
1

Hash Tables

∅

∅
∅

0
1
2
3
4 451-229-0004 981-101-0004

025-612-0001

Hash tables 2

Hashing:

A method for directly referencing items
in a dictionary by doing arithmetic
transformations on keys into dictionary
addresses.
A hush function is perfect if there is no
key collision, that is, two keys hash to
the same hash value.

Hash tables 3

Why Hash Tables?

All search structures so far
n Relied on a comparison operation
n Performance O(n) or O(log n)

Assume I have a function
n f (key) → integer
 ie one that maps a key to an integer

What performance might I expect now?

Hash tables 4

Hash Tables - Structure
Simplest case:
n Assume items have integer

keys in the range 1 .. m
n Use the value of the key itself

to select a slot in a
direct access table
in which to store the item

n To search for an item with key,
k, just look in slot k
w If there’s an item there,

you’ve found it
w If the tag is 0, it’s missing.

n Constant time, O(1)

Hash tables 5

Hash Tables - Constraints

Constraints
n Keys must be unique
n Keys must lie in a small range
n For storage efficiency,

keys must be dense in the range
n If they’re sparse (lots of gaps between

values), a lot of space is used to obtain
speed
w Space for speed trade-off

Hash tables 6

Hash Tables - Relaxing the
constraints

Keys must be unique
n Construct a linked list of

duplicates : “attached” to each
slot

n If a search can be satisfied
by any item with key, k,
performance is still O(1)

 but
n If the item has some

other distinguishing feature
which must be matched,
we get O(nmax)

 where nmax is the largest number
of duplicates - or length of the

longest chain

2

Hash tables 7

Hash Tables - Relaxing the
constraints

Keys are integers
n Need a hash function

h(key) → integer
 ie one that maps a key to

an integer
n Applying this function to the

key produces an address

n If h maps each key to a
unique integer in the range
0 .. m -1, then search is
O(1)

Hash tables 8

An Example: Perfect Hash
suppose: MagicNumber = 15

int h(String s) {
return ((s[0] + s[1])% MagicNumber);

}

suppose:
typedef struct {

String name;
int numMoons;
double sunDistance;

} planet;

planet solarSystem[MagicNumber];

Hash tables 9

Suppose:
solarSystem[h(“Mercury”)] = {“Mercury”, 0, 36.0};
solarSystem[h(“Venus”)] = {“Venus”, 0, 67.27};
solarSystem[h(“Earth”)] = {“Earth”, 1, 93.0};
solarSystem[h(“Mars”)] = {“Mars”, 2, 141.71};
solarSystem[h(“Jupiter”)] = {“Jupiter”, 16, 483.88};
solarSystem[h(“Saturn”)] = {“Saturn”, 12, 887.14};
solarSystem[h(“Uranus”)] = {“Uranus”, 5, 1783.98};
solarSystem[h(“Neptune”)] = {“Neptune”, 2, 2795};
solarSystem[h(“Pluto”)] = {“Pluto”, 1, 3675};

Where are they located

N
eptune

M
ercury

0

Jupiter

0

M
ars

0

Pluto

Venus

00

U
ranus

0

Earth

Saturn

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Hash tables 10

“Ju” in ASCII are 74 and 117, 74 + 117 = 191;
191 % 15 = 11;

h(“Mercury”) = 13
h(“Venus”) = 7
h(“Earth”) = 1
h(“Mars”) = 9
h(“Jupiter”) = 11
h(“Saturn”) = 0
h(“Uranus”) = 4
h(“Neptune”) = 14
h(“Pluto”) = 8

Thus, our search function is simply:
planet search(String s){ return solarSystem[h(s)]; }

Hash tables 11

Hash Functions
A hash function h maps keys of a given type
to integers in a fixed interval [0, N − 1]
Example:

h(x) = x mod N
is a hash function for integer keys
The integer h(x) is called the hash
value of key x
The goal of a hash function is to
uniformly disperse keys in the range
[0, N − 1]

Hash tables 12

Choosing the Hash Function
Uniform hashing
n Ideal hash function

w P(k) = probability that a key, k, occurs

w If there are m slots in our hash table,
w a uniform hashing function, h(k), would ensure:

w or, in plain English,
w the number of keys that map to each slot is equal

Σ P(k) =
k | h(k) = 0

Σ P(k) =
k | h(k) = 1

Σ P(k) =
k | h(k) = m-1

1
m

Read as sum over all k such that h(k) = 0

3

Hash tables 13

Read as 0 ≤ k < r

If the keys are integers
randomly distributed in [0 , r),

 then

 is a uniform hash function
Most hashing functions can be made to map the keys
to [0 , r) for some r
n eg adding the ASCII codes for characters mod 255

will give values in [0, 256) or [0, 255]
n Replace + by xor

çsame range without the mod operation

Hash Tables - A Uniform Hash Function

h(k) =
mk
r

Hash tables 14

A hash table for a given key type consists of
n Hash function h
n Array (called table) of size N

When implementing a dictionary with a hash table, the
goal is to store item (k, o) at index i = h (k)
A collision occurs when two keys in the
dictionary have the same hash value, i.e.,

h(k) == h(k’), whereas k != k’
Collision handing schemes:
n Chaining: colliding items are stored in a

sequence
n Open addressing: the colliding item is placed

in a different cell of the table

Hash Tables

Hash tables 15

Example

We design a hash table
for a dictionary storing
items (SSN, Name),
where SSN (social
security number) is a
nine-digit positive
integer
Our hash table uses an
array of sizeN = 10,000
and the hash function
h(x) = last four digits of x
We use chaining to
handle collisions

∅

∅
∅

∅

∅

0
1
2
3
4

9997
9998
9999

…

451-229-0004 981-101-0004

200-751-9998

025-612-0001

Hash tables 16

Define Hash Functions

A hash function is
usually specified as the
composition of two
functions:
Hash code map:

h1: keys → integers
Compression map:

h2: integers → [0, N − 1]

The hash code map
is applied first, and
the compression map
is applied next on the
result, i.e.,

h(x) = h2(h1(x))

The goal of the hash
function is to
“disperse” the keys
in an apparently
random way

Hash tables 17

Hash Code Maps
Memory address:
n We reinterpret the memory

address of the key object as
an integer

n Good in general, except for
numeric and string keys

Integer cast:
n We reinterpret the bits of the

key as an integer
n Suitable for keys of length

less than or equal to the
number of bits of the integer
type (e.g., byte, short, int
and float)

Component sum:
n We partition the bits of

the key into components
of fixed length (e.g., 16
or 32 bits) and we sum
the components
(ignoring overflows)

n Suitable for numeric keys
of fixed length greater
than or equal to the
number of bits of the
integer type (e.g., long
and double)

Hash tables 18

Example: A Hash Function
Hash function
n With this hash function
 int hash(char *s, int n) {

int sum = 0;
while(n--) sum = sum + *s++;
return sum % 256;

}
n hash(“AB”, 2) and
hash(“BA”, 2)
return the same value!

n This is called a collision
n A variety of techniques are used for resolving

collisions

4

Hash tables 19

Hash Code Maps (cont.)

Polynomial accumulation:
n We partition the bits of the key into a sequence of

components of fixed length (e.g., 8, 16 or 32 bits)
a0 a1 … an−1

n We evaluate the polynomial
p(z) = a0 + a1 z + a2 z2 + … + an−1zn−1

at a fixed value z, ignoring overflows
n Especially suitable for strings (e.g., the choice z = 33 gives

at most 6 collisions on a set of 50,000 English words)

Hash tables 20

Hash Code Maps (cont.)
Polynomial p(z) can be evaluated in O(n) time
using Horner’s rule:
n The following polynomials are successively computed,

each from the previous one in O(1) time
p0(z) = an−1

pi(z) = an−i−1 + zpi−1(z)
(i = 1, 2, …, n −1)

We have p(z) = pn−1(z)

int poly(int a[], int z; int n){
int p = 0;

for (int i = n-1; i >= 0; i --){
p = a[i] + z*p;

}
return p;

}

Hash tables 21

Compression Maps

Division:
n h2 (y) = y mod N
n The size N of the

hash table is usually
chosen to be a prime

n The reason has to do
with number theory
and is beyond the
scope of this course

Multiply, Add and
Divide (MAD):
n h2 (y) = (ay + b) mod N

n a and b are
nonnegative integers
such that

a mod N ≠ 0

n Otherwise, every
integer would map to
the same value b

Hash tables 22

Linear Probing
Linear probing handles
collisions by placing the
colliding item in the next
(circularly) available
table cell
Each table cell inspected
is referred to as a
“probe”
Colliding items lump
together, causing future
collisions to cause a
longer sequence of
probes

Example:
n h(x) = x mod 13
n Insert keys 18, 41,

22, 44, 59, 32, 31,
73, in this order

0 1 2 3 4 5 6 7 8 9 10 11 12

41 18 44 59 32 22 31 73
0 1 2 3 4 5 6 7 8 9 10 11 12

Hash tables 23

Search with Linear Probing
Consider a hash table A
that uses linear probing
findElement(k)
n We start at cell h(k)
n We probe consecutive

locations until one of the
following occurs
w An item with key k is

found, or
w An empty cell is found,

or
w N cells have been

unsuccessfully probed

function findElement(k){

i = h(k);
p = 0;
repeat {

c = A[i];
if (c == ∅)

return NO_SUCH_KEY;
else if (c.key () == k)

return c.element()
else {

i = (i + 1) mod N;
p = p + 1;

}
until (p == N);
return NO_SUCH_KEY;

}
Hash tables 24

Updates with Linear Probing
To handle insertions and
deletions, we introduce a
special key flag, called
AVAILABLE, which replaces
deleted elements
removeElement (k)
n We search for an item with

key k

n If such an item (k, o) is
found, we replace it with the
special item AVAILABLE
and we return element o

n Else, we return
NO_SUCH_KEY

insert Item(k, o)
n We report an error if the

table is full
n We start at cell h(k)
n We probe consecutive

cells until one of the
following occurs
w A cell i is found that is

either empty or stores
AVAILABLE , or

w N cells have been
unsuccessfully probed

n We store item (k, o) in
cell i

5

Hash tables 25

Double Hashing
Double hashing uses a
secondary hash function
d(k) and handles
collisions by placing an
item in the first available
cell of the series

(i + jd(k)) mod N
for j = 0, 1, … , N − 1
The secondary hash
function d(k) cannot have
zero values
The table size N must be
a prime to allow probing
of all the cells

Common choice of
compression map for the
secondary hash function:

d2(k) = q − k mod q
where
n q < N
n q is a prime

The possible values for
d2(k) are

1, 2, … , q

Hash tables 26

Consider a hash
table storing integer
keys that handles
collision with double
hashing
n N = 13
n h(k) = k mod 13
n d(k) = 7 − k mod 7

Insert keys 18, 41,
22, 44, 59, 32, 31,
73, in this order

Example of Double Hashing

0 1 2 3 4 5 6 7 8 9 10 11 12

31 41 18 32 59 73 22 44
0 1 2 3 4 5 6 7 8 9 10 11 12

k h (k) d (k) Probes
18 5 3 5
41 2 1 2
22 9 6 9
44 5 5 5 10
59 7 4 7
32 6 3 6
31 5 4 5 9 0
73 8 4 8

Hash tables 27

Performance of Probing:

Let N be the number of slots of a hash table,
n be the number of items in the table, we
define load factor as:

α = n/N
If the hash function randomly distributes
keys through the table, then the expected
length of a successful search path is:

lengthsucc = ½ (1 + 1/(1- α))

Hash tables 28

Performance of Probing:

The expected length of an unsuccessful
search is approximately:

lengthunsucc = ½ (1 + 1/(1 - α)2)

Hash tables 29

Problems with Probing:

The size of the hash table must be
fixed in advance.
The search costs increase dramatically
as the table becomes nearly full.
Need a special object, called

AVAILABLE, to implement “delete”
operation.

Hash tables 30

Collision resolution using Overflow area

Ë Overflow area
• Linked list constructed

in special area of table
called overflow area

n h(k) == h(j)
n k stored first
n Adding j

w Calculate h(j)
w Find k
w Get first slot in overflow area
w Put j in it
w k’s pointer points to this slot

n Searching - same as linked list

6

Hash tables 31

Collision resolution using Linked Lists:

Dynamically allocate space.
Easy to insert/delete an item
Need a link for each node in the hash
table.

Hash tables 32

Performance:

Let N be the size of the hash table, n the
number of items in the table’s linked lists, if
all input sequences are equally likely and the
hash function randomly distributes keys over
the table, the expected length of a linked list
is n/N.

lengthsucc = ½ (n/N)
lengthunsucc = n/N

Hash tables 33

Collision Resolution Summary
Chaining
+ Unlimited number of elements
+ Unlimited number of collisions
- Overhead of multiple linked lists

Re-hashing
+ Fast re-hashing
+ Fast access through use of main table space
- Maximum number of elements must be known
- Multiple collisions become probable

Overflow area
+ Fast access
+ Collisions don't use primary table space
- Two parameters which govern performance need to be

estimated

Hash tables 34

Conclusion:
In the worst case, searches,
insertions and removals on a
hash table take O(n) time
The worst case occurs when
all the keys inserted into the
dictionary collide
The load factor α = n/N
affects the performance of a
hash table
Assuming that the hash
values are like random
numbers, it can be shown
that the expected number of
probes for an insertion with
open addressing is

1 / (1 −α)

The expected running
time of all the dictionary
ADT operations in a
hash table is O(1)
In practice, hashing is
very fast provided the
load factor is not close
to 100%
Applications of hash
tables:
n small databases
n compilers
n browser caches

Hash tables 35

Collision Frequency

Birthdays or the von Mises paradox
n There are 365 days in a normal year

çBirthdays on the same day unlikely?
n How many people do I need

before “it’s an even bet”
(ie the probability is > 50%)
that two have the same birthday?

n View
w the days of the year as the slots in a hash table
w the “birthday function” as mapping people to slots

n Answering von Mises’ question answers the question about
the probability of collisions in a hash table

Hash tables 36

Distinct Birthdays
Let Q(n) = probability that n people have distinct

birthdays
Q(1) = 1

With two people, the 2nd has only 364 “free”
birthdays

The 3rd has only 363, and so on:

Q(2) = Q(1) *
364

365

Q(n) = Q(1) *
364

365

364

365

365-n+1

365
* * … *

7

Hash tables 37

Coincident Birthdays
Probability of having two identical birthdays
P(n) = 1 - Q(n)
P(23) = 0.507

With 23 entries,
table is only
23/365 = 6.3%
full!

0.000
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900
1.000

0 20 40 60 80

Hash tables 38

Hash Tables - Load factor
Collisions are very probable!
Table load factor

must be kept low
Detailed analyses of the average chain length
(or number of comparisons/search) are available
Separate chaining
n linked lists attached to each slot gives best

performance
n but uses more space!

α = n
m

n = number of items
m = number of slots

