What is a Tree

* |n computer science, a
tree is an abstract model

Tl’eeS of a hierarchical

structure

A tree consists of nodes
with a parent-child
relation

Applications:

= Organization charts
= File systems

= Programming
\I environments

Make Money Fast!

Trees, Heap, and BST 2

Tree Terminology
Root: node without parent (A) # Subtree: tree consisting of * We use positions to * [Query func.t|0ns:
* Internal node: node with at least a node and its abstract nodes = -boolean isinternakp)
i J . = bool External
one child (A, B, C, F) descendal # Generic functions: boolean isExternal)

External node (a.k.a. leaf): node u int size() = boolean isRoot(p)
without children (E, I, J, K, G, H, D) ! = int height(tree)

* Ancestors of a node: parent, = boolean isEmpty() * Additional update functions
grandparent, grand-grandparent, & Access functions: may be defined by data
etc. = node root(tree) structures implementing the

Depth of a node: number of Tree ADT
ancestors = node parent(p)

Height of a tree: maximum depth = node left_child(p)
of any node (3) subtree = node right_child(p)

Descendant of a node: child,
grandchild, grand-grandchild, etc.

Trees, Heap, and BST 3 Trees, Heap, and BST 4

er Traversal er Traversal

A traversal visits the nodes of a G * In a postorder traversal, a flunction postOrder (v)
tree in a systemati unction preQrder (v) de is visited after it for (each child w of v){
ree in a systematic manner n node is visited after its

+ Ina preoré,er traversal, a node is visit(v)) descendants postOrder (w);
visited before its descendants for (each child wof v){ # Application: compute space }

Application: print a structured preorder (w); used by files in a directory and i
document its subdirectories VISIT(V);

P 2~ Method References in
- “ 2.1 Stock 2.2 Winnin 2.3 Bank Lc.doc 2¢.doc ssignmentl.c
F1prepd }-2 puidity Fraud Lotto 6/49 Robbery ES 2K 10K 25K 20K

Trees, Heap, and BST 5 Trees, Heap, and BST 6

Binary Tree

* A binary tree is a tree with the * Applications:

= arithmetic expressions
= decision processes

= searching

following properties:
= Each internal node has two
children
= The children of a node are an
ordered pair
\We call the children of an internal
node left child and right child
* Alternative recursive definition: a
binary tree is either
= atree consisting of a single node,
or
= atree whose root has an ordered

pair of children, each of which is a
binary tree

Trees, Heap, and BST 7

Arithmetic Expression Tree

#® Binary tree associated with an arithmetic expression
= internal nodes: operators
= external nodes: operands

Example: arithmetic expression tree for the
expression (2 (a- 1)+ (3" b))

Trees, Heap, and BST 8

Decision Tree

® Binary tree associated with a decision process
= internal nodes: questions with yes/no answer
= external nodes: decisions

® Example: dining decision

roperties of Binary Trees

Notation #® Properties:
n number of nodes me=i+1
e number of wn=2e-1
external nodes]
i number of internal = hEi
nodes « hE (n- 1)2
h height D ef oh
h3 log,e

hs log,(n+1)- 1

Trees, Heap, and BST 10

Trees, Heap, and BST 9
r Traversal

#* |n an inorder traversal a functioninOrder(v)

node is visited after its left [rars

subtree and before its right if (isinternal (V){

subtree inOrder (leftChild (v));}
* Application: draw a binary visit(v);

tree e

= x(v) = inorder rank of v if (|5| nternal (V)){

= y(v) = depth of v TNOTaer (TTgNTCNITa (V)]

Trees, Heap, and BST 11

ithmetic Expressions

= Specialization of an inorder function printExpression(v)
traversal if (isinternal (V)){
= print “(* before traversing left printf (“%c”, ~(');
subtree

= print operand or operator inOrder (leftChild (v));

when visiting node

] EL\E‘!';)E“ after traversing right print(v); // depends onv's data
if (islnternal (V){

inOrder (rightChild (v));

printf (“%c”, 7)');

(@ (@-1)+@ b))

Trees, Heap, and BST 12

Evaluate Arithmetic Expressions

Specialization of a postorder |[function evalExpr(v)
traversal if (isExternal (v)}{
= recursive method returning returnv.value ();
the value of a subtree }
= when visiting an internal else(
node, combine the values x = eval Expr(leftChiId (\/));
of the subtrees . .
y =eval Expr(rightChild (v));
e a- operator stored av;
returnxay;
@ QL
Trees, Heap, and BST 13

Creativity:
pathLength(tree) = S depth(v) "v 1 tree

function pathLength(v, n)
Input: atree nodevand aninitial valuen
Output: the pathLength of the tree with rootv
Usage: pl = pathLength(root, 0);
if (isExternal (v)){ returnn; }
else{
return(n+
pathLength(leftChild (v),n + 1) +
pathLength(rightChild (v), n + 1));

Trees, Heap, and BST 14

A priority queue stores a
collection of items
An item is a pair
(key, element)
Main methods of the Priority
Queue ADT
= insertitem(k, 0)
inserts an item with key k
and element o
removeMin()
removes the item with
smallest key and returns its
element

Priority Queue ADT

Additional methods
= minKey()
returns, but does not
remove, the smallest key of
an item
= minElement()
returns, but does not
remove, the element of an
item with smallest key
= size(), isEmpty()
Applications:
= Standby flyers
= Auctions
= Stock market

Trees, Heap, and BST 15

Example: Priority Queue

peTator Ttput ATioTity QUETe

fseTttemts 7y y

] EACAY)

ifrseTtHeT(eCy

irsertittem(3 By BB St

ifsertttem¢7 Oy 7 SN ACRAYAUR=ACAS)

rder Relation

#Keys in a priority #Mathematical concept

queue can be
arbitrary objects
on which an order
is defined

#Two distinct items
in a priority queue
can have the
same key

of total order relation £

= Reflexive property:
X £X

Antisymmetric property:
xEyUyExpP x=y
Transitive property:
xEyUy£zb x£z

Trees, Heap, and BST 17

nmEteTTeTTtCy S ACEOIAUASACAD)
rRceyor BYSAYFD9E)
remeveit: faAsn=acac;

vl ARz ACA)
rTTTOveTTeY EZASAZ)
removetting €
rpmovetting
rETITOVEHTTe: HTTOT
ISEMPty ey troe

Trees, Heap, and BST 16
a heap

A heap is a binary tree

storing keys at its internal

nodes and satisfying the

following properties:

= Heap-Order: for every
internal node v other than

the root
key(v) * key(parent(v))
= Complete Binary Tree: let h
be the height of the heap
+ fori=0,..., h- 1, there are
2/ nodes of depth i
+ atdepth h - 1, the internal
nodes are to the left of the
external nodes

The last node of a heap
is the rightmost internal
node of depth h - 1

2

last node

Trees, Heap, and BST 18

Height of a Heap

Theorem: A heap storing nkeys has height O(log n)
Proof: (we apply the complete binary tree property)
Let h be the height of a heap storing n keys

Since there are2' keys at depthi =0, ... , h - 2 and at least one key
atdepthh- 1, we haven® 1+2+4 + ..+ 22 +1

= Thus,n® 201 je, h£logn+1

depth keys

Trees, Heap, and BST 19

Heaps and Priority Queues

#® \\/e can use a heap to implement a priority queue

® \\e store a (key, element) item at each internal node
#® \We keep track of the position of the last node

#® For simplicity, we show only the keys in the pictures

Trees, Heap, and BST 20

Insertion into a Heap

The insertion algorithm

consists of three steps “
= Find the insertion position L\
z (the new last node) . .
= Store k at zand expand z ingertion-node

into an internal node

= Restore the heap-order
property (discussed next)

Trees, Heap, and BST 21

void insert(Heap *H, ItemType ItemTolnsert) {
NodeType *N; /* Pointer to the new node to be inserted to H */
NodeType *P; /* Let P be the pointer to the new node */
N = (create a new node with ItemTolnsert);
if (*H is not empty) {
/* Find the position to hold the new node */
P = (the pointer to the new node);
(P's value) = N;
/* Reheapify the values in the remaining nodes of H starting at the root, R */
if (H is not empty) {
(Reheapify the heap H starting at node R);
}

}
else {

(Root in H) = N;
¥

return;

Trees, Heap, and BST 22

P

#® After the insertion of a new key k, the heap-order property may be
violated

Algorithm upheap restores the heap-order property by swapping k
along an upward path from the insertion node

Upheap terminates when the key k reaches the root or a node
whose parent has a key smaller than or equal to k

Since a heap has height O(log n), upheap runs in O(log n) time

Trees, Heap, and BST 23

2
The removal
algorithm consists of \D o
three steps h
= Replace the root key last node

with the key of the
last node w

Delete w

Restore the heap-
order property
(discussed next)

Trees, Heap, and BST 24

ItemType remove(Heap *H) {
NodeType L; /* let L be the last node of H in level order */
NodeType R; /* Ris used refer to the root node of H */
oRemove ; /* temporarily stores item to remove */
if (*H is not empty) {
/* Remove the highest priority item which is stored in H's root node, R */
ItemToRemove = (the value stored in the root node, R, of H);
/* Move L's value into the root of H, and delete L */
(R's value) = (the value in last node L);
(delete node L);
/* Reheapify the values in the remaining nodes of H starting at the root, R */
if (H is not empty) {
(Reheapify the heap H starting at node R);
}

| return (IitemToRemove);

Trees, Heap, and BST 25

Downheap

After replacing the root key with the key k of the last node, the
heap-order property may be violated

Algorithm downheap restores the heap-order property by
swapping key k along a downward path from the root

Downheap terminates when key k reaches a leaf or a node whose
children have keys greater than or equal to k

Since a heap has height O(log), downheap runs in (log n) time

R ks

Trees, Heap, and BST 26

Array-based Implementation

We can represent a heap with n
keys by means of an array of
length n+1

For the node at rank i

= the left child is at rank 2i

= the right child is at rank 2i +1
Links between nodes are not
explicitly stored

#* The leaves are not represented | | | | | |

* The cell of at rank Ois not used 2 15161917

Operation insert corresponds to 0 1 2 3 4 5
inserting at rank n+1

Operation remove corresponds to

removing at rank 1

Trees, Heap, and BST 27

ing Two Heaps

\We are given two two
heaps and a key k

\We create a new heap
with the root node
storing k and with the
two heaps as subtrees

#® \We perform downheap
to restore the heap-
order property

Trees, Heap, and BST 28

-up Heap Construction

® We can construct a heap
storing n given keys in
using a bottom-up _ _

construction with log n
phases

® In phase i, pairs of
heaps with 2' -1 keys are
merged into heaps with
21+ 1 keys

Trees, Heap, and BST 29

Bottom-up Algorithm:

function BottomUpHeap(S, n):
Input: An array S storing n = 2 — 1 keys
Output: A heap T storing the keys in S
if (n == 0) then return NULL;
k = S[0];
S1=9[1..(n-1)/2]; /* split S into two sub-arrays */
S2 = S[(n-1)/2+1 .. n];
T1 = BottomUpHeap(S1);
T2 = BottomUpHeap(S2);
T =treeNode(k, T1, T2);
DownHeap(T);
return T;

Trees, Heap, and BST 30

Example
O

oz)
(o N a

KR AR LR LR

¢

Trees, Heap, and BST 31

Example (contd.)
AEEEEY 1§

D

L
L] NNy
1 2
1 2 1 1! 2 2
Trees, Heap, and BST 32

Trees, Heap, and BST 33

Trees, Heap, and BST 34

We visualize the worst-case time of a downheap with a proxy path
that goes first right and then repeatedly goes left until the bottom
of the heap (this path may differ from the actual downheap path)

Since each node is traversed by at most two proxy paths, the tota
number of nodes of the proxy paths is O(n)

Thus, bottom-up heap construction runs in O(n) time

Bottom-up heap construction is faster than n successive insertions

Trees, Heap, and BST 35

Search Tree

® A binary search tree is a)
binary tree storing keys ~ ® An inorder traversal of a

(or key-element pairs) binary search trees

at its internal nodes and visits the keys in
satisfying the following increasing order
property:

= Letv be a tree node,

and L, R be subtrees
such that L is the left

subtree of vand R is the
right subtree of v. We

have
keygL) £ key(V) £ keygR)
#® External nodes do not
store items (NULL's)

Trees, Heap, and BST 36

Search

function findElement(k, v)
if (isExternal (VX
return NO_SUCH_KEY; }
it (k <key() {
return findElement(k, leftChild(v));}
dseif (k =key(W){
return element(v); }
else{ // k> key(v)
return findElement(k, rightChild (v)); }

To search for a key k,
we trace a downward
path starting at the root
The next node visited
depends on the
outcome of the
comparison of k with
the key of the current
node

If we reach a leaf, the
key is not found and we
return NO_SUCH_KEY
Example:
findElement (4, root)
]]]]]

Trees, Heap, and BST 37

Insertion

#® To perform operation
insertitem (k, o), we search
for key k

Assume k is not already in

the tree, and let w be the

leaf reached by the search

We insert k at node w and

expand w into an internal

m
w
node
#* Example: insert 5

Trees, Heap, and BST 38

Deletion

To perform operation
removeElement (k), we

search for key k)
Assume key Kk is in the tree, /

and let v be the node storing \ 4

k A

If node v has a leaf child w
(aNULL subtree), we
remove v and wfrom the
tree with operation
removeAboveExternal(w)

Example: remove 4

Trees, Heap, and BST 39

4

eletion (cont.)

#* e consider the case where
the key k to be removed is
stored at a node v whose
children are both internal r

= we find the internal node w v
that follows vin an inorder

traversal i

we copy key(w) into node v I~

= we remove nodew and its
left child z (which must be a

leaf) by means of operation
removeAboveExternal (2

® Example: remove 3

Trees, Heap, and BST 40

ance

Consider a dictionary
with n items
implemented by means
of a binary search tree
of height h
= the space used is O(n)
= methods findElement ,
insertitem and
removeElement take
O(h) time
The height h is O(n) in
the worst case and
O(log n) in the best
case

T,

Trees, Heap, and BST a1

- Implementation

+ Data structure

typedef struct node{
void *item ¥ L
struct node *left; e [[ot
struct node *right;
} node;

Typedef struct {
node* root;

} tree;

Trees, Heap, and BST 42

Trees - Implementation

extern int keyCnp(void *a, void *b);
/* Returns -1, 0, 1 for a<bh, a==b, a>hb*

void *find(node* np, void *key) {
if (np == NULL) return NULL;
switch(keyCnp(key, np->iten)) {
case -1 return find(np->left, key

case 0 return np->item
case +1 return find(np->right, key);
}

}

void *findlnTree(tree t, void *key) {
return find(t.root, key);

Trees, Heap, and BST

Greater,
search right

43

Trees - Implementation

+ Example:
= key =22;
if (findinTree(t.root, &key))

find(np, &ey);

il Lo find(np->right, &ey);

LR
-l

g B
" 8 & ® 13w LRl "7 e

return np->item

Trees, Heap, and BST

R find(np->left, &ey);

44

Trees - Addition

#Add 21 to the tree
ir _ﬂ_-_--‘.l

w17 w

8w ® 15 @ i,ﬂi‘i
i
w2 -

= We need at most h+1 comparisons
= Create a new node (constant time)

= So addition to a tree takes time
proportional to log n

Trees, Heap, and BST

® 3w

implementation

void insert(node **t, node *new) {
node base = *t;
= NULL) {
*t = new, return; }
else {
if(keyLess(new->item base->itenm))
insert(& base->left), new);
el se
insert(& base->right), new);

}
}
void addToTree(tree t, void *item) {
node* new,
new = (node*) malloc(sizeof (struct t_node));
new>item=item

new >l eft = new >right = NULL;
insert(&t.root), new);

Trees, Heap, and BST

46

