function
h(x) = last four digits of x
We use chaining to 
handle collisions
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Define Hash Functions

A hash function is 
usually specified as the 
composition of two 
functions:
Hash code map:

h1: keys → integers
Compression map:

h2: integers → [0, N − 1]

The hash code map 
is applied first, and 
the compression map 
is applied next on the 
result, i.e., 

h(x) = h2(h1(x))

The goal of the hash 
function is to  
“disperse” the keys 
in an apparently 
random way
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Hash Code Maps
Memory address:
n We reinterpret the memory 

address of the key object as 
an integer 

n Good in general, except for 
numeric and string keys

Integer cast:
n We reinterpret the bits of the 

key as an integer
n Suitable for keys of length 

less than or equal to the 
number of bits of the integer 
type (e.g., byte, short, int
and float)

Component sum:
n We partition the bits of 

the key into components 
of fixed length (e.g., 16 
or 32 bits) and we sum 
the components 
(ignoring overflows)

n Suitable for numeric keys 
of fixed length greater 
than or equal to the 
number of bits of the 
integer type (e.g., long 
and double)
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Example: A Hash Function
Hash function
n With this hash function
 int hash( char *s, int n ) {

int sum = 0;
while( n-- ) sum = sum + *s++;
return sum % 256;

}
n hash(“AB”, 2 ) and
hash(“BA”, 2 )
return the same value!

n This is called a collision
n A variety of techniques are used for resolving 

collisions
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Hash Code Maps (cont.)

Polynomial accumulation:
n We partition the bits of the key into a sequence of 

components of fixed length (e.g., 8, 16 or 32 bits)
a0 a1 … an−1

n We evaluate the polynomial
p(z) = a0 + a1 z + a2 z2 + … + an−1zn−1

at a fixed value z, ignoring overflows
n Especially suitable for strings (e.g., the choice z = 33 gives 

at most 6 collisions on a set of 50,000 English words)
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Hash Code Maps (cont.)
Polynomial p(z) can be evaluated in O(n) time 
using Horner’s rule:
n The following polynomials are successively computed, 

each from the previous one in O(1) time
p0(z) = an−1

pi(z) = an−i−1 + zpi−1(z)
(i = 1, 2, …, n −1)

We have p(z) = pn−1(z)

int poly(int a[], int z; int n){
int p = 0;

for (int i = n-1; i >= 0; i --){
p = a[i] + z*p;

}
return p;

}
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Compression Maps

Division:
n h2 (y) = y mod N
n The size N of the 

hash table is usually 
chosen to be a prime 

n The reason has to do 
with number theory 
and is beyond the 
scope of this course

Multiply, Add and 
Divide (MAD):
n h2 (y) = (ay + b) mod N

n a and b are 
nonnegative integers 
such that

a mod N ≠ 0

n Otherwise, every 
integer would map to 
the same value b
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Linear Probing
Linear probing handles 
collisions by placing the 
colliding item in the next 
(circularly) available 
table cell
Each table cell inspected 
is referred to as a 
“probe”
Colliding items lump 
together, causing future 
collisions to cause a 
longer sequence of 
probes

Example:
n h(x) = x mod 13
n Insert keys 18, 41, 

22, 44, 59, 32, 31, 
73, in this order

0 1 2 3 4 5 6 7 8 9 10 11 12

41 18 44 59 32 22 31 73
0 1 2 3 4 5 6 7 8 9 10 11 12
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Search with Linear Probing
Consider a hash table A
that uses linear probing
findElement(k)
n We start at cell h(k) 
n We probe consecutive 

locations until one of the 
following occurs
w An item with key k is 

found, or
w An empty cell is found, 

or
w N cells have been 

unsuccessfully probed 

function findElement(k){

i = h(k);
p = 0;
repeat {

c = A[i];
if (c == ∅)

return NO_SUCH_KEY; 
else if (c.key () == k)

return c.element()
else {

i = (i + 1) mod N;
p = p + 1;

}
until ( p == N);
return NO_SUCH_KEY;

}
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Updates with Linear Probing
To handle insertions and 
deletions, we introduce a 
special key flag, called 
AVAILABLE, which replaces 
deleted elements
removeElement (k)
n We search for an item with 

key k

n If such an item (k, o) is 
found, we replace it with the 
special item AVAILABLE
and we return element o

n Else, we return 
NO_SUCH_KEY

insert Item(k, o )
n We report an error if the 

table is full
n We start at cell h(k) 
n We probe consecutive 

cells until one of the 
following occurs
w A cell i is found that is 

either empty or stores 
AVAILABLE , or
w N cells have been 

unsuccessfully probed
n We store item (k, o) in 

cell i
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Double Hashing
Double hashing uses a 
secondary hash function 
d(k) and handles 
collisions by placing an 
item in the first available 
cell of the series

(i + jd(k)) mod N
for j = 0,  1, … , N − 1
The secondary hash 
function d(k) cannot have 
zero values
The table size N must be 
a prime to allow probing 
of all the cells

Common choice of 
compression map for the 
secondary hash function: 

d2(k) = q − k mod q
where
n q < N
n q is a prime

The possible values for 
d2(k) are

1, 2, … , q

Hash tables 26

Consider a hash 
table storing integer 
keys that handles 
collision with double 
hashing
n N = 13
n h(k) = k mod 13
n d(k) = 7 − k mod 7

Insert keys 18, 41, 
22, 44, 59, 32, 31, 
73, in this order

Example of Double Hashing

0 1 2 3 4 5 6 7 8 9 10 11 12

31 41 18 32 59 73 22 44
0 1 2 3 4 5 6 7 8 9 10 11 12

k h (k ) d (k ) Probes
18 5 3 5
41 2 1 2
22 9 6 9
44 5 5 5 10
59 7 4 7
32 6 3 6
31 5 4 5 9 0
73 8 4 8
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Performance of Probing:

Let N be the number of slots of a hash table, 
n be the number of items in the table, we 
define load factor as:

α = n/N
If the hash function randomly distributes 
keys through the table, then the expected 
length of a successful search path is:

lengthsucc = ½ (1 + 1/(1- α))
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Performance of Probing:

The expected length of an unsuccessful 
search is approximately:

lengthunsucc = ½ ( 1 + 1/(1 - α)2)
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Problems with Probing:

The size of the hash table must be 
fixed in advance.
The search costs increase dramatically 
as the table becomes nearly full.
Need a special object, called 

AVAILABLE, to implement “delete” 
operation.
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Collision resolution using Overflow area

Ë Overflow area
• Linked list constructed

in special area of table
called overflow area

n h(k) == h(j)
n k stored first
n Adding j

w Calculate h(j)
w Find k
w Get first slot in overflow area
w Put j in it
w k’s pointer points to this slot

n Searching - same as linked list
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Collision resolution using Linked Lists:

Dynamically allocate space.
Easy to insert/delete an item
Need a link for each node in the hash 
table.
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Performance:

Let N be the size of the hash table, n the 
number of items in the table’s linked lists, if 
all input sequences are equally likely and the 
hash function randomly distributes keys over 
the table, the expected length of a linked list 
is n/N. 

lengthsucc = ½ (n/N)
lengthunsucc = n/N
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Collision Resolution Summary
Chaining
+ Unlimited number of elements
+ Unlimited number of collisions
- Overhead of multiple linked lists

Re-hashing
+ Fast re-hashing 
+ Fast access through use of main table space
- Maximum number of elements must be known
- Multiple collisions become probable

Overflow area
+ Fast access 
+ Collisions don't use primary table space
- Two parameters which govern performance need to be 

estimated
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Conclusion:
In the worst case, searches, 
insertions and removals on a 
hash table take O(n) time
The worst case occurs when 
all the keys inserted into the 
dictionary collide
The load factor α = n/N 
affects the performance of a 
hash table
Assuming that the hash 
values are like random 
numbers, it can be shown 
that the expected number of 
probes for an insertion with 
open addressing is

1 / (1 −α )

The expected running 
time of all the dictionary 
ADT operations in a 
hash table is O(1)
In practice, hashing is 
very fast provided the 
load factor is not close 
to 100%
Applications of hash 
tables:
n small databases
n compilers
n browser caches
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Collision Frequency

Birthdays  or the von Mises paradox
n There are 365 days in a normal year
çBirthdays on the same day unlikely?

n How many people do I need 
before “it’s an even bet”
(ie the probability is > 50%)
that two have the same birthday?

n View 
w the days of the year as the slots in a hash table
w the “birthday function” as mapping people to slots

n Answering von Mises’ question answers the question about 
the probability of collisions in a hash table
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Distinct Birthdays
Let Q(n) = probability that n people have distinct 

birthdays
Q( 1) = 1

With two people, the 2nd has only 364 “free” 
birthdays

The 3rd has only 363, and so on:

Q(2) = Q(1) * 
364

365

Q(n) = Q(1) * 
364

365

364

365

365-n+1

365
* * … *
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Coincident Birthdays
Probability of having two identical birthdays
P(n) = 1 - Q(n)
P(23) = 0.507

With 23 entries,
table is only
23/365 = 6.3%
full!

0.000
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900
1.000

0 20 40 60 80

Hash tables 38

Hash Tables - Load factor
Collisions are very probable!
Table load factor

must be kept low
Detailed analyses of the average chain length
(or number of comparisons/search) are available
Separate chaining 
n linked lists attached to each slot gives best 

performance
n but uses more space!

α = n
m

n = number of items
m = number of slots


