

Ļi	mitations of Experiments
•	It is necessary to implement the algorithm, which may be difficult.
•	 Results may not be indicative of the running time on other inputs not included in the experiment.
	In order to compare two algorithms, the same hardware and software environments must be used.

Estimating Running Time
Algorithm <i>arrayMax</i> executes 6n – 2 primitive operations in the worst case
+ Define
a Time taken by the fastest primitive operation
b Time taken by the slowest primitive operation
Let $T(n)$ be the actual worst-case running time of <i>arrayMax</i> . We have $a (6n-2) \le T(n) \le b(6n-2)$
Hence, the running time T(n) is bounded by two linear functions Analysis of Algorithm 10

Big-Oh Rules	
+ If is $f(n)$ a polynomial of degree d , then $f(n)$ is	
<i>O</i> (<i>n</i> ^{<i>d</i>}), i.e.,	
1. Drop lower-order terms	
2. Drop constant factors	
Use the smallest possible class of functions	
Say "2n is O(n)" instead of "2n is O(n ²)"	
+Use the simplest expression of the class	
Say "3n + 5 is O(n)" instead of "3n + 5 is O(3n)"	
Analysis of Algorithm 13	

Algorithm Analysis
The analysis of an algorithm determines the running time in big-Oh notation
To perform the analysis
We find the worst-case number of primitive operations executed as a function of the input size
 We express this function with big-Oh notation
Example:
 We determine that algorithm <i>arrayMax</i> executes at most 6n-2 primitive operations
We say that algorithm arrayMax "runs in O(n) time"
 Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when courting primiting constitution.
when counting primitive operations
Analysis of Algorithm 14

Traversals involve visiting every node in a collection.
Because we must visit every node, a traversal must be O(N) for any data structure.
 If we visit less than N elements, then it is not a traversal.
 If we have to process every node during traversal, then O(process)*O(N)
Anglueis of Algorithm 15

Searching for an Element
Searching involves determining if an
Searching involves determining if an
element is a member of the collection.
+Simple/Linear Search:
If there is no ordering in the data structure
If the ordering is not applicable
Binary Soarch
+ Dillar y Search.
If the data is ordered or sorted
Requires non-linear access to the elements
Analysis of Algorithm 16

Binary Search Big-O
An element can be found by
comparing and cutting the work in
half
- We out work in 14 cook time
We cut work in 1/2 each time
How many times can we cut in half?
Log ₂ N
• Thus binary search is O(Log N)
Analysis of Algorithm 25

$\frac{\text{Recall}}{\log_2 N} = k \cdot \log_{10} N$ $k = 0.30103$	LB
So: $O(\lg N) = O(\log N)$	
<pre>In general: O(C*f(N)) = O(f(N)) if C is a constant</pre>	
Analysis of Algorithm	26

Incertion	
Inserting an element requires two steps:	
Find the right location	
Perform the instructions to insert	
 If the data structure in question is unsorted, then it is O(1) 	
Simply insert to the front	
 Simply insert to end in the case of an array 	
There is no work to find the right spot	
and only constant work to actually insert.	
Analysis of Alexithm 27	

Insert into a Sorted Linked List
Finding the right spot is O(N) Recurse/iterate until found
Performing the insertion is O(1) • 4-5 instructions
Total work is $O(N + 1) = O(N)$
Analysis of Algorithm 28

Big-O of Inserting into Sorted Array
Finding the right spot is O(Log N)
Performing the insertion (shuffle) is O(N)
Sequential steps, so add:
Total work is $O(Log N + N) = O(N)$
Analysis of Algorithm 32

Analysis of Bubblesort	
 How many comparisons in the inner loop? to_do goes from N-1 down to 1, thus (N-1) + (N-2) + (N-3) + + 2 + 1 Average: N/2 for each "pass" of the outer 	
 How many "passes" of the outer loop? N – 1 	
Analysis of Algorithm 37	

	ЬВ
Bubblesort Complexity	
Look at the relationship between the two loops:	
Inner is nested inside outer	
 Inner will be executed for each iteration of outer 	
Therefore the complexity is:	
$O((N-1)^*(N/2)) = O(N^2/2 - N/2) = O(N^2)$	
Analysis of Algorithm 38	

O(N ²) Runtime Example
Assume you are sorting 250,000,000 items:
N = 250,000,000
$N^2 = 6.25 \times 10^{16}$
If you can do one operation per
nanosecond (10 ⁻⁹ sec) which is fast!
It will take 6.25 x 10^7 seconds
So 6.25×10^7
60 x 60 x 24 x 365
= 1.98 years
Analysis of Algorithm 39

O(NLOGN) RUNTIME EXAMPLE	е –
│ ♥ 	
Assume same 250,000,000 items	
$N*Log(N) = 250,000,000 \times 8.3$	
= 2, 099, 485, 002	
With the same processor as befo	ore
2 Seconds	
Analysis of Algorithm	43

Reasonable vs. Unreasonable
Reasonable algorithms have polynomial factors
 O (Log N) O (N) O (N^K) where K is a constant
Unreasonable algorithms have exponential factors
• O (2*) • O (N!) • O (N ^N)
Analysis of Algorithm 44

Algorithmic	Performance Thus Far
•Some exam	ples thus far:
• 0(1)	Insert to front of linked list
• O(N)	Simple/Linear Search
 O(N Log N) 	MergeSort
• O(N ²)	BubbleSort
But it could	get worse:
 O(N⁵), O(N² 	2000), etc.

	_
An O(N°) Example	_
For N = 256	
$N^5 = 256^5 = 1,100,000,000,000$	_
If we had a computer that could execute a	_
million instructions per second	
	_
#1 100 000 seconds - 12 7 days to	
complete	
But it could get worse	_
But it could get worse	
Analysis of Algorithm 46	_

The Power of Exponents
It is hard to understand the basic principles behind exponential growth. Perhaps it is easier to understand in terms of doubling time. In exponential growth, each time a value doubles the new value is greater than all previous values combined. Consider the story of the peasant that did a great favor for a king. The king asked how he could repay the peasant. In response, the peasant asked the king to place two pieces of grain on a square of a chess board, and double the amount of grain on each following square (2 on the first, 4 on the second, 8 on the third, 16 on the fourth, and so on). "Sure," says the king thinking that would not require much grain. However, the king does not understand exponential growth.
Analysis of Algorithm 47

The	King ha	as to Pay	
Squa	re(N)	Pieces	of Grain
1		2 ~	
2		4	\mathbf{X}
3		8	2 ^N
4		16	
63	9,223,	000,000,000,0	000,000
64	18,450,	000,000,000,0)00,000
		Analysis of Algorithm	49

How Bad is 2 [№] ?	
Imagine being able to grow a billion (1,000,000,000) pieces of grain a second	
 It would take 585 years to grow enough grain just for the 64th chess board square Over a thousand years to fulfill the peasant's request! 	
Analysis of Algorithm	50

Tiling a 5x5 Area	
	25 available tiles remaining
Analysis of Algorithm	

Tiling a 5x5 Area	
	24 available tiles remaining
Analysis of Algorithm	58

Analysis of the Bounded Tiling Problem	1
Tile a 5 by 5 area (N = 25 tiles)	
1st location: 25 choices	
2nd location: 24 choices	
And so on	
Total number of arrangements:	
25 * 24 * 23 * 22 * 21 * * 3 * 2 * 1	
25! (Factorial) =	
15,500,000,000,000,000,000,000,000	
Bounded Tiling Problem is O(N!)	
Analysis of Algorithm	62

Tiling O(N!) Runtime
For N = 25 25! = 15,500,000,000,000,000,000,000,000
If we could "place" a million tiles per second
It would take 470 billion years to complete
Why not a faster computer?

A Faster Computer		
If we had a computer that could execute a trillion instructions per second (a million times faster than our MIPS computer)		
✤5x5 tiling problem would take 470,000 years		
64-disk Tower of Hanoi problem would take 213 days		
Why not an even faster computer!		
Analysis of Algorithm 64		

Per	formance Cate	gories of Algorithms	
Polynomial	Sub-linear Linear Nearly linear Quadratic	O(Log N) O(N) O(N Log N) O(N ²)	
	Exponential	O(2 [№]) O(N!) O(N [№])	
	Analysis	s of Algorithm 67	

Reasonable vs. Unreasonable	
 Reasonable algorithms have polynomial factors O (Log N) O (N) O (N^K) where K is a constant 	
Unreasonable algorithms have exponential factors • O (2 ^N) • O (N!) • O (N ^N)	
Analysis of Algorithm 68	

Properties of the O notation
> Constant factors may be ignored $\forall k > 0, k \in [n] \in O(n)$
 V x > 0, x) is 0(j) Fastest growing the dominates a sum
• If f is $O(g)$, then $f + g$ is $O(g)$ eg an ⁴ + log n is $O(n4)$
 Polynomial's growth rate is determined by leading term
 If f is a polynomial of degree d, then f is O(n^d)
$eg \ 10n^4 + 5n^6 + n^2$ is $O(n^6)$
Analysis of Algorithm 71

Simple Examples:	
Simple statement sequence	
 s₁; s₂;; s_k O(1) as long as k is constant 	
Simple loops	
for (i=0;i <n;i++) s;="" {="" }<br="">where s is $O(1)$</n;i++)>	
Time complexity is n O(1) or O(n)	
Nested loops	
for(i=0;i <n;i++) for(j=0;j<n;j++) s;="" td="" {="" }<=""><td></td></n;j++)></n;i++) 	
• Complexity is $n O(n)$ or $O(n^2)$	
Analysis of Algorithm	73

Another Example:	
Loop index doesn't vary linearly	
h = 1;	
while (h <= n) {	
S;	
$h = 2 \uparrow h;$	
}	
h takes values 1, 2, 4, until it exceeds n	
 There are 1 + log₂n iterations 	
Complexity O (log n)	
Analysis of Algorithm	74