
1

stack and queue 1

Abstract Data Types (ADTs)
An abstract data type (ADT) is an abstraction of
a data structure
ADT refers to a way of packaging some

intermediate-level data structures and their
operations into a useful collection whose
properties have been carefully studied.

An ADT specifies:
n Data stored
n Operations on the data (clean, simple interface)
n Error conditions associated with operations

stack and queue 2

Example: ADT modeling a simple stock
trading system
n The data stored are buy/sell orders
n The operations supported are

w order buy(stock, shares, price)
w order sell(stock, shares, price)
w void cancel(order)

n Error conditions:
w Buy/sell a nonexistent stock
w Cancel a nonexistent order

An ADT Example

Stacks

spring-loaded plate

dispenser

stack and queue 4

The Stack ADT
The Stack ADT stores
arbitrary elements
Insertions and
deletions follow the
last-in first-out scheme
Main stack operations:
n push(element): inserts

an element
n element pop(): removes

and returns the last
inserted element

Auxiliary stack
operations:
n element top(): returns

the last inserted element
without removing it

n integer size(): returns the
number of elements
stored

n boolean isEmpty():
indicates whether no
elements are stored

stack and queue 5

Applications of Stacks

Direct applications
n Page-visited history in a Web browser
n Undo sequence in a text editor
n Chain of function calls in any language

runtime system

Indirect applications
n Auxiliary data structure for algorithms
n Component of other data structures

stack and queue 6

Execution Stack in C
The C runtime system keeps
track of the chain of active
functions with a stack
When a function is called, the
runtime system pushes on the
stack a frame containing
n Local variables and return value
n Program counter, keeping track of

the statement being executed
When a function ends, its
frame is popped from the stack
and control is passed to the
function on top of the stack

main() {
int i = 5;
foo(i);
}

foo(int j) {
int k;
k = j+1;
bar(k);
}

bar(int m) {
…
}

bar
PC = 1
m = 6

foo
PC = 3
j = 5
k = 6

main
PC = 2
i = 5

2

stack and queue 7

Array-based Stack
A simple way of
implementing the
Stack ADT uses an
array
We add elements
from left to right
A variable keeps
track of the index of
the top element

S
0 1 2 top

…

function size()
return top + 1;

function pop(S)
if (isEmpty(S))

error (“EmptyStack”);
else

top = top − 1;
return S [top + 1];

stack and queue 8

Array-based Stack (cont.)
The array storing the
stack elements may
become full
A push operation will
then send FullStack
error message
n Limitation of the array-

based implementation
n Not intrinsic to the

Stack ADT

S
0 1 2 top

…

function push(S, val)
if (isFull(S))

error(“FullStack”);
else {

top = top + 1;
S[top] = val;

}

stack and queue 9

Array-based Stack
typedef struct {

int array[MAX];
int top;

} stack;

void push(stack *s, int val){
if (s->top >= MAX-1) error(“Stack is full”);
s->top++;
s->array[s->top] = val;

}

void pop(stack *s, int *val){
if (s->top < 0) error(“Stack is empty”);
*val = s->array[s->top];
s->top--;

}
stack and queue 10

Performance and Limitations

Performance
n Let n be the number of elements in the stack

n The space used is O(n)
n Each operation runs in time O(1)

Limitations
n The maximum size of the stack must be defined a

priori and cannot be changed
n Trying to push a new element into a full stack

causes an implementation-specific error

stack and queue 11

Stack ---- behavior
A stack is defined by how it is used, not by its
structure.
We can implement a stack by different data
structures.
n linked lists
n arrays
n what else?
The only requirement for a stack is the ability to
store elements in order of insertion, so that we can
get the LIFO behavior.

stack and queue 12

List-based Stack:
Linked list can be used to implement stack data

structure: add and remove node from the “top”.

Property: Last In First Out (LIFO).
Operations: is_empty, push, pop

3

stack and queue 13

π*10128 + e*10128 Each operand has 128 digits

Read an operand(from left to right): 3141592653…..
27182818…..

Calculate the sum(from right to left): xx…xxxxx
+ yy…yyyyy

= ss…sssss

An example of stack application:

We need three stacks where two for operands and one for the sum.

stack and queue 14

typedef struct node node;

struct node{
int n;
node* next;

};

#define empty(s) (!(s))

void push(node** top, int n){
node* new = malloc(sizeof(node)); // create a new node

if (!new) exit(-1);
new->n = n;
new->next = *top;
*top = new; // set up stack top

}

int pop(node** top){ // return a value (not a node)
int n;

node* temp;
if (empty(*top)) return 0;
temp = *top; // save top node
*top = temp->next; // set up stack top

n = temp->n;
free(temp);
return n;

}

stack and queue 15

node* get_operand(){ // read an operand and store on a stack
node* s = NULL;
int n;
while (1){

n = getchar();
if (n < ‘0’ || n > ‘9’) return s; // return if input char is not a digit
push(&s, n – ‘0’);

}

}

main(){
node *a, *b, *sum = NULL;

int sumdig, carry = 0;
printf(“input two operands\n”);
a = get_operand();
b = get_operand();

while (!empty(a) || !empty(b)){ // perform addition
sumdig = pop(&a) + pop(&b) + carry;
push(&sum, sumdig%10);
carry = sumdig/10;

}
if (carry != 0) push(&sum, carry);
printf(“the sum is:”);
while (!empty(sum)) printf(“%c”, pop(&sum)); // output result

}

stack and queue 16

Example: Computing Spans
We show how to use a stack
as an auxiliary data structure
in an algorithm
Given an an array X, the span
S[i] of X[i] is the maximum
number of consecutive
elements X[j] immediately
preceding X [i] and such that
X[j] ≤ X[i]
Spans have applications to
financial analysis
n E.g., stock at 52-week high

13211

25436X

S

0
1
2
3
4
5
6
7

0 1 2 3 4

stack and queue 17

Quadratic Algorithm
function spans1(X, n)

Input: X[n] integers
Output: array S[n] of spans of X #
int s;
for (int i = 0; i < n; i++){ n

s = 1; n
while (s ≤ i && X[i − s] ≤ X[i]){ 1 + 2 + …+ (n − 1)

s = s + 1; 1 + 2 + …+ (n − 1)
}
S[i] = s; n

}
return S 1

}

Algorithm spans1 runs in O(n 2) time

stack and queue 18

Computing Spans with a Stack
We keep in a stack the
indices of the elements
visible when “looking
back”

We scan the array from
left to right
n Let i be the current index
n We pop indices from the

stack until we find index j
such that X[i] < X[j]

n We set S[i] ← i − j
n We push i onto the stack

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7

4

stack and queue 19

Linear Algorithm
function spans2(X, n) #
Input and output: same as span1

stack A;
for (i =0; i < n; i++){ n

while (!A.isEmpty() &&
X[A.top()] ≤ X[i]) { n

A.pop(); n
}
if (A.isEmpty()) n

S[i] = i + 1; n
else

S[i] = i − A.top(); n
A.push(i); n

}
return S 1

Each index of the
array
n Is pushed into the

stack exactly one
n Is popped from

the stack at most
once

The statements in
the while-loop are
executed at most
n times
Algorithm spans2
runs in O(n) time

Queues

stack and queue 21

The Queue ADT
The Queue ADT stores arbitrary
elements
Insertions and deletions follow
the first-in first -out scheme
Insertions are at the rear of the
queue and removals are at the
front of the queue
Main queue operations:
n enqueue(element): inserts an

element at the end of the
queue

n element dequeue(): removes
and returns the element at the
front of the queue

Auxiliary queue
operations:
n element front(): returns the

element at the front without
removing it

n int size(): returns the
number of elements stored

n boolean isEmpty(): indicates
whether no elements are
stored

Errors
n Attempting the execution of

dequeue or front on an
empty queue, or enqueue
on a full queue(?)

stack and queue 22

Applications of Queues

Direct applications
n Waiting lists
n Access to shared resources (e.g., printer)
n Multiprogramming

Indirect applications
n Auxiliary data structure for algorithms
n Component of other data structures

stack and queue 23

Array-based Queue
Use an array of size N in a circular fashion
Two variables keep track of the front and rear
f index of the front element
r index immediately past the rear element

Array location r is kept empty

Q
0 1 2 rf

normal configuration

Q
0 1 2 fr

wrapped-around configuration

stack and queue 24

Queue Operations
We use the
modulo operator
(remainder of
division)

function size()
return (N − f + r) mod N

function isEmpty()
return (f = r)

Q
0 1 2 rf

Q
0 1 2 fr

5

stack and queue 25

Queue Operations (cont.)
function enqueue(val)

if (size() == N − 1)
error(“Full Queue”);

else{
Q[r] = val;
r = (r + 1) mod N;

}

Operation enqueue
reports an error if the
array is full
This error is
implementation-
dependent

Q
0 1 2 rf

Q
0 1 2 f r

stack and queue 26

Queue Operations (cont.)
Operation dequeue
reports an error if
the queue is empty
This error is specified
in the queue ADT

function dequeue()
if (isEmpty()) then

error(“Empty Queue”);
else{

val = Q[f];
f = (f + 1) mod N;
return val;

}

Q
0 1 2 rf

Q
0 1 2 rf

stack and queue 27

Array-based Queue Declarations
#define MAX 1000

typedef struct {
int count;
int front;
int rear;
int data[MAX];

} queue;

void createQueue (queue *q)
{

q->front = 0;
q->rear = 0;
q->count = 0;

};

stack and queue 28

Circular-Array-based: Enqueue
int queueFull(queue *q)
{

return q->count >= MAX;
}

voidenqueue(int x, queue *q)
{

if (queueFull(q))
error(“QUEUE IS FULL”);

q->count++;
q->data[q->rear] = x;
/* Move to next open position */
q->rear = (q->rear + 1) % MAX;

}

stack and queue 29

Circular-Array-based: Dequeue

voiddequeue(int *x, queue *q)
{

if (queueEmpty(q))
error(“QUEUE IS EMPTY”);

q->count--;
x = q->data[q->front]; / data from front */
/* Move to the next slot to dequeue */
q->front = (q->front + 1) % MAX;

}

stack and queue 30

Creativity:

Describe in pseudo-code a linear-time
algorithm for reversing a queue Q. To
access the queue, you are only allowed
to use the methods of queue ADT.

6

stack and queue 31

Answer:

function reverseQueue(Queue Q)
Stack S;
while (!isEmpty(Q))

push(S, dequeue(Q));
while (!isEmpty(S))

enqueue(Q, pop(S));

