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Quick-Sort

7  4  9  6 2  → 2  4  6 7  9

4 2  → 2  4 7 9  → 7 9

2 → 2 9 → 9
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Quick-Sort
Quick -sort is a randomized 
sorting algorithm based 
on the divide-and-conquer 
paradigm:
n Divide: pick a random 

element x (called pivot) and 
partition S into 
w L elements less than x
w E elements equal x
w G elements greater than x

n Recur: sort L and G
n Conquer: join L, E and G

x

x

L GE

x

Quick Sort 3

void QuickSort(SortingArrayA, int m, int n) 

{  /* to sort the subarray A[m:n] of array A into ascending order */

if (there is more than one key to sort in A[m:n]) {

(using one of the keys in A[m:n] as a pivot key.)

(Partition A[m:n] into a LeftPartition and a RightPartition)

(QuickSort the LeftPartition)

(QuickSort the RightPartition)

}

}

Quick-Sort Algorithm
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void QuickSort(SortingArrayA, int m, int n) {                               

int i, j;

if (m < n) {

i = m; j = n; /* Initially i and j point to the first and last items */

Partition(A,&i,&j);      /* partitions A[m:n] into A[m:j ] and A[i:n] */

QuickSort(A,m,j);

QuickSort(A,i,n);

}

}

Quick-Sort Implementation
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Partition
void Partition(SortingArray A, int *i, int *j) {

KeyType Pivot, Temp;
Pivot = A[ ( *i + *j ) / 2 ] ;        /* choose the middle key as the pivot */
do {  

while (A[*i] < Pivot) (*i)++;  /* Find leftmost i such that A[i] >= Pivot.*/   
while (A[*j] > Pivot) (*j)-- ;    /* Find rightmost j such that A[j] <= Pivot.*/    
if (*i <= *j) {        /* if i and j didn't cross over one another */

Temp = A[*i]; /*  swap A[i] and A[j] */
A[*i] = A[*j]; 
A[*j] = Temp;         
(*i)++;                         /* move i one space right */
(*j)--;                           /* move j one space left */

}    
} while (*i <= *j);        /* while the i and j pointers haven't crossed yet */

}
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Quick-Sort Tree
An execution of quick-sort is depicted by a binary tree
n Each node represents a recursive call of quick-sort and stores

w Unsorted array before the execution and its pivot
w Sorted array at the end of the execution

n The root is the initial call 
n The leaves are calls on sub-arrays of size 0 or 1

7  4  9  6 2  → 2  4  6 7  9

4 2  → 2  4 7 9  → 7 9

2 → 2 9 → 9



2

Quick Sort 7

Execution Example

Pivot selection

7  2  9  4  → 2  4  7  9

2 → 2

7  2  9  4 3  7  6 1 → 1  2  3  4  6  7  8  9

3  8  6  1  → 1  3  8  6

3 → 3 8 → 89  4  → 4  9

9 → 9 4 → 4
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Execution Example (cont.)

Partition, recursive call, pivot selection

2 4  3  1 → 2  4  7  9

9  4  → 4  9

9 → 9 4 → 4

7  2  9  4  3  7  6 1 → 1  2  3  4  6  7  8  9

3  8  6  1  → 1  3  8  6

3 → 3 8 → 82 → 2
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Execution Example (cont.)

Partition, recursive call, base case

2 4  3  1 → → 2  4  7  

1 → 1 9  4  → 4  9

9 → 9 4 → 4

7  2  9  4 3  7  6 1 → → 1  2  3  4  6  7  8  9

3  8  6  1  → 1  3  8  6

3 → 3 8 → 8

Quick Sort 10

Execution Example (cont.)

Recursive call, …, base case, join

3  8  6  1  → 1  3  8  6

3 → 3 8 → 8

7  2  9  4 3  7  6 1 → 1  2  3  4  6  7  8  9

2 4  3  1 → 1  2 3  4

1 → 1 4  3 → 3 4

9 → 9 4 → 4
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Execution Example (cont.)

Recursive call, pivot selection

7  9  7 1  → 1  3  8  6

8 → 8

7  2  9  4 3  7  6 1 → 1  2  3  4  6  7  8  9

2 4  3  1 → 1  2 3  4

1 → 1 4  3 → 3 4

9 → 9 4 → 4

9 → 9
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Execution Example (cont.)

Partition, …, recursive call, base case

7  9  7 1  → 1  3  8  6

8 → 8

7  2  9  4 3  7  6 1 → 1  2  3  4  6  7  8  9

2 4  3  1 → 1  2 3  4

1 → 1 4  3 → 3 4

9 → 9 4 → 4

9 → 9



3

Quick Sort 13

Execution Example (cont.)

Join, join

7 9  7 → 17 7 9

8 → 8

7  2  9  4  3  7  6 1  → 1  2  3  4  6 7  7  9

2 4  3  1 → 1  2 3  4

1 → 1 4  3 → 3 4

9 → 9 4 → 4

9 → 9
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Worst-case Running Time
The worst case for quick-sort occurs when the pivot is the unique 
minimum or maximum element
One of L and G has size n − 1 and the other has size 0
The running time is proportional to the sum

n + (n − 1) + … + 2 + 1
Thus, the worst-case running time of quick-sort is O(n2)

timedepth

1n − 1

……

n − 11

n0

…
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Expected Running Time
Consider a recursive call of quick-
sort on an array of size s
n Good call : the sizes of L and G

are each less than 3s/4
n Bad call: one of L and G has size 

greater than 3s/4
A call is good with probability 1/2
Probabilistic Fact: The expected 
number of coin tosses required in 
order to get k heads is 2k
Hence, for a node of depth i, we 
expect that
n i/2 parent nodes are associated 

with good calls
n the size of the input sequence for 

the current call is at most ( 3/4)i/2n

Thus, we have
n For a node of depth 

2log 4 /3n, the expected 
size of the input 
sequence is one

n The expected height 
of the quick-sort tree 
is O(log n)

The overall amount or 
work done at the nodes 
of the same depth of 
the quick-sort tree is 
O(n)
Thus, the expected 
running time of quick-
sort is O(n log n)
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Summary of Sorting Algorithms

in-place, randomized
fastest (good for large inputs)

O(n log n)
expected

quick-sort

sequential data access
fast  (good for huge inputs)

O(n log n)merge-sort

in-place
fast (good for large inputs)

O(n log n)heap-sort

O(n2)

O(n2)

Time

insertion-sort

selection-sort

Algorithm Notes

in-place
slow (good for small inputs)

in-place
slow (good for small inputs)
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Bucket-Sort
Let be S be an array of n (key, 
element) items with keys in the 
range [0, N − 1]
Bucket-sort uses the keys as 
indices into an auxiliary array B
of buckets
Phase 1: Empty array S by 

moving each item (k, o) into its 
bucket B[k]

Phase 2: For i = 0, …, N − 1, move 
the items of bucket B[i] to 
array S

Analysis:
n Phase 1 takes O(n) time
n Phase 2 takes O(n + N) time

Bucket-sort takes O(n + N) time 

function bucketSort(S, N, n)
Input array S of n (key, element)

items with keys in the range
[0, N − 1]

Output array S sorted by
increasing keys

B ← array of N buckets
for (i = 0; i < n; i++){

B[k].insertLast(S[i])
for (i = 0 ; i < N − 1 ; i++)

while (!B[i].isEmpty()){
f = B[i].removefirst();

S[i] = f;
}
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Example
Key range [0, 9]

7, d 1, c 3, a 7, g 3, b 7, e

1, c 3, a 3, b 7, d 7, g 7, e

Phase 1

Phase 2

0 1 2 3 4 5 6 7 8 9

B

1, c 7, d 7, g3, b3, a 7, e

∅ ∅ ∅ ∅ ∅ ∅ ∅
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Properties and Extensions
Key -type Property
n The keys are used as 

indices into an array 
and cannot be arbitrary 
objects

Stable Sort Property
n The relative order of 

any two items with the 
same key is preserved 
after the execution of 
the algorithm

Extensions
n Integer keys in the range [a, b]

w Put item (k, o) into bucket
B[k − a]

n String keys from a set D of 
possible strings, where D has 
constant size (e.g., names of 
the 50 U.S. states)
w Sort D and compute the rank 

r(k) of each string k of D in 
the sorted sequence 

w Put item (k, o) into bucket 
B[r(k)]
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Stable Sort

Stable Sort Property
n The relative order of any two items with the same key is 

preserved after the execution of the algorithm

n Why do we need stable sort?
Example: an array of student record

Requirement: 
(1) Sort the student array wrt student last name
(2) Sort the student array again wrt to final grade (for 

students with the same grade, must maintain the “last 
name” alphabet order)
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Lexicographic Order
A  d-tuple is a sequence of d keys (k1, k2, …, kd), where 
key ki is said to be the i-th dimension of the tuple
Example:
n The Cartesian coordinates of a point in space are a 3-tuple

The lexicographic order of two d-tuples is recursively 
defined as follows

(x1, x2, …, xd) < (y1, y2, …, yd)
⇔

x1 < y1  ∨ x1 = y1 ∧ (x2, …, xd) <(y2, …, yd)

i.e., the tuples are compared by the first dimension, 
then by the second dimension, etc.
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Lexicographic-Sort
Let Ci be the pointer to a 
comparator function that 
compares two tuples by 
their i-th dimension
Let stableSort(S, C) be a 
stable sorting algorithm that 
uses comparator C
Lexicographic-sort sorts an 
array of d-tuples in 
lexicographic order by 
executing d times algorithm 
stableSort, one per 
dimension
Lexicographic-sort runs in 
O(dT(n)) time, where T(n) is 
the running time of 
stableSort

function lexicographicSort(S)
Input array S of  d-tuples
Output array S sorted in

lexicographic order

for i ← d downto 1
stableSort(S, Ci)

Example:

(7,4,6) (5,1,5) (2,4,6) (2, 1, 4) (3, 2, 4)

(2, 1, 4) (3, 2, 4) (5,1,5) (7,4,6) (2,4,6)

(2, 1, 4) (5,1,5) (3, 2, 4) (7,4,6) (2,4,6)

(2, 1, 4) (2,4,6) (3, 2, 4) (5,1,5) (7,4,6)


