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What is a Tree
In computer science, a 
tree is an abstract model 
of a hierarchical 
structure
A tree consists of nodes 
with a parent-child 
relation
Applications:
n Organization charts

n File systems
n Programming 

environments
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subtree

Tree Terminology
Root: node without parent (A)
Internal node: node with at least 
one child (A, B, C, F)
External node (a.k.a. leaf ): node 
without children (E, I, J, K, G, H, D)
Ancestors of a node: parent, 
grandparent, grand-grandparent, 
etc.
Depth of a node: number of 
ancestors
Height of a tree: maximum depth 
of any node (3)
Descendant of a node: child, 
grandchild, grand-grandchild, etc.
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Subtree: tree consisting of 
a node and its 
descendants
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Tree ADT
We use positions to 
abstract nodes

Generic functions:
n int size()
n boolean isEmpty()

Access functions:
n node root(tree)
n node parent(p)
n node left_child(p)
n node right_child(p)

Query functions:
n boolean isInternal(p)
n boolean isExternal (p)
n boolean isRoot(p)

n int height(tree)
Additional update functions 
may be defined by data 
structures implementing the 
Tree ADT
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Preorder Traversal
A traversal visits the nodes of a 
tree in a systematic manner
In a preorder traversal, a node is 
visited before its descendants 
Application: print a structured 
document
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function preOrder(v)
visit(v);
for (each child w of v){

preorder (w);
}
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Postorder Traversal
In a postorder traversal, a 
node is visited after its 
descendants
Application: compute space 
used by files in a directory and 
its subdirectories

function postOrder(v)
for (each child w of v){

postOrder (w);
}
visit(v);

cis2520/

homeworks/
todo.txt

1K
programs/

Assignment1.c
10K

main.c
25K

h1c.doc
3K

h2c.doc
2K

prog.h
20K

9

3

1

7

2 4 5 6

8



2

Trees, Heap, and BST 7

Binary Tree
A binary tree is a tree with the 
following properties:
n Each internal node has two 

children
n The children of a node are an 

ordered pair
We call the children of an internal 
node left child and right child
Alternative recursive definition: a 
binary tree is either
n a tree consisting of a single node, 

or
n a tree whose root has an ordered 

pair of children, each of which is a 
binary tree

Applications:
n arithmetic expressions
n decision processes
n searching
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Arithmetic Expression Tree
Binary tree associated with an arithmetic expression
n internal nodes: operators
n external nodes: operands

Example: arithmetic expression tree for the 
expression (2 × (a − 1) + (3 × b))
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Decision Tree
Binary tree associated with a decision process
n internal nodes: questions with yes/no answer
n external nodes: decisions

Example: dining decision

Want a fast meal?

How about coffee? On expense account?

Starbucks Spike’s Al Forno Café Paragon

Yes No

Yes No Yes No
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Properties of Binary Trees
Notation
n number of nodes
e number of 

external nodes
i number of internal 

nodes
h height

Properties:

n e = i + 1
n n = 2e − 1

n h ≤ i

n h ≤ (n − 1)/2
n e ≤ 2h

n h ≥ log2 e
n h ≥ log2 (n + 1) − 1
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Inorder Traversal
In an inorder traversal a 
node is visited after its left 
subtree and before its right 
subtree
Application: draw a binary 
tree
n x(v) = inorder rank of v
n y(v) = depth of v

function inOrder(v)
if (isInternal (v)){

inOrder (leftChild (v));}
visit(v);
if (isInternal (v)){

inOrder (rightChild (v));}
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Print Arithmetic Expressions
Specialization of an inorder 
traversal
n print “(“ before traversing left 

subtree
n print operand or operator 

when visiting node
n print “)“ after traversing right 

subtree

function printExpression(v)
if (isInternal (v)){

printf(“%c”, `(’);
inOrder (leftChild (v));

}
print(v); // depends on v’s data
if (isInternal (v)){

inOrder (rightChild (v));
printf(“%c”, `)’);

}
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Evaluate Arithmetic Expressions
Specialization of a postorder 
traversal
n recursive method returning 

the value of a subtree
n when visiting an internal 

node, combine the values 
of the subtrees

function evalExpr(v)
if (isExternal (v)){

return v.value ();
}
else{

x = evalExpr(leftChild (v));
y = evalExpr(rightChild (v));
◊ ← operator stored at v;
return x ◊ y;

}
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Creativity: 
pathLength(tree) = Σ depth(v) ∀v ∈ tree

function pathLength(v, n)
Input: a tree node v and an initial value n
Output: the pathLength of the tree with root v
Usage: pl = pathLength(root, 0);

if (isExternal (v)){  return n; }
else{

return (n +
pathLength(leftChild (v), n + 1) +
pathLength(rightChild (v), n + 1) );

}
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Priority Queue ADT

A priority queue stores a 
collection of items
An item is a pair
(key, element)
Main methods of the Priority 
Queue ADT
n insertItem(k, o)

inserts an item with key k 
and element o

n removeMin()
removes the item with 
smallest key and returns its 
element

Additional methods
n minKey()

returns, but does not 
remove, the smallest key of 
an item

n minElement()
returns, but does not 
remove, the element of an 
item with smallest key

n size(), isEmpty()
Applications:
n Standby flyers
n Auctions
n Stock market
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Example: Priority Queue

trueisEmpty()

errorremoveMin()

CremoveMin()

(9,C)DremoveMin()

(7,D),(9,C)AremoveMin()

(5,A),(7,D),(9,C)3size()

(5,A),(7,D),(9,C)BremoveMin()

(3,B),(5,A),(7,D),(9,C)3minKey()

(3,B),(5,A),(7,D),(9,C)BminElement()

(3,B),(5,A),(7,D),(9,C)_insertItem(7, D)

(3,B),(5,A),(9,C)_insertItem(3, B)

(5,A),(9,C)_insertItem(9, C)

(5,A)_insertItem(5, A)

Priority Queue OutputOperator

Trees, Heap, and BST 17

Total Order Relation

Keys in a priority 
queue can be 
arbitrary objects 
on which an order 
is defined
Two distinct items 
in a priority queue 
can have the 
same key

Mathematical concept 
of total order relation ≤
n Reflexive property:

x ≤ x

n Antisymmetric property:
x ≤ y ∧ y ≤ x ⇒ x = y

n Transitive property:
x ≤ y ∧ y ≤ z ⇒ x ≤ z
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What is a heap
A heap is a binary tree 
storing keys at its internal 
nodes and satisfying the 
following properties:
n Heap-Order: for every 

internal node v other than 
the root,
key(v) ≥ key(parent(v))

n Complete Binary Tree: let h
be the height of the heap
w for i = 0, … , h − 1, there are 

2 i nodes of depth i
w at depth h − 1, the internal 

nodes are to the left of the 
external nodes

2

65

79

The last node of a heap 
is the rightmost internal 
node of depth h − 1

last node
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Height of a Heap
Theorem: A heap storing n keys has height O(log n)
Proof: (we apply the complete binary tree property)
n Let h be the height of a heap storing n keys
n Since there are 2 i keys at depth i = 0, … , h − 2 and at least one key 

at depth h − 1, we have n ≥ 1 + 2 + 4 + … + 2h−2 + 1

n Thus, n ≥ 2h−1 , i.e., h ≤ log n + 1

1
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2h−2

1

keys
0

1

h−2

h−1

depth
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Heaps and Priority Queues
We can use a heap to implement a priority queue

We store a (key, element) item at each internal node
We keep track of the position of the last node

For simplicity, we show only the keys in the pictures

(2, Sue)

(6, Mark)(5, Pat)

(9, Jeff) (7, Anna)
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Insertion into a Heap

The insertion algorithm 
consists of three steps
n Find the insertion position 

z (the new last node)
n Store k at z and expand z 

into an internal node
n Restore the heap-order 

property (discussed next)

2
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insertion node
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z

z
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void insert(Heap *H, ItemType ItemToInsert ) {

NodeType *N;                              /* Pointer to the new node to be inserted to H */
NodeType  *P;                              /* Let P be the pointer to the new node */

N = (create a new node with ItemToInsert );
if  (*H is not empty)  {

/* Find the position to hold the new node */
P = (the pointer to the new node);  
(P's value) = N;
/* Reheapify the values in the remaining nodes of H starting at the root, R */
if  (H is not empty)  {

(Reheapify the heap H starting at node R);
}

}
else {

(Root in H) = N;

}
return;

}
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Upheap
After the insertion of a new key k, the heap-order property may be 
violated
Algorithm upheap restores the heap-order property by swapping k
along an upward path from the insertion node
Upheap terminates when the key k reaches the root or a node 
whose parent has a key smaller than or equal to k
Since a heap has height O(log n), upheap runs in O(log n) time
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Removal from a Heap

The removal 
algorithm consists of 
three steps
n Replace the root key 

with the key of the 
last node w

n Delete w
n Restore the heap-

order property 
(discussed next)

2
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ItemType remove(Heap *H) {

NodeType  L;             /* let L be the last node of H in level order */
NodeType  R;                 /* R is used refer to the root node of H */
ItemType  ItemToRemove ;           /* temporarily stores item to remove */

if  (*H is not empty)  {
/* Remove the highest priority item which is stored in H's root node, R */
ItemToRemove = (the value stored in the root node, R, of H);  
/* Move L's value into the root of H, and delete L */
(R's value) = (the value in last node L);
(delete node L);  
/* Reheapify the values in the remaining nodes of H starting at the root, R */
if  (H is not empty)  {

(Reheapify the heap H starting at node R);
}

|         return (ItemToRemove);

}
}
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Downheap
After replacing the root key with the key k of the last node, the 
heap-order property may be violated
Algorithm downheap restores the heap-order property by 
swapping key k along a downward path from the root
Downheap terminates when key k reaches a leaf or a node whose 
children have keys greater than or equal to k
Since a heap has height O(log n), downheap runs in O(log n) time
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Array-based Implementation
We can represent a heap with n
keys by means of an array of 
length n + 1
For the node at rank i
n the left child is at rank 2i

n the right child is at rank 2i + 1

Links between nodes are not 
explicitly stored
The leaves are not represented
The cell of at rank 0 is not used
Operation insert corresponds to 
inserting at rank n + 1
Operation remove corresponds to 
removing at rank 1

2

65

79
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Merging Two Heaps
We are given two two 
heaps and a key k
We create a new heap 
with the root node 
storing k and with the 
two heaps as subtrees

We perform downheap 
to restore the heap-
order property 

7

3

58

2

64

3

58

2

64

2

3

58

4

67

Trees, Heap, and BST 29

We can construct a heap 
storing n given keys in 
using a bottom-up 
construction with log n
phases
In phase i, pairs of 
heaps with 2i −1 keys are 
merged into heaps with 
2i+1−1 keys

Bottom-up Heap Construction

2i −1 2i −1

2i+1−1
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Bottom-up Algorithm:
function BottomUpHeap(S, n):
Input: An array S storing n = 2h – 1 keys
Output: A heap T storing the keys in S
if (n == 0) then return NULL; 
k = S[0];
S1 = S[1 .. (n-1)/2]; /* split S into two sub-arrays */
S2 = S[(n-1)/2+1 .. n];
T1 = BottomUpHeap(S1);
T2 = BottomUpHeap(S2);
T = treeNode(k, T1, T2);
DownHeap(T);
return T;
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Example

1516 124 76 2023
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Example (contd.)
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Example (contd.)
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Example (end)
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Analysis
We visualize the worst-case time of a downheap with a proxy path 
that goes first right and then repeatedly goes left until the bottom 
of the heap (this path may differ from the actual downheap path)
Since each node is traversed by at most two proxy paths, the total 
number of nodes of the proxy paths is O(n)
Thus, bottom-up heap construction runs in O(n) time 
Bottom-up heap construction is faster than n successive insertions 
and speeds up the first phase of heap-sort
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Binary Search Tree
A binary search tree is a 
binary tree storing keys 
(or key-element pairs) 
at its internal nodes and 
satisfying the following 
property:
n Let v be a tree node,

and L, R be subtrees
such that L is the left 
subtree of v and R is the 
right subtree of v. We 
have 
keys(L) ≤ key(v) ≤ keys(R)

External nodes do not 
store items (NULL’s )

An inorder traversal of a 
binary search trees 
visits the keys in 
increasing order

6

92

41 8
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Search
To search for a key k, 
we trace a downward 
path starting at the root
The next node visited 
depends on the 
outcome of the 
comparison of k with 
the key of the current 
node
If we reach a leaf, the 
key is not found and we 
return NO_SUCH_KEY
Example: 
findElement(4, root)

function findElement(k, v)
if (isExternal (v)){

return NO_SUCH_KEY; }
if  (k < key(v)) {

return findElement(k, leftChild(v));}
else if (k = key(v)){

return element(v); }

else { // k > key(v) 
return findElement(k, rightChild (v)); }

6
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Insertion
To perform operation 
insertItem(k, o), we search 
for key k
Assume k is not already in 
the tree, and let w be the 
leaf reached by the search
We insert k at node w and 
expand w into an internal 
node
Example: insert 5
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Deletion
To perform operation 
removeElement(k), we 
search for key k
Assume key k is in the tree, 
and let v be the node storing 
k
If node v has a leaf child w 
(a NULL subtree), we 
remove v and w from the 
tree with operation 
removeAboveExternal(w)
Example: remove 4
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Deletion (cont.)
We consider the case where 
the key k to be removed is 
stored at a node v whose 
children are both internal
n we find the internal node w 

that follows v in an inorder 
traversal

n we copy key(w) into node v

n we remove node w and its 
left child z (which must be a 
leaf) by means of operation 
removeAboveExternal (z)

Example: remove 3
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Performance
Consider a dictionary 
with n items 
implemented by means 
of a binary search tree 
of height h
n the space used is O(n)
n methods findElement , 

insertItem and 
removeElement take 
O(h) time

The height h is O(n) in 
the worst case and 
O(log n) in the best 
case

Trees, Heap, and BST 42

Trees - Implementation

Data structure
typedef struct node{

void *item;
struct node *left;
struct node *right;

} node;

Typedef struct {
node* root;
……

} tree;
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Trees - Implementation
extern int keyCmp( void *a, void *b );
/* Returns -1, 0, 1 for a < b, a == b, a > b */

void *find( node* np, void *key ) {
if ( np == NULL) return NULL;
switch( keyCmp( key, np->item) ) {

case -1 : return find( np->left, key ); 
case 0:   return np->item;
case +1 : return find( np->right, key );
}

}

void * findInTree( tree t, void *key ) {
return find( t.root, key );
}

Less,
search left

Greater,
search right
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Trees - Implementation
Example:
n key = 22;

if ( findInTree( t.root , &key ) ) ….

find( np, &key );

find(np->right,&key );

find(np->left,&key );

return np->item;
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Trees - Addition
Add 21 to the tree

n We need at most h+1 comparisons
n Create a new node (constant time)
n So addition to a tree takes time 

proportional to log n
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Trees -
implementation

void insert( node **t, node *new ) {
node base = *t;
if ( base == NULL ) {

*t = new; return; }
else {

if( keyLess(new->item, base->item) )
insert( &(base->left), new );

else
insert( &(base->right), new );

}
}

void addToTree( tree t, void *item ) {
node* new;
new = (node*) malloc(sizeof(struct t_node));
new->item = item;
new->left = new->right = NULL;
insert( &(t.root), new );

}


