Abstract Data Types (ADTS)

® An abstract data type (ADT) is an abstraction of
a data structure

#® ADT refers to a way of packaging some
intermediate-level data structures and their
operations into a useful collection whose
properties have been carefully studied.

® An ADT specifies:
= Data stored
= Operations on the data (clean, simple interface)
= Error conditions associated with operations

stack and queue

An ADT Example

Example: ADT modeling a simple stock
trading system
= The data stored are buy/sell orders
= The operations supported are
+ order buy(stock, shares, price)
+ order sell(stock, shares, price)
+ void cancel(order)

= Error conditions:
+ Buy/sell a nonexistent stock
+ Cancel a nonexistent order

stack and queue 2

+spring-loaded plate

dispenser

=

62

The Stack ADT

#The Stack ADT stores *® Auxiliary stack
arbitrary elements operations:
+Insertions and " element_top(): returns
deletbnsifallow the the last inserted element
= without removing it
last-in first-out scheme = integer size(): returns the
Main stack operations: ';;':‘:gr of elements
. gﬁsglgerl]egfnt): inserts « boolean SEMpLY():

indicates whether no
= element pop(): removes elements are stored
and returns the last
inserted element

stack and queue 4

+ Direct applications
= Page-visited history in a Web browser
= Undo sequence in a text editor
= Chain of function calls in any language

runtime system

+ [ndirect applications
= Auxiliary data structure for algorithms
= Component of other data structures

stack and queue

ion Stack in C

The C runtime system keeps main() {
track of the chain of active inti=5; .
functions with a stack foo(i); PC=1
When a function is called, the } m=5

runtime system pushes on the foo(int) {

stack a frame containing . fpo
i intk; PC =3
= Local variables and return value K= i+l i
= Program counter, keeping track of ! ~ 1= 9
the statement being executed bar(k); k=95
#® \When a function ends, its } _
frame is popped from the stack eI

bar (int m) { PC =2

stack and queue 6

and control is passed to the
function on top of the stack

Array-based Stack

function size()
returntop + 1;

#® A simple way of
implementing the
Stack ADT uses an
array function pop(S)

® We add elements if (iIsEmpty(S))
from left to right error (* EmptyStack”);

® A variable keeps else
track of the index of top=top- 1;
the top element return Sftop + 11:

Array-based Stack (cont.)

#® The array storing the

sLIT T T TN SETTTTT]

0112 top

stack and queue 7

;teicokmilefzn”ents may flunction push(S, val)
- ’ if (isFull(S))
® A push operation will " i
then send FullStack error(* FullStack’);
error message else {
= Limitation of the array- top=top +1;
based implementation S[top] =val;
= Not intrinsic to the 1
Stack ADT
s LIIT I ITTTIN- ST T T
012 t0p

stack and queue 8

Array-based Stack

pedef struct {
int array[MAX];
int top;

stack;

void push(stack *s, int val){
if (s->top >= MAX-1) error(“Stack is full”);
s->top++;
s->array[s->top] = val;

}

void pop(stack *s, int *val){
if (s->top < 0) error(“Stack is empty”);
*val = s->array[s->top];
s->top--;

stack and queue 9

erformance and Limitations

Performance
= Let n be the number of elements in the stack
= The space used is O(n)
= Each operation runs in time O(1)

Limitations

= The maximum size of the stack must be defined a
priori and cannot be changed

= Trying to push a new element into a full stack
causes an implementation -specific error

stack and queue 10

tack ---- behavior

A stack is defined by how it is used, not by its
structure.

We can implement a stack by different data
structures.

= linked lists

= arrays

= what else?

#The only requirement for a stack is the ability to

store elements in order of insertion, so that we can
get the LIFO behavior.

stack and queue 11

List-based Stack:

Linked list can be used to implement stack data
structure: add and remove node from the “top”.
Property: Last In First Out (LIFO).

Operations: is_empty, push, pop

stack and queue 12

An example of stack application:

p*10'%8 + e*10'% Each operand has 128 digits

Read an operand(from left to right): 3141592653.....
27182818.....
—_— .

Calculate the sum(from right to left): xx...xxxxx
+ Yy yyyyy

We need three stacks where two for operands and one for the sum.

stack and queue 13

typedef struct node node;
struct node{

int n;

node* next;

ine empty(s) (1(5))

push(node** top, int n){
node* new = mallogsizeof(node)): 11 create a new node

new->next = *top;

*top = new; /1 set up stack top
3
int pop(node** top){ /1 return a value (not a node)
int n;
node* temp;
if (empty(*top)) return 0;
temp = *top; 11 save top node
*top = temp->next; 11 set up stack top
n = temp->n;
free(temp);
return n;
stack and queue 14

node* get_operand(){ // read an operand and store on a stack
node* s = NULL;

intn;

while (1){

= getchar();

if (n<'0' [n>'9)returns; // return if input char is not a digit
push(&s, n - 0);

node *a, *b, *sum = NULL;

int sumdig, carry = 0;

printf(*input two operands\n");

a = get_operand();

b = get_operand();

while (tempty(a) || tempty(b)){ /1 perform addition
sumdig = pop(&a) + pop(&b) + carry;
push(&sum, sumdig%10);
carry = sumdig/10;

if (carry != 0) push(&sum, carry);

printf(“the sum is:");
while (tempty(sum)) printf(“%c”, pop(&sum)); 11 output result

stack and queue 15

: Computing Spans

#® We show how to use a stack
as an auxiliary data structure
in an algorithm

#® Given an an array X, the span
S[i] of X[i] is the maximum
number of consecutive
elements X[j] immediately
preceding X[i] and such that
X[1 £ X[i]

OoOFRL,r NWHA OO N

® Spans have applications to
financial analysis E b E b

= E.g., stock at 52-week high

stack and queue 16

Ouadratic Alaorithm

function spansi(X, n)
Input: X[n] integers
Output: array §n] of spans of X #
ints;
for (inti = 0; i <n;i++){ n
s=1,; n
while(s£i && X[i - g £X][i]){ 1+2+..+(n- 1)
s=s+1; 1+2+..+(n-1)
}
gil=s n
}
returnsS 1
)

® Algorithm spansl runs in O(n?) time

stack and queue 17

ting Spans with a Stack

® \We keep in a stack the

indices of the elements
visible when “looking
back”

#® \\/e scan the array from
left to right

Let i be the current index

We pop indices from the

stack until we find index j
such that X[i] <X[j]

We set §Ji]- i-]j
We push i onto the stack

OFRr NWbhuo N

01234567

stack and queue 18

Linear Algorithm i
X function spans2(X, n) #
® Each index of the [input and output: same as spani.
array stack A;
= Is pushed into the for (i =0;i <n;i++){ n
stack exactly one while (TAisEmpty() & &
= Is popped from X[Atop(] EX[1){ n
the stack at most A.pop(); n
once }
The statements in if (AisEmpty() n
the while-loop are Si]=i+1 n
executed at most dse
n times Sl =i- Atop(); n
Algorithm spans2 Apush(i); " |
runs in O(n) time returnS 1
stack and queue 19

The Queue ADT

* The Queue ADT stores arbitrary ® Auxiliary queue

lications of Queues

piements , operations: + Direct applications
* Insertions a_nd deletions follow = element front(): returns the] L
the first-in first-out scheme element at the front without = Waiting lists
* Insertions are at the rear of the femoving-fi f
queue and removals are at the u int size(): returns the = Access to shared resources (e.g., printer)
front of the queue number of elements stored = Multiprogramming
Main queue operations: - \?V?\(zfﬁgr 'ﬁgﬂgﬁ%gﬁ{ggﬁms Indi i |
= enqueue(element): inserts an stored + Indirect app ications
elementatthe end of the g Errors = Auxiliary data structure for algorithms
queue))
= element dequeue(): removes = Attempting the execution of = Component of other data structures
and returns the element at the dequeue or front on an
front of the queue empty queue, or enqueue
on a full queue(?)
stack and queue 21 stack and queue 22

Operations

L] i i i i . .
Sl bty el e Svie sz the fneions
WO varl return (N - f +r) mod N
f index of the front element mOdUI_O operator
r index immediately past the rear element (remainder of flunctionisEmpty()
Array location r is kept empty division) FROFATT=T)
[TITTTTTTTTTTITTITTI]
Q Q
012 f r 012 f r
! . [TTTTTTITTITTITTTI T
Q
Q 012 r f
012 r f

stack and queue 23 stack and queue 24

Queue Operations (cont.)

® Operation enqueue fqr;ctl_onerlciuNeue(lval)
reports an error if the ! (5'290““ -1 1
array is full error(* Full Queue”);
® This error is else{ 1
implementation- Qr] =val;
dependent r=(+1) modN;
}
QLITTTTTTTTTTTTTIITI]
012 f r
QLITITTTITTTTTTTITTI]
012 f r
stack and queue 25

Queue Operations (cont.)

] flunction dequeue()
® Operation dequeue if (isEmpty()) then
reports an error if error (* Empty Queue');
the queue is empty else{
® This error is specified val = Q[f];
in the queue ADT f=(f +1) modN;
returnval;
}
Q LIITTITTTTTTTTTTITT]
012 f r
 LITTITTTTTTTTTTIIT]
012 f r
stack and queue 26

Array-based Queue Declarations

#define MAX 1000

typedef struct {
int count;
int front;
intrear;
int data[MAX];
} queue;

void createQueue (queue *q)
g->front =0;
g->rear =0;

g->count =0;

%

stack and queue 27

Circular-Array-based: Enqueue

int queueFull(queue *q)

return g->count >= MAX;

oid enqueue(int X, queue *q)

if (queueFull(q))
error(“QUEUE IS FULL™);
g-=>count++;
g->data[g->rear] = x;
/* Move to next open position */
g-=>rear = (g->rear + 1) % MAX;

stack and queue 28

ar-Array-based: Dequeue

void dequeue(int *x, queue *q)
{
if (queueEmpty(a))
error(“QUEUE 1S EMPTY™);
g->count--;
x = g=>data[g->front]; / data from front */
/* Move to the next slot to dequeue */
g->front = (g->front + 1) % MAX;

stack and queue 29

ity:

+ Describe in pseudo-code a linear-time
algorithm for reversing a queue Q. To
access the queue, you are only allowed
to use the methods of queue ADT.

stack and queue 30

Answer:

function reverseQueue (Queue Q)
Stack S;
while (lisEmpty(Q))
push(S, dequeue(Q));
while (lisEmpty(S))
enqueue(Q, pop(S));

