
1

Analysis of Algorithms

AlgorithmInput Output

ØO() Analysis of Algorithms and Data Structures

ØReasonable vs. Unreasonable Algorithms

ØUsing O() Analysis in Design

Analysis of Algorithm 2

Running Time
The running time of an
algorithm varies with the
input and typically grows
with the input size
Average case difficult to
determine
We focus on the worst
case running time
n Easier to analyze
n Crucial to applications such

as games, finance and
robotics

0

20

40

60

80

100

120

R
u

n
n

in
g

 T
im

e

1000 2000 3000 4000

Input Size

best case
average case
worst case

Analysis of Algorithm 3

Experimental Studies

Write a program
implementing the
algorithm
Run the program with
inputs of varying size
and composition
Use a function like ctime()
to get an accurate
measure of the actual
running time
Plot the results 0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 50 100

Input Size

T
im

e
 (

m
s)

Analysis of Algorithm 4

Limitations of Experiments

It is necessary to implement the
algorithm, which may be difficult.
Results may not be indicative of the
running time on other inputs not
included in the experiment.
In order to compare two algorithms, the
same hardware and software
environments must be used.

Analysis of Algorithm 5

Theoretical Analysis

Uses a high-level description of the
algorithm instead of an implementation
Takes into account all possible inputs
Allows us to evaluate the speed of an
algorithm independent of the
hardware/software environment

Analysis of Algorithm 6

Pseudocode
High-level description of
an algorithm
Less detailed than a
program
Preferred notation for
describing algorithms
Hides program design
issues
A language that is made
up for expressing
algorithms.
Looks like English
combined with C, Pascal,
whatever suites you…

function arrayMax(A, n)
Input: int A[n]
Output: maximum element of A

int currentMax = A[0];
for (i = 1; i < n; i++){

if (A[i] > currentMax) {
currentMax = A[i]

}
}
return currentMax

Example: find max
integer of an array

2

Analysis of Algorithm 7

Pseudocode Details

Control flow
n if … then …[else …]
n while …
n do …
n for …
n Indentation and braces

Function declaration
Function fname (arg [, arg…])

Input:…
Output:…
body

function call
fname(arg [, arg…])

Return value
return expression

Expressions(C-like)
Or
n2Superscripts and

other mathematical
formatting allowed

Analysis of Algorithm 8

Primitive Operations

Basic computations
performed by an algorithm
Identifiable in pseudocode
Largely independent from
the programming language
Exact definition not
important

Examples:
n Evaluating an

expression
n Assigning a value

to a variable
n Indexing into an

array
n Calling a method
n Returning from a

method

Analysis of Algorithm 9

Counting Primitive Operations
By inspecting the pseudocode, we can determine the
maximum number of primitive operations executed by
an algorithm, as a function of the input size

function arrayMax(A, n) # operations
currentMax = A[0]; 2
for (i = 1; i < n; i++){ 2(n - 1)+1

if (A[i] > currentMax) { 2(n − 1)
currentMax = A[i]; 2(n − 1)

}
}
return currentMax; 1

Total 6n − 2

Analysis of Algorithm 10

Estimating Running Time

Algorithm arrayMax executes 6n − 2 primitive
operations in the worst case
Define
a Time taken by the fastest primitive operation

b Time taken by the slowest primitive operation

Let T(n) be the actual worst-case running
time of arrayMax. We have

a (6n − 2) ≤ T(n) ≤ b(6n − 2)
Hence, the running time T(n) is bounded by
two linear functions

Analysis of Algorithm 11

Big-Oh Notation
Given functions f(n) and
g(n), we say that f(n) is
O(g(n)) if there are
positive constants
c and n0 such that

f(n) ≤ cg(n) for n ≥ n 0

Example: 2n + 10 is O(n)
n 2n + 10 ≤ cn
n (c − 2) n ≥ 10
n n ≥ 10/(c − 2)
n Pick c = 3 and n0 = 10

1

10

100

1,000

10,000

1 10 100 1,000
n

3n

2n+10

n

Analysis of Algorithm 12

Big-Oh Notation (cont.)

Example: the function
n2 is not O(n)
n n2 ≤ cn
n n ≤ c
n The above inequality

cannot be satisfied
since c must be a
constant

1

10

100

1,000

10,000

100,000

1,000,000

1 10 100 1,000
n

n^2

100n

10n

n

3

Analysis of Algorithm 13

Big-Oh Rules

If is f(n) a polynomial of degree d, then f(n) is
O(nd), i.e.,

1. Drop lower-order terms

2. Drop constant factors

Use the smallest possible class of functions
n Say “ 2n is O(n)” instead of “2n is O(n2)”

Use the simplest expression of the class
n Say “ 3n + 5 is O(n)” instead of “3n + 5 is O(3n)”

Analysis of Algorithm 14

Algorithm Analysis
The analysis of an algorithm determines the running
time in big-Oh notation
To perform the analysis

n We find the worst-case number of primitive operations
executed as a function of the input size

n We express this function with big-Oh notation
Example:

n We determine that algorithm arrayMax executes at most
6n − 2 primitive operations

n We say that algorithm arrayMax “runs in O(n) time”

Since constant factors and lower-order terms are
eventually dropped anyhow, we can disregard them
when counting primitive operations

Analysis of Algorithm 15

Traversals

Traversals involve visiting
every node in a collection.
Because we must visit every
node, a traversal must be O(N)
for any data structure.
n If we visit less than N elements, then it is not a

traversal.
n If we have to process every node during

traversal, then
O(process)*O(N)

Analysis of Algorithm 16

Searching for an Element
Searching involves determining if an

element is a member of the collection.

Simple/Linear Search:
n If there is no ordering in the data structure
n If the ordering is not applicable

Binary Search:
n If the data is ordered or sorted
n Requires non-linear access to the elements

Analysis of Algorithm 17

Simple Search

Worst case: the element to be found is
the Nth element examined, or an
unsuccessful search
Simple search must be used for:
n Sorted or unsorted linked lists

n Unsorted array
n Binary tree (to be discussed)

n Binary Search Tree if it is not full and
balanced

Analysis of Algorithm 18

Example: Linked List

Let’s determine if the value 83 is in
the collection:

5 19 35 42 \\

83 Not Found!

Head

4

Analysis of Algorithm 19

Big-O of Simple Search

The algorithm has to examine
every element in the collection
n To return a false
n If the element to be found is the

Nth element

Thus, simple search is O(N).

Analysis of Algorithm 20

Binary Search

We may perform binary search on
n Sorted arrays
n Full and balanced binary search trees

Tosses out ½ the elements at each
comparison.

Analysis of Algorithm 21

Binary Search Example

7 12 42 59 71 86 104 212

Looking for 89

Analysis of Algorithm 22

Binary Search Example

7 12 42 59 71 86 104 212

Looking for 89

Analysis of Algorithm 23

Binary Search Example

7 12 42 59 71 86 104 212

Looking for 89

Analysis of Algorithm 24

Binary Search Example

7 12 42 59 71 86 104 212

89 not found – 3 comparisons

3 = Log(8)

5

Analysis of Algorithm 25

Binary Search Big-O

An element can be found by
comparing and cutting the work in
half.
n We cut work in ½ each time
n How many times can we cut in half?
n Log2N

Thus binary search is O(Log N).

Analysis of Algorithm 26

Recall
LB

log2 N = k • log10 N
k = 0.30103...

So: O(lg N) = O(log N)

In general:
O(C*f(N)) = O(f(N))
if C is a constant

Analysis of Algorithm 27

Insertion
Inserting an element requires two steps:
n Find the right location
n Perform the instructions to insert

If the data structure in question is unsorted,
then it is O(1)
n Simply insert to the front
n Simply insert to end in the case of an

array
n There is no work to find the right spot

and only constant work to actually insert.

Analysis of Algorithm 28

Insert into a Sorted Linked List

Finding the right spot is O(N)
n Recurse/iterate until found

Performing the insertion is O(1)
n 4-5 instructions

Total work is O(N + 1) = O(N)

Analysis of Algorithm 29

Inserting into a Sorted Array

Finding the right spot is O(Log N)
n Binary search on the element to insert

Performing the insertion
n Shuffle the existing elements to make

room for the new item

Analysis of Algorithm 30

Shuffling Elements

5 12 35 77 101

Note – we must have at least one empty cell

Insert 29

6

Analysis of Algorithm 31

Big-O of Shuffle

5 12

Worst case: inserting the smallest number

1017735

Would require moving N elements…
Thus shuffle is O(N)

Analysis of Algorithm 32

Big-O of Inserting into Sorted Array

Finding the right spot is O(Log N)

Performing the insertion (shuffle) is
O(N)

Sequential steps, so add:
Total work is O(Log N + N) = O(N)

Analysis of Algorithm 33

Two Sorting Algorithms

Bubble-sort O(N2)
n Brute-force method of sorting
n Loop inside of a loop

Merge-sort O(NlogN)
n Divide and conquer approach
n Recursively call, splitting in half
n Merge sorted halves together

Analysis of Algorithm 34

Bubble-sort Review

Bubble-sort works by comparing and
swapping values in a list

512354277 101

1 2 3 4 5 6

Analysis of Algorithm 35

Bubble-sort Review

Bubble-sort works by comparing and
swapping values in a list

77123542 5

1 2 3 4 5 6

101

Largest value correctly placed

Analysis of Algorithm 36

void bubbleSort(int a[], int N){
int temp;

for (int i = 1; i < N; i++){
for (int j = 0; j < N –1; j++){

if (a[j] > a[j+1]){
temp = a[j];
a[j] = a[j+1];
a[j+1] = temp;

}
}

}

to_doN-1

7

Analysis of Algorithm 37

Analysis of Bubblesort

How many comparisons in the inner
loop?
n to_do goes from N-1 down to 1, thus

n (N-1) + (N-2) + (N-3) + ... + 2 + 1
n Average: N/2 for each “pass” of the outer

loop.

How many “passes” of the outer loop?
n N – 1

Analysis of Algorithm 38

Bubblesort Complexity

Look at the relationship between the two
loops:
n Inner is nested inside outer

n Inner will be executed for each iteration of
outer

Therefore the complexity is:

O((N-1)*(N/2)) = O(N2/2 – N/2) = O(N2)

LB

Analysis of Algorithm 39

O(N2) Runtime Example
Assume you are sorting 250,000,000 items:

N = 250,000,000
N2 = 6.25 x 1016

If you can do one operation per
nanosecond (10-9 sec) which is
fast!

It will take 6.25 x 107 seconds
So 6.25 x 107

60 x 60 x 24 x 365
= 1.98 years

Analysis of Algorithm 40

674523 14 6 3398 42

674523 14 6 3398 42

4523 1498

2398 45 14

676 33 42

676 33 42

23 98 4514 676 4233

14 23 45 98 6 33 42 67

6 14 23 33 42 45 67 98

Mergesort

Log N

Log N

Analysis of Algorithm 41

Analysis of Mergesort
Phase I

n Divide the list of N numbers into two lists of
N/2 numbers

n Divide those lists in half until each list is size 1

Log N steps for this stage.

Phase II
n Build sorted lists from the decomposed lists
n Merge pairs of lists, doubling the size of the

sorted lists each time

Log N steps for this stage.

Analysis of Algorithm 42

Mergesort Complexity

Each of the N numerical values is
compared or copied during each pass
n The total work for each pass is O(N).
n There are a total of Log N passes

Therefore the complexity is:

O(Log N + N * Log N) = O (N * Log N)

Break apart Merging

8

Analysis of Algorithm 43

O(NLogN) Runtime Example

Assume same 250,000,000 items
N*Log(N) = 250,000,000 x 8.3

= 2, 099, 485, 002

With the same processor as before

2 seconds

Analysis of Algorithm 44

Reasonable vs. Unreasonable

Reasonable algorithms have polynomial
factors
n O (Log N)
n O (N)
n O (NK) where K is a constant

Unreasonable algorithms have
exponential factors
n O (2 N)
n O (N!)
n O (NN)

Analysis of Algorithm 45

Algorithmic Performance Thus Far

Some examples thus far:
n O(1) Insert to front of linked list
n O(N) Simple/Linear Search

n O(N Log N) MergeSort
n O(N2) BubbleSort

But it could get worse:
n O(N5), O(N2000), etc.

Analysis of Algorithm 46

An O(N5) Example

For N = 256
N5 = 2565 = 1,100,000,000,000

If we had a computer that could execute a
million instructions per second…

1,100,000 seconds = 12.7 days to
complete

But it could get worse…

Analysis of Algorithm 47

It is hard to understand the basic principles behind
exponential growth. Perhaps it is easier to understand in
terms of doubling time. In exponential growth, each time
a value doubles the new value is greater than all
previous values combined.
Consider the story of the peasant that did a great favor
for a king. The king asked how he could repay the
peasant. In response, the peasant asked the king to
place two pieces of grain on a square of a chess board,
and double the amount of grain on each following square
(2 on the first, 4 on the second, 8 on the third, 16 on the
fourth, and so on). "Sure," says the king thinking that
would not require much grain. However, the king does
not understand exponential growth.

The Power of Exponents

Analysis of Algorithm 48

The Power of Exponents
A rich king and a wise peasant…

9

Analysis of Algorithm 49

The King has to Pay

Square(N) Pieces of Grain
1 2
2 4
3 8
4 16
...

2N

63 9,223,000,000,000,000,000
64 18,450,000,000,000,000,000

Analysis of Algorithm 50

How Bad is 2N?

Imagine being able to grow a
billion (1,000,000,000) pieces of
grain a second…

It would take
n 585 years to grow enough grain just

for the 64 th chess board square

n Over a thousand years to fulfill the
peasant’s request!

?

So the King cut off the
peasant’s head.

Analysis of Algorithm 52

Original State Move 1

Move 2 Move 3

Move 4 Move 5

Move 6 Move 7

Towers of Hanoi: Solution

Analysis of Algorithm 53

Towers of Hanoi - Complexity

For 3 rings we have 7 operations.

In general, the cost is

2N – 1 = O(2N)

Each time we increment N, we double
the amount of work.

This grows incredibly fast!

Analysis of Algorithm 54

Towers of Hanoi (2N) Runtime

For N = 64
2N = 264 = 18,450,000,000,000,000,000

If we had a computer that could execute a
million instructions per second…

It would take 584,000 years to
complete
But it could get worse…

10

Analysis of Algorithm 55

The Bounded Tile Problem

Match up the patterns in the
tiles. Can it be done, yes or no?

Analysis of Algorithm 56

The Bounded Tile Problem

Matching tiles

Analysis of Algorithm 57

Tiling a 5x5 Area

25 available
tiles remaining

Analysis of Algorithm 58

Tiling a 5x5 Area

24 available
tiles remaining

Analysis of Algorithm 59

Tiling a 5x5 Area

23 available
tiles remaining

Analysis of Algorithm 60

Tiling a 5x5 Area

22 available
tiles remaining

11

Analysis of Algorithm 61

Tiling a 5x5 Area

2 available
tiles remaining

Analysis of Algorithm 62

Analysis of the Bounded Tiling Problem

Tile a 5 by 5 area (N = 25 tiles)
1st location: 25 choices
2nd location: 24 choices
And so on…
Total number of arrangements:

n 25 * 24 * 23 * 22 * 21 * * 3 * 2 * 1
n 25! (Factorial) =

15,500,000,000,000,000,000,000,000

Bounded Tiling Problem is O(N!)

Analysis of Algorithm 63

Tiling O(N!) Runtime

For N = 25
25! =
15,500,000,000,000,000,000,000,000

If we could “place” a million tiles per
second…

It would take 470 billion years to
complete

Why not a faster computer?

Analysis of Algorithm 64

A Faster Computer
If we had a computer that could execute a
trillion instructions per second (a million times
faster than our MIPS computer)…
5x5 tiling problem would take 470,000 years
64-disk Tower of Hanoi problem would take
213 days

Why not an even faster computer!

Analysis of Algorithm 65

The Fastest Computer Possible?

What if:
n Instructions took ZERO time to execute

n CPU registers could be loaded at the speed
of light

These algorithms are still unreasonable!
The speed of light is only so fast!

Analysis of Algorithm 66

Where Does this Leave Us?

Clearly algorithms have varying
runtimes.
We’d like a way to categorize them:

n Reasonable, so it may be useful
n Unreasonable, so why bother running

12

Analysis of Algorithm 67

Performance Categories of Algorithms

Sub-linear O(Log N)
Linear O(N)
Nearly linear O(N Log N)
Quadratic O(N2)

Exponential O(2N)
O(N!)
O(NN)

P
o

ly
n

o
m

ia
l

Analysis of Algorithm 68

Reasonable vs. Unreasonable

Reasonable algorithms have polynomial factors
n O (Log N)
n O (N)

n O (N K) where K is a constant

Unreasonable algorithms have exponential
factors
n O (2N)

n O (N!)
n O (N N)

Analysis of Algorithm 69

Reasonable vs. Unreasonable

Reasonable algorithms
May be usable depending upon the input size

Unreasonable algorithms
Are impractical and useful to theorists
Demonstrate need for approximate solutions

Remember we’re dealing with large N (input
size)

Analysis of Algorithm 70

Two Categories of Algorithms

2 4 8 16 32 64 128 256 512 1024
Size of Input (N)

1035

1030

1025

1020

1015

trillion
billion
million
1000
100
10

N

N5

2N
NN

Unreasonable

Don’t Care!

Reasonable

R
u

n
ti

m
e

Analysis of Algorithm 71

Properties of the O notation
Ø Constant factors may be ignored

• ∀ k > 0 , kf is O(f)

Ø Fastest growing term dominates a sum

n If f is O(g), then f + g is O(g)
 eg an4 + log n is O(n4)

Ø Polynomial’s growth rate is determined by leading
term

n If f is a polynomial of degree d,
then f is O(nd)

eg 10n4 + 5n6 + n 2 is O(n6)

Analysis of Algorithm 72

Properties of the O notation
f is O(g) is transitive
n If f is O(g) and g is O(h) then f is O(h)

Product of upper bounds is upper bound for
the product
n If f is O(g) and h is O(r) then fh is

O(gr)
All logarithms grow at the same rate

n logbn is O(logdn) ∀ b, d > 1

13

Analysis of Algorithm 73

Simple Examples:
Simple statement sequence
 s1; s2; …. ; sk

n O (1) as long as k is constant
Simple loops
 for(i=0;i<n;i++) { s; }
 where s is O (1)
n Time complexity is n O(1) or O(n)

Nested loops
 for(i=0;i<n;i++)

for(j=0;j<n;j++) { s; }
n Complexity is n O(n) or O(n2)

Analysis of Algorithm 74

Another Example:

Loop index doesn’t vary linearly

 h = 1;
while (h <= n) {

s;
h = 2 * h;

 }

n h takes values 1, 2, 4, … until it exceeds n
n There are 1 + log2n iterations

n Complexity O (log n)

