What is a Tree

* |n computer science, a
tree is an abstract model

Tl’eeS of a hierarchical

structure

# A tree consists of nodes
with a parent-child
relation

# Applications:

= Organization charts
= File systems

= Programming
\I environments
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Tree Terminology
# Root: node without parent (A) # Subtree: tree consisting of * We use positions to * [Query func.t|0ns:
* Internal node: node with at least a node and its abstract nodes = -boolean isinternakp)
i J . = bool External
one child (A, B, C, F) descendal # Generic functions: boolean isExternal )

# External node (a.k.a. leaf ): node u int size() = boolean isRoot(p)
without children (E, I, J, K, G, H, D) ! = int height(tree)

* Ancestors of a node: parent, = boolean isEmpty() * Additional update functions
grandparent, grand-grandparent, & Access functions: may be defined by data
etc. = node root(tree) structures implementing the

# Depth of a node: number of Tree ADT
ancestors = node parent(p)

# Height of a tree: maximum depth = node left_child(p)
of any node (3) subtree = node right_child(p)

# Descendant of a node: child,
grandchild, grand-grandchild, etc.
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er Traversal er Traversal

# A traversal visits the nodes of a G * In a postorder traversal, a flunction postOrder (v)
tree in a systemati unction preQrder (v) de is visited after it for (each child w of v){
ree in a systematic manner n node is visited after its

+ Ina preoré,er traversal, a node is visit(v) ) descendants postOrder (w);
visited before its descendants for (each child wof v){ # Application: compute space }

# Application: print a structured preorder (w); used by files in a directory and i
document its subdirectories VISIT(V);
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Binary Tree

* A binary tree is a tree with the * Applications:

= arithmetic expressions
= decision processes

= searching

following properties:
= Each internal node has two
children
= The children of a node are an
ordered pair
# \We call the children of an internal
node left child and right child
* Alternative recursive definition: a
binary tree is either
= atree consisting of a single node,
or
= atree whose root has an ordered

pair of children, each of which is a
binary tree
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Arithmetic Expression Tree

#® Binary tree associated with an arithmetic expression
= internal nodes: operators
= external nodes: operands

# Example: arithmetic expression tree for the
expression (2 (a- 1)+ (3" b))
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Decision Tree

® Binary tree associated with a decision process
= internal nodes: questions with yes/no answer
= external nodes: decisions

® Example: dining decision

roperties of Binary Trees

# Notation #® Properties:
n number of nodes me=i+1
e number of wn=2e-1
external nodes ]
i number of internal = hEi
nodes « hE (n- 1)2
h height D ef oh
h3 log,e

hs log,(n+1)- 1
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r Traversal

#* |n an inorder traversal a functioninOrder(v)

node is visited after its left [rars

subtree and before its right if (isinternal (V){

subtree inOrder (leftChild (v));}
* Application: draw a binary visit(v);

tree e

= x(v) = inorder rank of v if (|5| nternal (V)){

= y(v) = depth of v TNOTaer (TTgNTCNITa (V)]
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ithmetic Expressions

= Specialization of an inorder function printExpression(v)
traversal if (isinternal (V)){
= print “(* before traversing left printf (“%c”, ~(');
subtree

= print operand or operator inOrder (leftChild (v));

when visiting node

] EL\E‘!';)E“ after traversing right print(v); // depends onv's data
if (islnternal (V){

inOrder (rightChild (v));

printf (“%c”, 7)');

(@ (@-1)+@ b))
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Evaluate Arithmetic Expressions

# Specialization of a postorder |[function evalExpr(v)
traversal if (isExternal (v)}{
= recursive method returning returnv.value ();
the value of a subtree }
= when visiting an internal else(
node, combine the values x = eval Expr(leftChiId (\/));
of the subtrees . .
y =eval Expr(rightChild (v));
e a- operator stored av;
returnxay;
@ QL
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Creativity:
pathLength(tree) = S depth(v) "v 1 tree

function pathLength(v, n)
Input: atree nodevand aninitial valuen
Output: the pathLength of the tree with rootv
Usage: pl = pathLength(root, 0);
if (isExternal (v)){ returnn; }
else{
return(n+
pathLength(leftChild (v),n + 1) +
pathLength(rightChild (v), n + 1) );
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# A priority queue stores a
collection of items
# An item is a pair
(key, element)
# Main methods of the Priority
Queue ADT
= insertitem(k, 0)
inserts an item with key k
and element o
removeMin()
removes the item with
smallest key and returns its
element

Priority Queue ADT

# Additional methods
= minKey()
returns, but does not
remove, the smallest key of
an item
= minElement()
returns, but does not
remove, the element of an
item with smallest key
= size(), isEmpty()
# Applications:
= Standby flyers
= Auctions
= Stock market
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Example: Priority Queue

peTator Ttput ATioTity QUETe

fseTttemts 7y y

] EACAY)

ifrseTtHeT(eCy

irsertittem(3 By BB St

ifsertttem¢7 Oy 7 SN ACRAYAUR=ACAS)

rder Relation

#Keys in a priority  #Mathematical concept

queue can be
arbitrary objects
on which an order
is defined

#Two distinct items
in a priority queue
can have the
same key

of total order relation £

= Reflexive property:
X £X

Antisymmetric property:
xEyUyExpP x=y
Transitive property:
xEyUy£zb x£z
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a heap

A heap is a binary tree

storing keys at its internal

nodes and satisfying the

following properties:

= Heap-Order: for every
internal node v other than

the root
key(v) * key(parent(v))
= Complete Binary Tree: let h
be the height of the heap
+ fori=0,..., h- 1, there are
2/ nodes of depth i
+ atdepth h - 1, the internal
nodes are to the left of the
external nodes

# The last node of a heap
is the rightmost internal
node of depth h - 1

2

last node
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Height of a Heap

# Theorem: A heap storing nkeys has height O(log n)
Proof: (we apply the complete binary tree property)
Let h be the height of a heap storing n keys

Since there are2' keys at depthi =0, ... , h - 2 and at least one key
atdepthh- 1, we haven® 1+2+4 + ..+ 22 +1

= Thus,n® 201 je, h£logn+1

depth keys
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Heaps and Priority Queues

#® \\/e can use a heap to implement a priority queue

® \\e store a (key, element) item at each internal node
#® \We keep track of the position of the last node

#® For simplicity, we show only the keys in the pictures
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Insertion into a Heap

# The insertion algorithm

consists of three steps “
= Find the insertion position L\
z (the new last node) . .
= Store k at zand expand z ingertion-node

into an internal node

= Restore the heap-order
property (discussed next)
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void insert(Heap *H, ItemType ItemTolnsert) {
NodeType *N; /* Pointer to the new node to be inserted to H */
NodeType *P; /* Let P be the pointer to the new node */
N = (create a new node with ItemTolnsert);
if (*H is not empty) {
/* Find the position to hold the new node */
P = (the pointer to the new node);
(P's value) = N;
/* Reheapify the values in the remaining nodes of H starting at the root, R */
if (H is not empty) {
(Reheapify the heap H starting at node R);
}

}
else {

(Root in H) = N;
¥

return;
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P

#® After the insertion of a new key k, the heap-order property may be
violated

Algorithm upheap restores the heap-order property by swapping k
along an upward path from the insertion node

# Upheap terminates when the key k reaches the root or a node
whose parent has a key smaller than or equal to k

Since a heap has height O(log n), upheap runs in O(log n) time
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2
The removal
algorithm consists of \D o
three steps h
= Replace the root key last node

with the key of the
last node w

Delete w

Restore the heap-
order property
(discussed next)
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ItemType remove(Heap *H) {
NodeType L; /* let L be the last node of H in level order */
NodeType R; /* Ris used refer to the root node of H */
oRemove ; /* temporarily stores item to remove */
if (*H is not empty) {
/* Remove the highest priority item which is stored in H's root node, R */
ItemToRemove = (the value stored in the root node, R, of H);
/* Move L's value into the root of H, and delete L */
(R's value) = (the value in last node L);
(delete node L);
/* Reheapify the values in the remaining nodes of H starting at the root, R */
if (H is not empty) {
(Reheapify the heap H starting at node R);
}

| return (IitemToRemove);
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Downheap

After replacing the root key with the key k of the last node, the
heap-order property may be violated

Algorithm downheap restores the heap-order property by
swapping key k along a downward path from the root

Downheap terminates when key k reaches a leaf or a node whose
children have keys greater than or equal to k

Since a heap has height O(log ), downheap runs in (log n) time

R ks
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Array-based Implementation

We can represent a heap with n
keys by means of an array of
length n+1

For the node at rank i

= the left child is at rank 2i

= the right child is at rank 2i +1
Links between nodes are not
explicitly stored

#* The leaves are not represented | | | | | |

* The cell of at rank Ois not used 2 15161917

# Operation insert corresponds to 0 1 2 3 4 5
inserting at rank n+1

# Operation remove corresponds to

removing at rank 1
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ing Two Heaps

# \We are given two two
heaps and a key k

# \We create a new heap
with the root node
storing k and with the
two heaps as subtrees

#® \We perform downheap
to restore the heap-
order property
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-up Heap Construction

® We can construct a heap
storing n given keys in
using a bottom-up _ _

construction with log n
phases

® In phase i, pairs of
heaps with 2' -1 keys are
merged into heaps with
21+ 1 keys
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Bottom-up Algorithm:

function BottomUpHeap(S, n):
Input: An array S storing n = 2 — 1 keys
Output: A heap T storing the keys in S
if (n == 0) then return NULL;
k = S[0];
S1=9[1..(n-1)/2]; /* split S into two sub-arrays */
S2 = S[(n-1)/2+1 .. n];
T1 = BottomUpHeap(S1);
T2 = BottomUpHeap(S2);
T =treeNode(k, T1, T2);
DownHeap(T);
return T;
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Example (contd.)
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# We visualize the worst-case time of a downheap with a proxy path
that goes first right and then repeatedly goes left until the bottom
of the heap (this path may differ from the actual downheap path)

# Since each node is traversed by at most two proxy paths, the tota
number of nodes of the proxy paths is O(n)

# Thus, bottom-up heap construction runs in O(n) time

# Bottom-up heap construction is faster than n successive insertions
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Search Tree

® A binary search tree is a )
binary tree storing keys ~ ® An inorder traversal of a

(or key-element pairs) binary search trees

at its internal nodes and visits the keys in
satisfying the following increasing order
property:

= Letv be a tree node,

and L, R be subtrees
such that L is the left

subtree of vand R is the
right subtree of v. We

have
keygL) £ key(V) £ keygR)
#® External nodes do not
store items (NULL's)
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Search

function findElement(k, v)
if (isExternal (VX
return NO_SUCH_KEY; }
it (k <key() {
return findElement(k, leftChild(v));}
dseif (k =key(W){
return element(v); }
else{ // k> key(v)
return findElement(k, rightChild (v)); }

To search for a key k,
we trace a downward
path starting at the root
The next node visited
depends on the
outcome of the
comparison of k with
the key of the current
node

If we reach a leaf, the
key is not found and we
return NO_SUCH_KEY
Example:
findElement (4, root)
] ] ] ] ]
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Insertion

#® To perform operation
insertitem (k, o), we search
for key k

# Assume k is not already in

the tree, and let w be the

leaf reached by the search

We insert k at node w and

expand w into an internal

m
w
node
#* Example: insert 5
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Deletion

To perform operation
removeElement (k), we

search for key k )
Assume key Kk is in the tree, /

and let v be the node storing \ 4

k A

If node v has a leaf child w
(aNULL subtree), we
remove v and wfrom the
tree with operation
removeAboveExternal(w)

Example: remove 4
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4

eletion (cont.)

#* e consider the case where
the key k to be removed is
stored at a node v whose
children are both internal r

= we find the internal node w v
that follows vin an inorder

traversal i

we copy key(w) into node v I~

= we remove nodew and its
left child z (which must be a

leaf) by means of operation
removeAboveExternal (2

® Example: remove 3
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ance

Consider a dictionary
with n items
implemented by means
of a binary search tree
of height h
= the space used is O(n)
= methods findElement ,
insertitem and
removeElement take
O(h) time
The height h is O(n) in
the worst case and
O(log n) in the best
case

T,
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- Implementation

+ Data structure

typedef struct node{
void *item ¥ L
struct node *left; e [ [ ot
struct node *right;
} node;

Typedef struct {
node* root;

} tree;
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Trees - Implementation

extern int keyCnp( void *a, void *b );
/* Returns -1, 0, 1 for a<bh, a==b, a>hb*

void *find( node* np, void *key ) {
if ( np == NULL) return NULL;
switch( keyCnp( key, np->iten) ) {
case -1 return find( np->left, key

case 0 return np->item
case +1 return find( np->right, key );
}

}

void *findlnTree( tree t, void *key ) {
return find( t.root, key );
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Greater,
search right
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Trees - Implementation

+ Example:
= key =22;
if (findinTree( t.root, &key)) ....

find( np, &ey );

il Lo find( np->right, &ey );

LR
-l

g B
" 8 & ® 13w LRl "7 e

return np->item
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R find(np->left, &ey );
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Trees - Addition

#Add 21 to the tree
ir _ﬂ_-_--‘.l

w17 w

# 8w ® 15 @ i,ﬂi‘i
i
w2 -

= We need at most h+1 comparisons
= Create a new node (constant time)

= So addition to a tree takes time
proportional to log n
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implementation

void insert( node **t, node *new ) {
node base = *t;
= NULL ) {
*t = new, return; }
else {
if( keyLess(new->item base->itenm) )
insert( & base->left), new);
el se
insert( & base->right), new);

}
}
void addToTree( tree t, void *item) {
node* new,
new = (node*) malloc(sizeof (struct t_node));
new>item=item

new >l eft = new >right = NULL;
insert( &t.root), new);
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