
1

stack and queue 1

Abstract Data Types (ADTs)
An abstract data type (ADT) is an abstraction of 
a data structure
ADT refers to a way of packaging some 

intermediate-level data structures and their 
operations into a useful collection whose 
properties have been carefully studied.

An ADT specifies:
n Data stored 
n Operations on the data (clean, simple interface)
n Error conditions associated with operations
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Example: ADT modeling a simple stock 
trading system
n The data stored are buy/sell orders
n The operations supported are

w order buy(stock, shares, price)
w order sell(stock, shares, price)
w void cancel(order)

n Error conditions:
w Buy/sell a nonexistent stock
w Cancel a nonexistent order

An ADT Example

Stacks

spring-loaded plate 

dispenser
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The Stack ADT
The Stack ADT stores 
arbitrary elements
Insertions and 
deletions follow the 
last-in first-out scheme
Main stack operations:
n push(element): inserts 

an element
n element pop(): removes 

and returns the last 
inserted element

Auxiliary stack 
operations:
n element top(): returns 

the last inserted element 
without removing it

n integer size(): returns the 
number of elements 
stored

n boolean isEmpty():
indicates whether no 
elements are stored
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Applications of Stacks

Direct applications
n Page-visited history in a Web browser
n Undo sequence in a text editor
n Chain of function calls in any language 

runtime system

Indirect applications
n Auxiliary data structure for algorithms
n Component of other data structures
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Execution Stack in C
The C runtime system keeps 
track of the chain of active 
functions with a stack
When a function is called, the 
runtime system pushes on the 
stack a frame containing
n Local variables and return value
n Program counter, keeping track of 

the statement being executed 
When a function ends, its 
frame is popped from the stack 
and control is passed to the 
function on top of the stack

main() {
int i = 5;
foo(i);
}

foo(int j) {
int k;
k = j+1;
bar(k);
}

bar(int m) {
…
}

bar
PC = 1
m = 6

foo
PC = 3
j = 5
k = 6

main
PC = 2
i = 5
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Array-based Stack
A simple way of 
implementing the 
Stack ADT uses an 
array
We add elements 
from left to right
A variable keeps 
track of the  index of 
the top element 

S
0 1 2 top

…

function size()
return top + 1;

function pop(S)
if (isEmpty(S))

error (“EmptyStack”);
else 

top = top − 1;
return S [top + 1];
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Array-based Stack (cont.)
The array storing the 
stack elements may 
become full
A push operation will 
then send FullStack 
error message
n Limitation of the array-

based  implementation
n Not intrinsic to the 

Stack ADT

S
0 1 2 top

…

function push(S, val)
if (isFull(S))

error(“FullStack”);
else {

top = top + 1;
S[top] = val;

}
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Array-based Stack 
typedef struct {

int array[MAX];
int top;

} stack;

void push(stack *s, int val){
if (s->top >= MAX-1) error(“Stack is full”);
s->top++;
s->array[s->top] = val;

}

void pop(stack *s, int *val){
if (s->top < 0) error(“Stack is empty”);
*val = s->array[s->top];
s->top--;

}
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Performance and Limitations

Performance
n Let n be the number of elements in the stack

n The space used is O(n)
n Each operation runs in time O(1)

Limitations
n The maximum size of the stack must be defined a 

priori and cannot be changed
n Trying to push a new element into a full stack 

causes an implementation-specific error
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Stack  ---- behavior
A stack is defined by how it is used, not by its 
structure. 
We can implement a stack by different data 
structures.
n linked lists
n arrays
n what else?
The only requirement for a stack is the ability to 
store elements in order of insertion, so that we can 
get the LIFO behavior.
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List-based Stack:
Linked list can be used to implement stack data 

structure: add and remove node from the “top”.

Property: Last In First Out (LIFO).
Operations: is_empty, push, pop
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π*10128 + e*10128    Each operand has 128 digits

Read an operand(from left to right): 3141592653…..
27182818…..

Calculate the sum(from right to left): xx…xxxxx
+ yy…yyyyy
-------------

=  ss…sssss

An example of stack application:

We need three stacks where two for operands and one for the sum.
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typedef struct node  node;

struct node{
int n;
node* next;

};

#define empty(s)  (!(s))

void push(node** top, int n){
node* new = malloc(sizeof(node)); // create a new node

if (!new) exit(-1);
new->n = n;
new->next = *top;
*top = new; // set up stack top

}

int pop(node** top){ // return a value (not a node)
int n;

node* temp;
if (empty(*top)) return 0;
temp = *top; // save top node
*top = temp->next; // set up stack top

n = temp->n;
free(temp);
return n;

}
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node* get_operand(){ // read an operand and store on a stack
node* s = NULL;
int n;
while (1){

n = getchar();
if (n < ‘0’ || n > ‘9’) return s; // return if input char is not a digit
push(&s, n – ‘0’);

}

}

main(){
node *a, *b, *sum = NULL;

int sumdig, carry = 0;
printf(“input two operands\n”);
a = get_operand();
b = get_operand();

while (!empty(a) || !empty(b)){ // perform addition
sumdig = pop(&a) + pop(&b) + carry;
push(&sum, sumdig%10);
carry = sumdig/10;

}
if (carry != 0) push(&sum, carry);
printf(“the sum is:”);
while (!empty(sum)) printf(“%c”, pop(&sum)); // output result

}
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Example: Computing Spans
We show how to use a stack 
as an auxiliary data structure 
in an algorithm
Given an an array X, the span 
S[i] of X[i] is the maximum 
number of consecutive 
elements X[j] immediately 
preceding X [i] and such that 
X[j] ≤ X[i]
Spans have applications to 
financial analysis
n E.g., stock at 52-week high

13211

25436X

S

0
1
2
3
4
5
6
7

0 1 2 3 4
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Quadratic Algorithm
function spans1(X, n)

Input: X[n] integers
Output: array S[n] of spans of X #
int s;
for (int i = 0; i < n; i++){ n

s = 1; n
while (s ≤ i && X[i − s] ≤ X[i]){ 1 + 2 + …+ (n − 1)

s = s + 1; 1 + 2 + …+ (n − 1)
}
S[i] = s; n

}
return S 1

}

Algorithm spans1 runs in O(n 2) time 
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Computing Spans with a Stack
We keep in a stack the 
indices of the elements 
visible when “looking 
back”

We scan the array from 
left to right
n Let i be the current index
n We pop indices from the 

stack until we find index j
such that X[i] < X[j]

n We set S[i] ← i − j
n We push i onto the stack

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7
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Linear Algorithm
function spans2(X, n) #
Input and output: same as span1

stack  A;
for (i =0; i < n; i++){ n

while (!A.isEmpty() &&
X[A.top()] ≤ X[i] ) { n

A.pop(); n
}
if (A.isEmpty()) n

S[i] = i + 1; n
else

S[i] = i − A.top();       n
A.push(i); n

}
return S 1

Each index of the 
array
n Is pushed into the 

stack exactly one 
n Is popped from 

the stack at most 
once

The statements in 
the while-loop are 
executed at most 
n times 
Algorithm spans2 
runs in O(n)  time 

Queues
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The Queue ADT
The Queue ADT stores arbitrary 
elements
Insertions and deletions follow 
the first-in first -out scheme
Insertions are at the rear of the 
queue and removals are at the 
front of the queue
Main queue operations:
n enqueue(element): inserts an 

element at the end of the 
queue

n element dequeue(): removes 
and returns the element at the 
front of the queue

Auxiliary queue 
operations:
n element front(): returns the 

element at the front without 
removing it

n int size(): returns the 
number of elements stored

n boolean isEmpty(): indicates 
whether no elements are 
stored

Errors
n Attempting the execution of 

dequeue or front on an 
empty queue, or enqueue 
on a full queue(?)
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Applications of Queues

Direct applications
n Waiting lists
n Access to shared resources (e.g., printer)
n Multiprogramming

Indirect applications
n Auxiliary data structure for algorithms
n Component of other data structures
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Array-based Queue
Use an array of size N in a circular fashion
Two variables keep track of the front and rear
f index of the front element
r index immediately past the rear element

Array location r is kept empty

Q
0 1 2 rf

normal configuration

Q
0 1 2 fr

wrapped-around configuration
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Queue Operations
We use the 
modulo operator 
(remainder of 
division)

function size()
return (N − f + r) mod N

function isEmpty()
return (f = r)

Q
0 1 2 rf

Q
0 1 2 fr
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Queue Operations (cont.)
function enqueue(val)

if (size() == N − 1)
error(“Full Queue”);

else{ 
Q[r] = val;
r = (r + 1) mod N;

}

Operation enqueue 
reports an error if the 
array is full
This error is 
implementation-
dependent

Q
0 1 2 rf

Q
0 1 2 f r
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Queue Operations (cont.)
Operation dequeue 
reports an error if 
the queue is empty
This error is specified 
in the queue ADT

function dequeue()
if (isEmpty()) then

error(“Empty Queue”);
else{

val = Q[f];
f = (f  + 1) mod N;
return val;

}

Q
0 1 2 rf

Q
0 1 2 rf
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Array-based Queue Declarations
#define MAX 1000

typedef struct {
int count;
int front;
int rear;
int data[MAX];

} queue;

void createQueue (queue *q)
{

q->front   = 0;
q->rear    = 0;
q->count  = 0;

};
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Circular-Array-based: Enqueue
int queueFull(queue *q)
{

return q->count >= MAX;
}

voidenqueue(int x, queue *q)
{

if (queueFull(q))
error(“QUEUE IS FULL”);

q->count++;    
q->data[q->rear] = x;
/* Move to next open position */
q->rear = (q->rear + 1) % MAX;

} 
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Circular-Array-based: Dequeue

voiddequeue(int *x,  queue *q)
{

if (queueEmpty(q))
error(“QUEUE IS EMPTY”);

q->count--;
*x = q->data[q->front]; /* data from front */
/* Move to the next slot to dequeue */
q->front = (q->front + 1)  % MAX;

}
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Creativity:

Describe in pseudo-code a linear-time 
algorithm for reversing a queue Q. To 
access the queue, you are only allowed 
to use the methods of queue ADT.
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Answer:

function reverseQueue(Queue Q)
Stack S;
while (!isEmpty(Q))

push(S, dequeue(Q));
while (!isEmpty(S))

enqueue(Q, pop(S));


