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Analysis of Algorithms

AlgorithmInput Output

ØO() Analysis of Algorithms and Data Structures

ØReasonable vs. Unreasonable Algorithms

ØUsing O() Analysis in Design

Analysis of Algorithm 2

Running Time
The running time of an 
algorithm varies with the 
input and typically grows 
with the input size
Average case difficult to 
determine
We focus on the worst 
case running time
n Easier to analyze
n Crucial to applications such 

as games, finance and 
robotics
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Experimental Studies

Write a program 
implementing the 
algorithm
Run the program with 
inputs of varying size 
and composition
Use a function like ctime()
to get an accurate 
measure of the actual 
running time
Plot the results 0
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Limitations of Experiments

It is necessary to implement the 
algorithm, which may be difficult.
Results may not be indicative of the 
running time on other inputs not 
included in the experiment. 
In order to compare two algorithms, the 
same hardware and software 
environments must be used.
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Theoretical Analysis

Uses a high-level description of the 
algorithm instead of an implementation
Takes into account all possible inputs
Allows us to evaluate the speed of an 
algorithm independent of the 
hardware/software environment
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Pseudocode
High-level description of 
an algorithm
Less detailed than a 
program
Preferred notation for 
describing algorithms
Hides program design 
issues
A language that is made 
up for expressing 
algorithms.
Looks like English 
combined with C, Pascal, 
whatever suites you…

function arrayMax(A, n)
Input: int A[n]
Output: maximum element of A

int currentMax = A[0];
for (i = 1; i < n; i++){

if (A[i] > currentMax) {
currentMax = A[i]

}
}
return currentMax

Example: find max 
integer of an array
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Pseudocode Details

Control flow
n if … then …[else …]
n while …
n do …
n for …
n Indentation and braces 

Function declaration
Function fname (arg [, arg…])

Input:…
Output:…
body

function call
fname(arg [, arg…])

Return value
return expression

Expressions(C-like)
Or
n2Superscripts and 

other mathematical 
formatting allowed
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Primitive Operations

Basic computations 
performed by an algorithm
Identifiable in pseudocode
Largely independent from 
the programming language
Exact definition not 
important 

Examples:
n Evaluating an 

expression
n Assigning a value 

to a variable
n Indexing into an 

array
n Calling a method
n Returning from a 

method
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Counting Primitive Operations
By inspecting the pseudocode, we can determine the 
maximum number of primitive operations executed by 
an algorithm, as a function of the input size

function arrayMax(A, n) # operations
currentMax = A[0]; 2
for (i = 1; i < n; i++){ 2(n - 1)+1

if (A[i] > currentMax) { 2(n − 1)
currentMax = A[i]; 2(n − 1)

}
}
return currentMax; 1

Total 6n − 2
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Estimating Running Time

Algorithm arrayMax executes 6n − 2 primitive 
operations in the worst case 
Define
a Time taken by the fastest primitive operation

b Time taken by the slowest primitive operation

Let T(n) be the actual worst-case running 
time of arrayMax. We have

a (6n − 2) ≤ T(n) ≤ b(6n − 2)
Hence, the running time T(n) is bounded by 
two linear functions
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Big-Oh Notation
Given functions f(n) and 
g(n), we say that f(n) is 
O(g(n)) if there are 
positive constants
c and n0 such that

f(n) ≤ cg(n)  for n ≥ n 0

Example: 2n + 10 is O(n)
n 2n + 10 ≤ cn
n (c − 2) n ≥ 10
n n ≥ 10/(c − 2)
n Pick c = 3 and n0 = 10

1

10

100

1,000

10,000

1 10 100 1,000
n

3n

2n+10

n

Analysis of Algorithm 12

Big-Oh Notation (cont.)

Example: the function 
n2 is not O(n)
n n2 ≤ cn
n n ≤ c
n The above inequality 

cannot be satisfied 
since c must be a 
constant 
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Big-Oh Rules

If is f(n) a polynomial of degree d, then f(n) is 
O(nd), i.e.,

1. Drop lower-order terms

2. Drop constant factors

Use the smallest possible class of functions
n Say “ 2n is O(n)” instead of “2n is O(n2)”

Use the simplest expression of the class
n Say “ 3n + 5 is O(n)” instead of “3n + 5 is O(3n)”
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Algorithm Analysis
The analysis of an algorithm determines the running 
time in big-Oh notation
To perform the analysis

n We find the worst-case number of primitive operations 
executed as a function of the input size

n We express this function with big-Oh notation
Example:

n We determine that algorithm arrayMax executes at most 
6n − 2 primitive operations

n We say that algorithm arrayMax “runs in O(n) time”

Since constant factors and lower-order terms are 
eventually dropped anyhow, we can disregard them 
when counting primitive operations
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Traversals

Traversals involve visiting 
every node in a collection.
Because we must visit every 
node, a traversal must be O(N)
for any data structure.
n If we visit less than N elements, then it is not a 

traversal.
n If we have to process every node during 

traversal, then 
O(process)*O(N)
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Searching for an Element
Searching involves determining if an 

element is a member of the collection.

Simple/Linear Search:
n If there is no ordering in the data structure
n If the ordering is not applicable

Binary Search:
n If the data is ordered or sorted
n Requires non-linear access to the elements
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Simple Search

Worst case: the element to be found is 
the Nth element examined, or an 
unsuccessful search
Simple search must be used for:
n Sorted or unsorted linked lists

n Unsorted array
n Binary tree (to be discussed)

n Binary Search Tree if it is not full and 
balanced
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Example: Linked List

Let’s determine if the value 83 is in 
the collection:

5 19 35 42 \\

83 Not Found!

Head
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Big-O of Simple Search

The algorithm has to examine 
every element in the collection
n To return a false
n If the element to be found is the 

Nth element

Thus, simple search is O(N).
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Binary Search

We may perform binary search on
n Sorted arrays
n Full and balanced binary search trees

Tosses out ½ the elements at each 
comparison.
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Binary Search Example

7 12 42 59 71 86 104 212

Looking for 89
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Binary Search Example

7 12 42 59 71 86 104 212

Looking for 89
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Binary Search Example

7 12 42 59 71 86 104 212

Looking for 89
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Binary Search Example

7 12 42 59 71 86 104 212

89 not found – 3 comparisons

3 = Log(8)
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Binary Search Big-O

An element can be found by 
comparing and cutting the work in 
half.
n We cut work in ½ each time
n How many times can we cut in half?
n Log2N

Thus binary search is O(Log N).
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Recall
LB

log2 N = k • log10 N
k = 0.30103...

So: O(lg N) = O(log N)

In general: 
O(C*f(N)) = O(f(N))
if C is a constant
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Insertion
Inserting an element requires two steps:
n Find the right location
n Perform the instructions to insert

If the data structure in question is unsorted, 
then it is O(1)
n Simply insert to the front
n Simply insert to end in the case of an 

array
n There is no work to find the right spot 

and only constant work to actually insert.
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Insert into a Sorted Linked List

Finding the right spot is O(N)
n Recurse/iterate until found

Performing the insertion is O(1)
n 4-5 instructions

Total work is O(N + 1) = O(N)
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Inserting into a Sorted Array

Finding the right spot is O(Log N)
n Binary search on the element to insert

Performing the insertion 
n Shuffle the existing elements to make 

room for the new item

Analysis of Algorithm 30

Shuffling Elements

5 12 35 77 101

Note – we must have at least one empty cell

Insert 29
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Big-O of Shuffle

5 12

Worst case: inserting the smallest number

1017735

Would require moving N elements…
Thus shuffle is O(N)

Analysis of Algorithm 32

Big-O of Inserting into Sorted Array

Finding the right spot is O(Log N)

Performing the insertion (shuffle) is 
O(N)

Sequential steps, so add:
Total work is O(Log N + N) = O(N)
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Two Sorting Algorithms

Bubble-sort O(N2)
n Brute-force method of sorting
n Loop inside of a loop

Merge-sort O(NlogN)
n Divide and conquer approach
n Recursively call, splitting in half
n Merge sorted halves together
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Bubble-sort Review

Bubble-sort works by comparing and 
swapping values in a list

512354277 101

1          2          3          4            5            6
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Bubble-sort Review

Bubble-sort works by comparing and 
swapping values in a list

77123542 5

1          2          3          4            5            6

101

Largest value correctly placed
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void bubbleSort(int a[], int N){
int temp;

for (int i = 1; i < N; i++){
for (int j = 0; j < N –1; j++){

if (a[j] > a[j+1]){
temp = a[j];
a[j] = a[j+1];
a[j+1] = temp;

}
}

}

to_doN-1
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Analysis of Bubblesort

How many comparisons in the inner 
loop?
n to_do goes from N-1 down to 1, thus

n (N-1) + (N-2) + (N-3) + ... + 2 + 1
n Average:  N/2 for each “pass” of the outer 

loop.

How many “passes” of the outer loop?
n N – 1
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Bubblesort Complexity

Look at the relationship between the two 
loops:
n Inner is nested inside outer 

n Inner will be executed for each iteration of 
outer

Therefore the complexity is:

O((N-1)*(N/2)) = O(N2/2 – N/2) = O(N2)

LB
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O(N2) Runtime Example
Assume you are sorting 250,000,000 items:

N = 250,000,000
N2 = 6.25 x 1016

If you can do one operation per 
nanosecond (10-9 sec) which is 
fast!

It will take 6.25 x 107 seconds
So  6.25 x 107

60 x 60 x 24 x 365
= 1.98 years

Analysis of Algorithm 40

674523 14 6 3398 42

674523 14 6 3398 42

4523 1498

2398 45 14

676 33 42

676 33 42

23 98 4514 676 4233

14 23 45 98 6 33 42 67

6 14 23 33 42 45 67 98

Mergesort

Log N

Log N
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Analysis of Mergesort
Phase I

n Divide the list of N numbers into two lists of 
N/2 numbers

n Divide those lists in half until each list is size 1

Log N steps for this stage.

Phase II
n Build sorted lists from the decomposed lists
n Merge pairs of lists, doubling the size of the 

sorted lists each time

Log N steps for this stage.
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Mergesort Complexity

Each of the N numerical values is 
compared or copied during each pass
n The total work for each pass is O(N).
n There are a total of Log N passes

Therefore the complexity is:

O(Log N + N * Log N) =  O (N * Log N)

Break apart Merging
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O(NLogN) Runtime Example 

Assume same 250,000,000 items
N*Log(N) = 250,000,000 x 8.3

= 2, 099, 485, 002

With the same processor as before

2 seconds
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Reasonable vs. Unreasonable

Reasonable algorithms have polynomial
factors
n O (Log N)
n O (N)
n O (NK)  where K is a constant

Unreasonable algorithms have 
exponential factors
n O (2 N)
n O (N!)
n O (NN)
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Algorithmic Performance Thus Far

Some examples thus far:
n O(1) Insert to front of linked list
n O(N) Simple/Linear Search

n O(N Log N) MergeSort
n O(N2) BubbleSort

But it could get worse:
n O(N5), O(N2000), etc.
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An O(N5) Example

For N = 256
N5 = 2565 = 1,100,000,000,000

If we had a computer that could execute a 
million instructions per second…

1,100,000 seconds = 12.7 days to 
complete

But it could get worse…
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It is hard to understand the basic principles behind 
exponential growth. Perhaps it is easier to understand in 
terms of doubling time. In exponential growth, each time 
a value doubles the new value is greater than all 
previous values combined. 
Consider the story of the peasant that did a great favor 
for a king. The king asked how he could repay the 
peasant. In response, the peasant asked the king to 
place two pieces of grain on a square of a chess board, 
and double the amount of grain on each following square 
(2 on the first, 4 on the second, 8 on the third, 16 on the 
fourth, and so on). "Sure," says the king thinking that 
would not require much grain. However, the king does 
not understand exponential growth.

The Power of Exponents

Analysis of Algorithm 48

The Power of Exponents
A rich king and a wise peasant…
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The King has to Pay

Square(N) Pieces of Grain
1 2
2 4
3 8
4 16
...

2N

63               9,223,000,000,000,000,000
64             18,450,000,000,000,000,000
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How Bad is 2N?

Imagine being able to grow a 
billion (1,000,000,000) pieces of 
grain a second…

It would take
n 585 years to grow enough grain just 

for the 64 th chess board square

n Over a thousand years to fulfill the 
peasant’s request!

?

So the King cut off the 
peasant’s head.
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Original State Move 1

Move 2 Move 3

Move 4 Move 5

Move 6 Move 7

Towers of Hanoi: Solution
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Towers of Hanoi - Complexity

For 3 rings we have 7 operations.

In general, the cost is 

2N – 1 = O(2N)

Each time we increment N, we double
the amount of work.

This grows incredibly fast!
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Towers of Hanoi (2N) Runtime

For N = 64
2N = 264 = 18,450,000,000,000,000,000

If we had a computer that could execute a 
million instructions per second…

It would take 584,000 years to 
complete
But it could get worse…
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The Bounded Tile Problem

Match up the patterns in the
tiles.  Can it be done, yes or no?
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The Bounded Tile Problem

Matching tiles

Analysis of Algorithm 57

Tiling a 5x5 Area

25 available
tiles remaining
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Tiling a 5x5 Area

24 available
tiles remaining
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Tiling a 5x5 Area

23 available
tiles remaining
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Tiling a 5x5 Area

22 available
tiles remaining
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Tiling a 5x5 Area

2 available
tiles remaining
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Analysis of the Bounded Tiling Problem

Tile a 5 by 5 area (N = 25 tiles)
1st location: 25 choices
2nd location: 24 choices
And so on…
Total number of arrangements:

n 25 * 24 * 23 * 22 * 21 * .... * 3 * 2 * 1
n 25!  (Factorial) = 

15,500,000,000,000,000,000,000,000

Bounded Tiling Problem is O(N!)
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Tiling O(N!) Runtime

For N = 25
25! = 
15,500,000,000,000,000,000,000,000

If we could “place” a million tiles per 
second…

It would take 470 billion years to 
complete

Why not a faster computer?
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A Faster Computer
If we had a computer that could execute a 
trillion instructions per second (a million times 
faster than our MIPS computer)…
5x5 tiling problem would take 470,000 years
64-disk Tower of Hanoi problem would take 
213 days

Why not an even faster computer!
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The Fastest Computer Possible?

What if:
n Instructions took ZERO time to execute

n CPU registers could be loaded at the speed 
of light

These algorithms are still unreasonable!
The speed of light is only so fast!
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Where Does this Leave Us?

Clearly algorithms have varying 
runtimes.
We’d like a way to categorize them:

n Reasonable, so it may be useful 
n Unreasonable, so why bother running



12

Analysis of Algorithm 67

Performance Categories of Algorithms

Sub-linear  O(Log N)
Linear O(N)
Nearly linear O(N Log N)
Quadratic  O(N2)

Exponential O(2N)
O(N!)
O(NN)

P
o

ly
n

o
m

ia
l

Analysis of Algorithm 68

Reasonable vs. Unreasonable

Reasonable algorithms have polynomial factors
n O (Log N)
n O (N)

n O (N K)  where K is a constant

Unreasonable algorithms have exponential
factors
n O (2N)

n O (N!)
n O (N N)
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Reasonable vs. Unreasonable

Reasonable algorithms
May be usable depending upon the input size

Unreasonable algorithms
Are impractical and useful to theorists
Demonstrate need for approximate solutions

Remember we’re dealing with large N (input 
size)
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Two Categories of Algorithms

2  4  8  16 32  64  128  256  512  1024
Size of Input (N)

1035

1030

1025

1020

1015

trillion
billion
million
1000
100
10

N

N5

2N
NN

Unreasonable

Don’t Care!

Reasonable
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Properties of the O notation
Ø Constant factors may be ignored

• ∀  k > 0 ,   kf  is O( f) 

Ø Fastest growing term dominates a sum

n If  f is O(g),  then  f + g is O(g)
 eg an4 +  log n   is O(n4 )

Ø Polynomial’s growth rate is determined by leading 
term

n If  f is a polynomial of degree d, 
then  f is O( nd)

eg 10n4 +  5n6 + n 2  is O(n6 )
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Properties of the O notation
f is O(g) is  transitive
n If  f is O(g) and g is O(h) then  f is O(h)

Product of upper bounds is upper bound for 
the product
n If  f is O(g) and  h is O(r) then  fh is 

O(gr) 
All logarithms grow at the same rate

n logbn is O(logdn) ∀ b, d > 1 
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Simple Examples:
Simple statement sequence
 s1; s2; …. ; sk

n O (1) as long as k is constant
Simple loops
 for(i=0;i<n;i++) { s; }
 where s is O (1)
n Time complexity is   n O(1) or   O(n)

Nested loops
 for(i=0;i<n;i++)

for(j=0;j<n;j++) { s; }
n Complexity is   n O(n)   or   O(n2)
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Another Example:

Loop index doesn’t vary linearly

 h = 1;
while ( h <= n ) {

s;
h = 2 * h;

 }

n h takes values 1, 2, 4, … until it exceeds n
n There are 1 + log2n  iterations

n Complexity   O (log n)


