
1

Quick-Sort

7 4 9 6 2 → 2 4 6 7 9

4 2 → 2 4 7 9 → 7 9

2 → 2 9 → 9

Quick Sort 2

Quick-Sort
Quick -sort is a randomized
sorting algorithm based
on the divide-and-conquer
paradigm:
n Divide: pick a random

element x (called pivot) and
partition S into
w L elements less than x
w E elements equal x
w G elements greater than x

n Recur: sort L and G
n Conquer: join L, E and G

x

x

L GE

x

Quick Sort 3

void QuickSort(SortingArrayA, int m, int n)

{ /* to sort the subarray A[m:n] of array A into ascending order */

if (there is more than one key to sort in A[m:n]) {

(using one of the keys in A[m:n] as a pivot key.)

(Partition A[m:n] into a LeftPartition and a RightPartition)

(QuickSort the LeftPartition)

(QuickSort the RightPartition)

}

}

Quick-Sort Algorithm

Quick Sort 4

void QuickSort(SortingArrayA, int m, int n) {

int i, j;

if (m < n) {

i = m; j = n; /* Initially i and j point to the first and last items */

Partition(A,&i,&j); /* partitions A[m:n] into A[m:j] and A[i:n] */

QuickSort(A,m,j);

QuickSort(A,i,n);

}

}

Quick-Sort Implementation

Quick Sort 5

Partition
void Partition(SortingArray A, int *i, int *j) {

KeyType Pivot, Temp;
Pivot = A[(*i + *j) / 2] ; /* choose the middle key as the pivot */
do {

while (A[*i] < Pivot) (*i)++; /* Find leftmost i such that A[i] >= Pivot.*/
while (A[*j] > Pivot) (*j)-- ; /* Find rightmost j such that A[j] <= Pivot.*/
if (*i <= *j) { /* if i and j didn't cross over one another */

Temp = A[*i]; /* swap A[i] and A[j] */
A[*i] = A[*j];
A[*j] = Temp;
(*i)++; /* move i one space right */
(*j)--; /* move j one space left */

}
} while (*i <= *j); /* while the i and j pointers haven't crossed yet */

}

Quick Sort 6

Quick-Sort Tree
An execution of quick-sort is depicted by a binary tree
n Each node represents a recursive call of quick-sort and stores

w Unsorted array before the execution and its pivot
w Sorted array at the end of the execution

n The root is the initial call
n The leaves are calls on sub-arrays of size 0 or 1

7 4 9 6 2 → 2 4 6 7 9

4 2 → 2 4 7 9 → 7 9

2 → 2 9 → 9

2

Quick Sort 7

Execution Example

Pivot selection

7 2 9 4 → 2 4 7 9

2 → 2

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

3 8 6 1 → 1 3 8 6

3 → 3 8 → 89 4 → 4 9

9 → 9 4 → 4

Quick Sort 8

Execution Example (cont.)

Partition, recursive call, pivot selection

2 4 3 1 → 2 4 7 9

9 4 → 4 9

9 → 9 4 → 4

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

3 8 6 1 → 1 3 8 6

3 → 3 8 → 82 → 2

Quick Sort 9

Execution Example (cont.)

Partition, recursive call, base case

2 4 3 1 → → 2 4 7

1 → 1 9 4 → 4 9

9 → 9 4 → 4

7 2 9 4 3 7 6 1 → → 1 2 3 4 6 7 8 9

3 8 6 1 → 1 3 8 6

3 → 3 8 → 8

Quick Sort 10

Execution Example (cont.)

Recursive call, …, base case, join

3 8 6 1 → 1 3 8 6

3 → 3 8 → 8

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

2 4 3 1 → 1 2 3 4

1 → 1 4 3 → 3 4

9 → 9 4 → 4

Quick Sort 11

Execution Example (cont.)

Recursive call, pivot selection

7 9 7 1 → 1 3 8 6

8 → 8

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

2 4 3 1 → 1 2 3 4

1 → 1 4 3 → 3 4

9 → 9 4 → 4

9 → 9

Quick Sort 12

Execution Example (cont.)

Partition, …, recursive call, base case

7 9 7 1 → 1 3 8 6

8 → 8

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

2 4 3 1 → 1 2 3 4

1 → 1 4 3 → 3 4

9 → 9 4 → 4

9 → 9

3

Quick Sort 13

Execution Example (cont.)

Join, join

7 9 7 → 17 7 9

8 → 8

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 7 9

2 4 3 1 → 1 2 3 4

1 → 1 4 3 → 3 4

9 → 9 4 → 4

9 → 9

Quick Sort 14

Worst-case Running Time
The worst case for quick-sort occurs when the pivot is the unique
minimum or maximum element
One of L and G has size n − 1 and the other has size 0
The running time is proportional to the sum

n + (n − 1) + … + 2 + 1
Thus, the worst-case running time of quick-sort is O(n2)

timedepth

1n − 1

……

n − 11

n0

…

Quick Sort 15

Expected Running Time
Consider a recursive call of quick-
sort on an array of size s
n Good call : the sizes of L and G

are each less than 3s/4
n Bad call: one of L and G has size

greater than 3s/4
A call is good with probability 1/2
Probabilistic Fact: The expected
number of coin tosses required in
order to get k heads is 2k
Hence, for a node of depth i, we
expect that
n i/2 parent nodes are associated

with good calls
n the size of the input sequence for

the current call is at most (3/4)i/2n

Thus, we have
n For a node of depth

2log 4 /3n, the expected
size of the input
sequence is one

n The expected height
of the quick-sort tree
is O(log n)

The overall amount or
work done at the nodes
of the same depth of
the quick-sort tree is
O(n)
Thus, the expected
running time of quick-
sort is O(n log n)

Quick Sort 16

Summary of Sorting Algorithms

in-place, randomized
fastest (good for large inputs)

O(n log n)
expected

quick-sort

sequential data access
fast (good for huge inputs)

O(n log n)merge-sort

in-place
fast (good for large inputs)

O(n log n)heap-sort

O(n2)

O(n2)

Time

insertion-sort

selection-sort

Algorithm Notes

in-place
slow (good for small inputs)

in-place
slow (good for small inputs)

Quick Sort 17

Bucket-Sort
Let be S be an array of n (key,
element) items with keys in the
range [0, N − 1]
Bucket-sort uses the keys as
indices into an auxiliary array B
of buckets
Phase 1: Empty array S by

moving each item (k, o) into its
bucket B[k]

Phase 2: For i = 0, …, N − 1, move
the items of bucket B[i] to
array S

Analysis:
n Phase 1 takes O(n) time
n Phase 2 takes O(n + N) time

Bucket-sort takes O(n + N) time

function bucketSort(S, N, n)
Input array S of n (key, element)

items with keys in the range
[0, N − 1]

Output array S sorted by
increasing keys

B ← array of N buckets
for (i = 0; i < n; i++){

B[k].insertLast(S[i])
for (i = 0 ; i < N − 1 ; i++)

while (!B[i].isEmpty()){
f = B[i].removefirst();

S[i] = f;
}

Quick Sort 18

Example
Key range [0, 9]

7, d 1, c 3, a 7, g 3, b 7, e

1, c 3, a 3, b 7, d 7, g 7, e

Phase 1

Phase 2

0 1 2 3 4 5 6 7 8 9

B

1, c 7, d 7, g3, b3, a 7, e

∅ ∅ ∅ ∅ ∅ ∅ ∅

4

Quick Sort 19

Properties and Extensions
Key -type Property
n The keys are used as

indices into an array
and cannot be arbitrary
objects

Stable Sort Property
n The relative order of

any two items with the
same key is preserved
after the execution of
the algorithm

Extensions
n Integer keys in the range [a, b]

w Put item (k, o) into bucket
B[k − a]

n String keys from a set D of
possible strings, where D has
constant size (e.g., names of
the 50 U.S. states)
w Sort D and compute the rank

r(k) of each string k of D in
the sorted sequence

w Put item (k, o) into bucket
B[r(k)]

Quick Sort 20

Stable Sort

Stable Sort Property
n The relative order of any two items with the same key is

preserved after the execution of the algorithm

n Why do we need stable sort?
Example: an array of student record

Requirement:
(1) Sort the student array wrt student last name
(2) Sort the student array again wrt to final grade (for

students with the same grade, must maintain the “last
name” alphabet order)

Quick Sort 21

Lexicographic Order
A d-tuple is a sequence of d keys (k1, k2, …, kd), where
key ki is said to be the i-th dimension of the tuple
Example:
n The Cartesian coordinates of a point in space are a 3-tuple

The lexicographic order of two d-tuples is recursively
defined as follows

(x1, x2, …, xd) < (y1, y2, …, yd)
⇔

x1 < y1 ∨ x1 = y1 ∧ (x2, …, xd) <(y2, …, yd)

i.e., the tuples are compared by the first dimension,
then by the second dimension, etc.

Quick Sort 22

Lexicographic-Sort
Let Ci be the pointer to a
comparator function that
compares two tuples by
their i-th dimension
Let stableSort(S, C) be a
stable sorting algorithm that
uses comparator C
Lexicographic-sort sorts an
array of d-tuples in
lexicographic order by
executing d times algorithm
stableSort, one per
dimension
Lexicographic-sort runs in
O(dT(n)) time, where T(n) is
the running time of
stableSort

function lexicographicSort(S)
Input array S of d-tuples
Output array S sorted in

lexicographic order

for i ← d downto 1
stableSort(S, Ci)

Example:

(7,4,6) (5,1,5) (2,4,6) (2, 1, 4) (3, 2, 4)

(2, 1, 4) (3, 2, 4) (5,1,5) (7,4,6) (2,4,6)

(2, 1, 4) (5,1,5) (3, 2, 4) (7,4,6) (2,4,6)

(2, 1, 4) (2,4,6) (3, 2, 4) (5,1,5) (7,4,6)

