
1

Trees

Make Money Fast!

Stock
Fraud

Winning
Lotto 6/49

Bank
Robbery

Trees, Heap, and BST 2

What is a Tree
In computer science, a
tree is an abstract model
of a hierarchical
structure
A tree consists of nodes
with a parent-child
relation
Applications:
n Organization charts

n File systems
n Programming

environments

IBM

Sales R&DManufacturing

Laptops DesktopsUS International

Europe Asia Canada

Trees, Heap, and BST 3

subtree

Tree Terminology
Root: node without parent (A)
Internal node: node with at least
one child (A, B, C, F)
External node (a.k.a. leaf): node
without children (E, I, J, K, G, H, D)
Ancestors of a node: parent,
grandparent, grand-grandparent,
etc.
Depth of a node: number of
ancestors
Height of a tree: maximum depth
of any node (3)
Descendant of a node: child,
grandchild, grand-grandchild, etc.

A

B DC

G HE F

I J K

Subtree: tree consisting of
a node and its
descendants

Trees, Heap, and BST 4

Tree ADT
We use positions to
abstract nodes

Generic functions:
n int size()
n boolean isEmpty()

Access functions:
n node root(tree)
n node parent(p)
n node left_child(p)
n node right_child(p)

Query functions:
n boolean isInternal(p)
n boolean isExternal (p)
n boolean isRoot(p)

n int height(tree)
Additional update functions
may be defined by data
structures implementing the
Tree ADT

Trees, Heap, and BST 5

Preorder Traversal
A traversal visits the nodes of a
tree in a systematic manner
In a preorder traversal, a node is
visited before its descendants
Application: print a structured
document

Make Money Fast!

1. Motivations References2. Methods

2.1 Stock
Fraud

2.2 Winning
Lotto 6/49

1.1 Greed 1.2 Avidity
2.3 Bank
Robbery

1

2

3

5

4 6 7 8

9

function preOrder(v)
visit(v);
for (each child w of v){

preorder (w);
}

Trees, Heap, and BST 6

Postorder Traversal
In a postorder traversal, a
node is visited after its
descendants
Application: compute space
used by files in a directory and
its subdirectories

function postOrder(v)
for (each child w of v){

postOrder (w);
}
visit(v);

cis2520/

homeworks/
todo.txt

1K
programs/

Assignment1.c
10K

main.c
25K

h1c.doc
3K

h2c.doc
2K

prog.h
20K

9

3

1

7

2 4 5 6

8

2

Trees, Heap, and BST 7

Binary Tree
A binary tree is a tree with the
following properties:
n Each internal node has two

children
n The children of a node are an

ordered pair
We call the children of an internal
node left child and right child
Alternative recursive definition: a
binary tree is either
n a tree consisting of a single node,

or
n a tree whose root has an ordered

pair of children, each of which is a
binary tree

Applications:
n arithmetic expressions
n decision processes
n searching

A

B C

F GD E

H I

Trees, Heap, and BST 8

Arithmetic Expression Tree
Binary tree associated with an arithmetic expression
n internal nodes: operators
n external nodes: operands

Example: arithmetic expression tree for the
expression (2 × (a − 1) + (3 × b))

+

××

−2

a 1

3 b

Trees, Heap, and BST 9

Decision Tree
Binary tree associated with a decision process
n internal nodes: questions with yes/no answer
n external nodes: decisions

Example: dining decision

Want a fast meal?

How about coffee? On expense account?

Starbucks Spike’s Al Forno Café Paragon

Yes No

Yes No Yes No

Trees, Heap, and BST 10

Properties of Binary Trees
Notation
n number of nodes
e number of

external nodes
i number of internal

nodes
h height

Properties:

n e = i + 1
n n = 2e − 1

n h ≤ i

n h ≤ (n − 1)/2
n e ≤ 2h

n h ≥ log2 e
n h ≥ log2 (n + 1) − 1

Trees, Heap, and BST 11

Inorder Traversal
In an inorder traversal a
node is visited after its left
subtree and before its right
subtree
Application: draw a binary
tree
n x(v) = inorder rank of v
n y(v) = depth of v

function inOrder(v)
if (isInternal (v)){

inOrder (leftChild (v));}
visit(v);
if (isInternal (v)){

inOrder (rightChild (v));}

3

1

2

5

6

7 9

8

4

Trees, Heap, and BST 12

Print Arithmetic Expressions
Specialization of an inorder
traversal
n print “(“ before traversing left

subtree
n print operand or operator

when visiting node
n print “)“ after traversing right

subtree

function printExpression(v)
if (isInternal (v)){

printf(“%c”, `(’);
inOrder (leftChild (v));

}
print(v); // depends on v’s data
if (isInternal (v)){

inOrder (rightChild (v));
printf(“%c”, `)’);

}

+

××

−2

a 1

3 b
((2 × (a − 1)) + (3 × b))

3

Trees, Heap, and BST 13

Evaluate Arithmetic Expressions
Specialization of a postorder
traversal
n recursive method returning

the value of a subtree
n when visiting an internal

node, combine the values
of the subtrees

function evalExpr(v)
if (isExternal (v)){

return v.value ();
}
else{

x = evalExpr(leftChild (v));
y = evalExpr(rightChild (v));
◊ ← operator stored at v;
return x ◊ y;

}

+

××

−2

5 1

3 2

Trees, Heap, and BST 14

Creativity:
pathLength(tree) = Σ depth(v) ∀v ∈ tree

function pathLength(v, n)
Input: a tree node v and an initial value n
Output: the pathLength of the tree with root v
Usage: pl = pathLength(root, 0);

if (isExternal (v)){ return n; }
else{

return (n +
pathLength(leftChild (v), n + 1) +
pathLength(rightChild (v), n + 1));

}

Trees, Heap, and BST 15

Priority Queue ADT

A priority queue stores a
collection of items
An item is a pair
(key, element)
Main methods of the Priority
Queue ADT
n insertItem(k, o)

inserts an item with key k
and element o

n removeMin()
removes the item with
smallest key and returns its
element

Additional methods
n minKey()

returns, but does not
remove, the smallest key of
an item

n minElement()
returns, but does not
remove, the element of an
item with smallest key

n size(), isEmpty()
Applications:
n Standby flyers
n Auctions
n Stock market

Trees, Heap, and BST 16

Example: Priority Queue

trueisEmpty()

errorremoveMin()

CremoveMin()

(9,C)DremoveMin()

(7,D),(9,C)AremoveMin()

(5,A),(7,D),(9,C)3size()

(5,A),(7,D),(9,C)BremoveMin()

(3,B),(5,A),(7,D),(9,C)3minKey()

(3,B),(5,A),(7,D),(9,C)BminElement()

(3,B),(5,A),(7,D),(9,C)_insertItem(7, D)

(3,B),(5,A),(9,C)_insertItem(3, B)

(5,A),(9,C)_insertItem(9, C)

(5,A)_insertItem(5, A)

Priority Queue OutputOperator

Trees, Heap, and BST 17

Total Order Relation

Keys in a priority
queue can be
arbitrary objects
on which an order
is defined
Two distinct items
in a priority queue
can have the
same key

Mathematical concept
of total order relation ≤
n Reflexive property:

x ≤ x

n Antisymmetric property:
x ≤ y ∧ y ≤ x ⇒ x = y

n Transitive property:
x ≤ y ∧ y ≤ z ⇒ x ≤ z

Trees, Heap, and BST 18

What is a heap
A heap is a binary tree
storing keys at its internal
nodes and satisfying the
following properties:
n Heap-Order: for every

internal node v other than
the root,
key(v) ≥ key(parent(v))

n Complete Binary Tree: let h
be the height of the heap
w for i = 0, … , h − 1, there are

2 i nodes of depth i
w at depth h − 1, the internal

nodes are to the left of the
external nodes

2

65

79

The last node of a heap
is the rightmost internal
node of depth h − 1

last node

4

Trees, Heap, and BST 19

Height of a Heap
Theorem: A heap storing n keys has height O(log n)
Proof: (we apply the complete binary tree property)
n Let h be the height of a heap storing n keys
n Since there are 2 i keys at depth i = 0, … , h − 2 and at least one key

at depth h − 1, we have n ≥ 1 + 2 + 4 + … + 2h−2 + 1

n Thus, n ≥ 2h−1 , i.e., h ≤ log n + 1

1

2

2h−2

1

keys
0

1

h−2

h−1

depth

Trees, Heap, and BST 20

Heaps and Priority Queues
We can use a heap to implement a priority queue

We store a (key, element) item at each internal node
We keep track of the position of the last node

For simplicity, we show only the keys in the pictures

(2, Sue)

(6, Mark)(5, Pat)

(9, Jeff) (7, Anna)

Trees, Heap, and BST 21

Insertion into a Heap

The insertion algorithm
consists of three steps
n Find the insertion position

z (the new last node)
n Store k at z and expand z

into an internal node
n Restore the heap-order

property (discussed next)

2

65

79

insertion node

2

65

79 1

z

z

Trees, Heap, and BST 22

void insert(Heap *H, ItemType ItemToInsert) {

NodeType *N; /* Pointer to the new node to be inserted to H */
NodeType *P; /* Let P be the pointer to the new node */

N = (create a new node with ItemToInsert);
if (*H is not empty) {

/* Find the position to hold the new node */
P = (the pointer to the new node);
(P's value) = N;
/* Reheapify the values in the remaining nodes of H starting at the root, R */
if (H is not empty) {

(Reheapify the heap H starting at node R);
}

}
else {

(Root in H) = N;

}
return;

}

Trees, Heap, and BST 23

Upheap
After the insertion of a new key k, the heap-order property may be
violated
Algorithm upheap restores the heap-order property by swapping k
along an upward path from the insertion node
Upheap terminates when the key k reaches the root or a node
whose parent has a key smaller than or equal to k
Since a heap has height O(log n), upheap runs in O(log n) time

2

15

79 6z

1

25

79 6z

Trees, Heap, and BST 24

Removal from a Heap

The removal
algorithm consists of
three steps
n Replace the root key

with the key of the
last node w

n Delete w
n Restore the heap-

order property
(discussed next)

2

65

79

last node

w

7

65

9
w

5

Trees, Heap, and BST 25

ItemType remove(Heap *H) {

NodeType L; /* let L be the last node of H in level order */
NodeType R; /* R is used refer to the root node of H */
ItemType ItemToRemove ; /* temporarily stores item to remove */

if (*H is not empty) {
/* Remove the highest priority item which is stored in H's root node, R */
ItemToRemove = (the value stored in the root node, R, of H);
/* Move L's value into the root of H, and delete L */
(R's value) = (the value in last node L);
(delete node L);
/* Reheapify the values in the remaining nodes of H starting at the root, R */
if (H is not empty) {

(Reheapify the heap H starting at node R);
}

| return (ItemToRemove);

}
}

Trees, Heap, and BST 26

Downheap
After replacing the root key with the key k of the last node, the
heap-order property may be violated
Algorithm downheap restores the heap-order property by
swapping key k along a downward path from the root
Downheap terminates when key k reaches a leaf or a node whose
children have keys greater than or equal to k
Since a heap has height O(log n), downheap runs in O(log n) time

7

65

9
w

5

67

9
w

Trees, Heap, and BST 27

Array-based Implementation
We can represent a heap with n
keys by means of an array of
length n + 1
For the node at rank i
n the left child is at rank 2i

n the right child is at rank 2i + 1

Links between nodes are not
explicitly stored
The leaves are not represented
The cell of at rank 0 is not used
Operation insert corresponds to
inserting at rank n + 1
Operation remove corresponds to
removing at rank 1

2

65

79

2 5 6 9 7

1 2 3 4 50

Trees, Heap, and BST 28

Merging Two Heaps
We are given two two
heaps and a key k
We create a new heap
with the root node
storing k and with the
two heaps as subtrees

We perform downheap
to restore the heap-
order property

7

3

58

2

64

3

58

2

64

2

3

58

4

67

Trees, Heap, and BST 29

We can construct a heap
storing n given keys in
using a bottom-up
construction with log n
phases
In phase i, pairs of
heaps with 2i −1 keys are
merged into heaps with
2i+1−1 keys

Bottom-up Heap Construction

2i −1 2i −1

2i+1−1

Trees, Heap, and BST 30

Bottom-up Algorithm:
function BottomUpHeap(S, n):
Input: An array S storing n = 2h – 1 keys
Output: A heap T storing the keys in S
if (n == 0) then return NULL;
k = S[0];
S1 = S[1 .. (n-1)/2]; /* split S into two sub-arrays */
S2 = S[(n-1)/2+1 .. n];
T1 = BottomUpHeap(S1);
T2 = BottomUpHeap(S2);
T = treeNode(k, T1, T2);
DownHeap(T);
return T;

6

Trees, Heap, and BST 31

Example

1516 124 76 2023

25

1516

5

124

11

76

27

2023

Trees, Heap, and BST 32

Example (contd.)

25

1516

5

124

11

96

27

2023

15

2516

4

125

6

911

23

2027

Trees, Heap, and BST 33

Example (contd.)

7

15

2516

4

125

8

6

911

23

2027

4

15

2516

5

127

6

8

911

23

2027

Trees, Heap, and BST 34

Example (end)

4

15

2516

5

127

10

6

8

911

23

2027

5

15

2516

7

1210

4

6

8

911

23

2027

Trees, Heap, and BST 35

Analysis
We visualize the worst-case time of a downheap with a proxy path
that goes first right and then repeatedly goes left until the bottom
of the heap (this path may differ from the actual downheap path)
Since each node is traversed by at most two proxy paths, the total
number of nodes of the proxy paths is O(n)
Thus, bottom-up heap construction runs in O(n) time
Bottom-up heap construction is faster than n successive insertions
and speeds up the first phase of heap-sort

Trees, Heap, and BST 36

Binary Search Tree
A binary search tree is a
binary tree storing keys
(or key-element pairs)
at its internal nodes and
satisfying the following
property:
n Let v be a tree node,

and L, R be subtrees
such that L is the left
subtree of v and R is the
right subtree of v. We
have
keys(L) ≤ key(v) ≤ keys(R)

External nodes do not
store items (NULL’s)

An inorder traversal of a
binary search trees
visits the keys in
increasing order

6

92

41 8

7

Trees, Heap, and BST 37

Search
To search for a key k,
we trace a downward
path starting at the root
The next node visited
depends on the
outcome of the
comparison of k with
the key of the current
node
If we reach a leaf, the
key is not found and we
return NO_SUCH_KEY
Example:
findElement(4, root)

function findElement(k, v)
if (isExternal (v)){

return NO_SUCH_KEY; }
if (k < key(v)) {

return findElement(k, leftChild(v));}
else if (k = key(v)){

return element(v); }

else { // k > key(v)
return findElement(k, rightChild (v)); }

6

92

41 8

<

>
=

Trees, Heap, and BST 38

Insertion
To perform operation
insertItem(k, o), we search
for key k
Assume k is not already in
the tree, and let w be the
leaf reached by the search
We insert k at node w and
expand w into an internal
node
Example: insert 5

6

92

41 8

6

92

41 8

5

<

>

>

w

w

Trees, Heap, and BST 39

Deletion
To perform operation
removeElement(k), we
search for key k
Assume key k is in the tree,
and let v be the node storing
k
If node v has a leaf child w
(a NULL subtree), we
remove v and w from the
tree with operation
removeAboveExternal(w)
Example: remove 4

6

92

41 8

5

v
w

6

92

51 8

<

>

Trees, Heap, and BST 40

Deletion (cont.)
We consider the case where
the key k to be removed is
stored at a node v whose
children are both internal
n we find the internal node w

that follows v in an inorder
traversal

n we copy key(w) into node v

n we remove node w and its
left child z (which must be a
leaf) by means of operation
removeAboveExternal (z)

Example: remove 3

3

1

8

6 9

5

v

w

z

2

5

1

8

6 9

v

2

Trees, Heap, and BST 41

Performance
Consider a dictionary
with n items
implemented by means
of a binary search tree
of height h
n the space used is O(n)
n methods findElement ,

insertItem and
removeElement take
O(h) time

The height h is O(n) in
the worst case and
O(log n) in the best
case

Trees, Heap, and BST 42

Trees - Implementation

Data structure
typedef struct node{

void *item;
struct node *left;
struct node *right;

} node;

Typedef struct {
node* root;
……

} tree;

8

Trees, Heap, and BST 43

Trees - Implementation
extern int keyCmp(void *a, void *b);
/* Returns -1, 0, 1 for a < b, a == b, a > b */

void *find(node* np, void *key) {
if (np == NULL) return NULL;
switch(keyCmp(key, np->item)) {

case -1 : return find(np->left, key);
case 0: return np->item;
case +1 : return find(np->right, key);
}

}

void * findInTree(tree t, void *key) {
return find(t.root, key);
}

Less,
search left

Greater,
search right

Trees, Heap, and BST 44

Trees - Implementation
Example:
n key = 22;

if (findInTree(t.root , &key)) ….

find(np, &key);

find(np->right,&key);

find(np->left,&key);

return np->item;

Trees, Heap, and BST 45

Trees - Addition
Add 21 to the tree

n We need at most h+1 comparisons
n Create a new node (constant time)
n So addition to a tree takes time

proportional to log n

Trees, Heap, and BST 46

Trees -
implementation

void insert(node **t, node *new) {
node base = *t;
if (base == NULL) {

*t = new; return; }
else {

if(keyLess(new->item, base->item))
insert(&(base->left), new);

else
insert(&(base->right), new);

}
}

void addToTree(tree t, void *item) {
node* new;
new = (node*) malloc(sizeof(struct t_node));
new->item = item;
new->left = new->right = NULL;
insert(&(t.root), new);

}

