Sorting

#Card players all know how to sort ...
= First card is already sorted
= With all the rest,
# Scan back from the end until you find the first card
larger than the new one,
Move all the lower ones up one slot
@insert it

9 |®

Sorting Algorithms 1

Sorting - Insertion sort

AT
| ok DLET Dol ]
arrs 1N

DL Dl

Sorting Algorithms

- Insertion sort

#® Complexity
= For each card
= Scan O(n) R
= Shift up on ——
= Insert o(1)
= Total o(n)

= First item requires O(1), second O(2), ...

= For nitems Si operations € O(n?)
=

Sorting Algorithms 3

void InsertionSort(SortingArrayA) {
/* assume: typedef enum {false, true} Boolean; has been declared */
int i
KeyType K;
Boolean NotFinished;
/* For each i in the range 1:n-1, let key K be the key, A[i]. Then */
/* insert K into the subarray A[0:i -1] in ascending order */
for (i=1; i <n; ++) {/*scanning */
K = Alil;

i=i
NotFinished = (A[j -1] > K);

while (NotFinished) {

ALl =A[ -1];  /* move Alj -1] one space to the right */
=
if (> 0) {
NotFinished = (A[j -1] > K);
3 else {
NotFinished = false;
}
/= insert key K into hole opened up by moving previous keys to the right */
Al = K

Y

Sorting Algorithms

- Bubble

# From the first element
= Exchange pairs if they're out of order
+ Last one must now be the largest
= Repeat from the first to n-1

= Stop when you have only one element to
check

Sorting Algorithms 5

Sort

/* Bubble sort for integers */
#define SWAP(a,b) {int t; t=a; a=b; b=t; }
void bubble( int af], int n) {
int i, j;
for(i=0;i<n;i++) { /* n passes thru the array */
/* From start to the end of unsorted part */
for(i=1;j<(n-i);j++) { ﬁ

} T2 =S T teratioTs

Sorting Algorithms

6




void BubbleSort (SortingArray A) {
int i;
KeyType Temp;
Boolean NotDone;
do {
NotDone = false;
for (1 =0;i<n-1; ++i) {
if (ALl > Afi+1]) { /* the pair (A[i], Afi+11) is out of order */
/* exchange A[i] and A[i + 1] to put them in sorted order */
Temp = A[i]; A[i] = A[i + 1]; A[i + 1] =Temp;

/* initially, assume NotDone is false */

/* if you swapped you need another pass */
NotDone = true;
}
}
} while (NotDone ); /* NotDone == falseiff no pair of keys was */

} /* swapped on the last pass */

Sorting Algorithms

Sorting - Simple

#Bubble sort
= O(M)
= Very simple code
# |nsertion sort
= Slightly better than bubble sort
+ Fewer comparisons
= Also O(n?)
#But HeapSortis O(nlog n)

#\Where would you use bubble or insertion sort?

Sorting Algorithms 8

#Bubble Sort or Insertion Sort

- Use n2and n log n
when n
is small o

Simple code e “f;ff
compensates "o

for low ]
efficiency! )

Sorting Algorithms

Priority Queue Sort

void PriorityQueueSort(SortingArray A)
{

(Let Q be an initially empty output queue)
(Let PQ be a priority queue)
KeyType K;
(Organize the keys in A into a priority queue, PQ)
while (PQ is not empty) {
(Remove the largest key, K, from PQ)
(Insert key, K, on the rear of output queue, Q)
}
(Move the keys in Q into the array A in ascending sorted order)

}

Sorting Algorithms 10

Merge Sort

-and-Conquer

* Divide-and conquer is a * Merge-sort is a sorting
general algorithm design algorithm based on the
paradigm: divide-and-conquer

= Divide: divide the input data paradigm
Sin two disjoint subsets S; # Like heap-sort
;nd S AN = It uses a comparator

= Recur: solve the ;

It has O(n log n)runnin

subproblems associated " time (nlogn) 9
with S; and S, & Unlike h t

= Conquer: combine the MIKErnEaprsor
solutions for § and S, into a = Itdoes not use an
solution for S auxiliary priority queue

& The base case for the = Itaccesses datain a
recursion are subproblems of sequeptial marjner
size 0 or 1 (suitable to sort data on a

disk)

Sorting Algorithms 12




Merge-Sort

® Merge-sort on an input function mergesort(S, C, n)
sequence S with n Input list Swith n
elements consists of elements, comparator C

three steps: Output list Ssorted
= Divide: partition S into i gecodinaicle
two sequences S and S, if (n>1){
of about n/2 elements (S, S)) = partition(S, n/2)
each mergeSort(S,, C, n/2)
= Recur: recursively sort S; mergeSort(S,, C, n/2)
and S, _ .
S=merge(S,, S)
= Conquer: merge S, and }
S,into a unique sorted
sequence
Sorting Algorithms 13

Merging Two Sorted Sequences

The conquer step of
merge-sort consists
of merging two
sorted sequences A
and B into a sorted
sequence S
containing the union
of the elements of A
and B

Merging two sorted
sequences, each

with n/2 elements
and implemented by
means of a doubly
linked list, takes
O(n) time

function merggA, B)

Input listA and B with
n/2 elements each

Output sorted listof AE B

S=empty list
while (tisEmpty(A) u isEmpty(B))
if (first_element(A) < first_element(B))
insertLast(S, remove_first(A));
else
insertLast(S, remove_first(B));
while (tisEmpty(A))
insertLast(S, remove_first(A));
while (!isEmpty(B))
insertLast(S, remove_first(B));
return S

Sorting Algorithms 14

Merge-Sort Tree

® An execution of merge-sort is depicted by a binary tree
= each node represents a recursive call of merge-sort and stores
+ unsorted sequence before the execution and its partition
+ sorted sequence at the end of the execution
= the root is the initial call
= the leaves are calls on subsequences of size 0 or 1

[7%‘2]
PP B
bod boo) lao) lad

Sorting Algorithms 15

# Partition

xecution Example

‘[’)QA]’}DL:’I ]

Sorting Algorithms 16

ion Example (cont.)

+ Recursive call, partition

7234738

Sorting Algorithms 17

ion Example (cont.)

+ Recursive call, partition

7294%38%6

Sorting Algorithms 18




Execution Example (cont.) Execution Example (cont.)

#+ Recursive call, base case + Recursive call, base case

[72941/23861 ] ‘.{2941/23861 ]

(7 2%90 4 ) ( )
ez ] | ) 1. )

b e o de

Sorting Algorithms 19 Sorting Algorithms 20

Execution Example (cont.) xecution Example (cont.)

* Merge + Recursive call, ..., base case, merge

[700411:1;:1 ] ‘[’)QA]’}DL:’I ]

Sorting Algorithms 21 Sorting Algorithms 22

ion Example (cont.) ion Example (cont.)

+ Merge + Recursive call, ..., merge, merge

729 4%38 7294%38%6

Sorting Algorithms 23 Sorting Algorithms 24




Execution Example (cont.)

+ Merge

[72941/23861® 12346789]
-V N~

(f2%040 2479 Ges1e 13856)

EIAZ®27] [94@49] [38®38] [61®16]

o) eoz] bod ko

Sorting Algorithms 25

Analysis of Merge-Sort

# The height h of the merge-sort tree is O(log n)
= at each recursive call we divide in half the sequence,

# The overall amount or work done at the nodes of depth iis O(n)
= we partition and merge 2/ sequences of size /2!
= we make 2*1recursive calls

# Thus, the total running time of merge-sort is O(n log n)

depth #seqs size

0 1 n C )

1 2 n2 ( ) [ ]

| - ég%} g%
Sorting Algorithms 26

Summary of Sorting Algorithms

Algorithm Time Notes

* slow
selection-sort o(n?) #in-place

- {or STTatt data sets (< TR

= slow
insertion-sort o(n?) = in-place

£ -
fer-smattdatasets{<H<

= fast

heap-sort O(nlogn) [=in-place
fortargetatarsets{(H—2it)

= fast

merge-sort | O(nlogn) |=sequential data access

WOr Muge odtd Sets (= LiVI)

Sorting Algorithms 27




