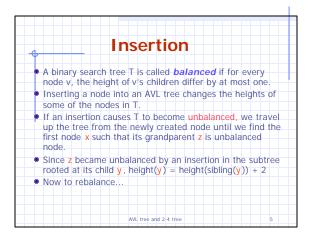
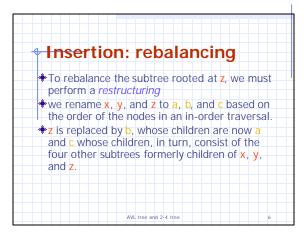
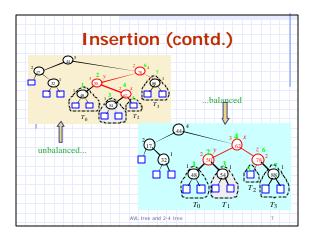
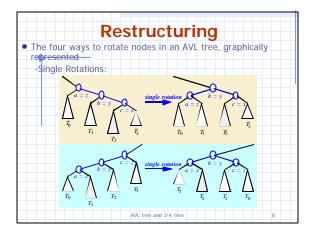


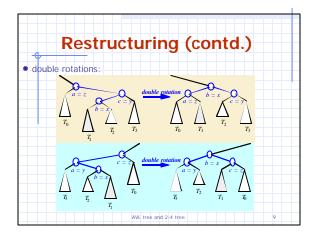
¥	bf an AVL Tree (cont)
n(h) > 2n(h-	
n(h) > 4n(h-	
n(h) > 8n(h-	6
n(h) > 2 ⁱ n(h	-2i)
	ger i such that h-2i ³ 1
	, then i = $(h - 1)/2$ base case we get: $n(h) = 2^{(h-1)/2}$
ů, na klastický stalová	ithms: $h < 2\log n(h) + 1$
0.0	ght of an AVL tree is O(log n)



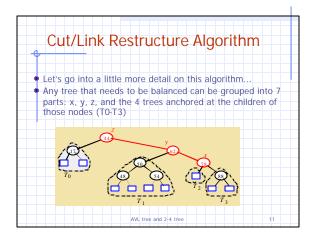


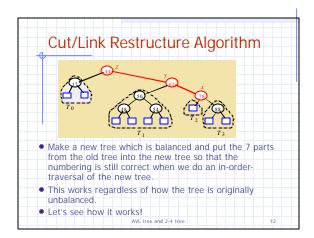


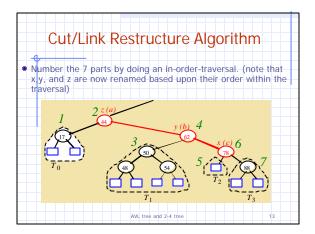


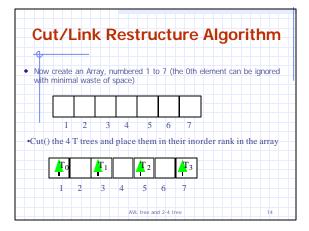


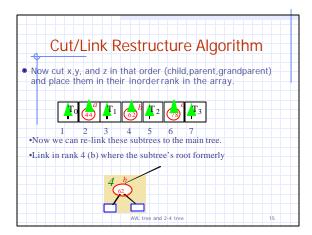
Restructure Algorithm			
function restructure (x):			
Input: A node x of a binary search tree T that has both a pa grandparent z	irent y and a		
Output: Tree T restructured by a rotation (either single or do involving nodes x, y, and z.	ouble)		
1: Let (<i>a</i> , <i>b</i> , <i>c</i>) be an inorder listing of the nodes <i>x</i> , <i>y</i> , and (10, T1, T2, T3) be an inorder listing of the the four subtree <i>z</i> .			
2. Replace the subtree rooted at z with a new subtree roo	ted at b		
3. Let a be the left child of b and let T0, T1 be the left and	d right		
subtrees of a, respectively.			
 Let c be the right child of b and let T2, T3 be the left ar subtrees of c, respectively. 	nd right		
AVL tree and 2-4 tree	10		

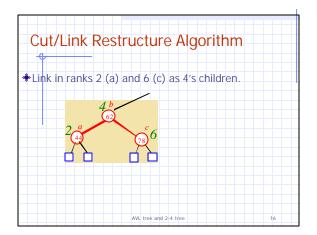


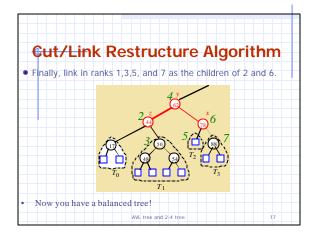


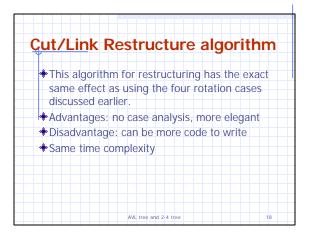




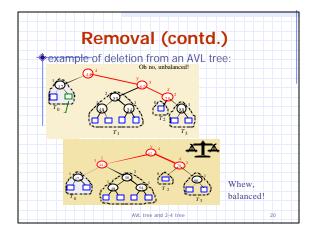


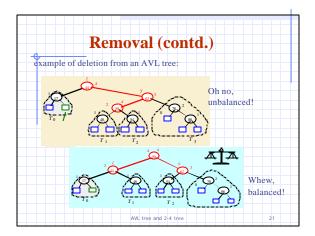




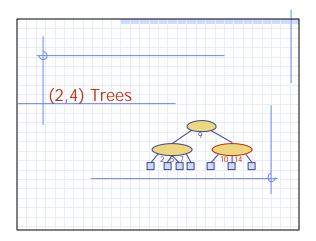


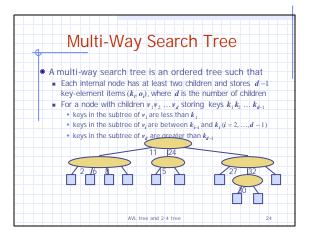
Removal
We can easily see that performing a remove(w) can cause T to become unbalanced.
Let z be the first unbalanced node encountered while traveling up the tree from w. Also, let y be the child of z with the larger height, and let x be the child of y with the larger height.
We can perform operation restructure(x) to restore balance at the subtree rooted at z.
As this restructuring may upset the balance of another node higher in the tree, we must continue checking for balance until the root of T is reached
AVL tree and 2-4 tree 19

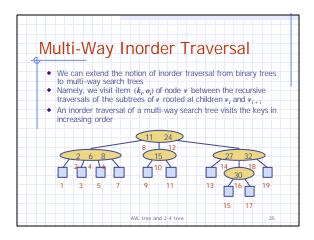


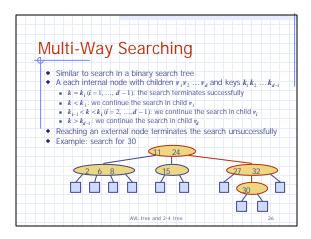


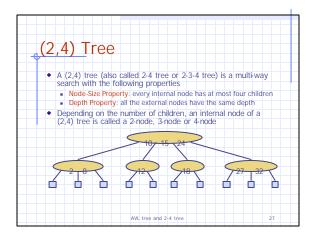
A	VL Trees - Data Structures	
	trees can be implemented with a flag to cate the balance state	
typed	ef enum {LeftHeavy, Balanced, RightHeavy} BalanceFactor;	
typed	ef struct node { BalanceFactor bf; void *item; struct node *left, *right;	
} AVL	_node;	
	AVL tree and 2-4 tree	22

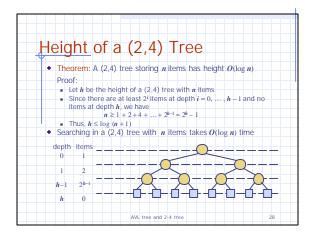


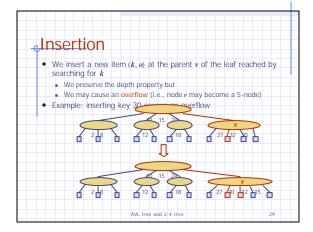


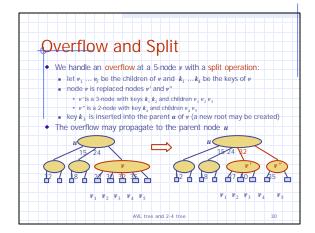












function <i>insertItem</i> (k, o)	 Let T be a (2,4) tree with n items
1. We search for key k to locate the insertion node v	 Tree T has O(log n) height
2. We add the new item (k, o) at node v	 Step 1 takes O(log n) time because we visit O(log n) nodes
3. while (overflow(v)){ if (isRoot(v)) create a new empty root above v; v ← split(v) // return parent of v; }	 Step 2 takes O(1) time Step 3 takes O(log n) time because each sp takes O(1) time and w perform O(log n) split Thus, an insertion in a (2,4) tree takes O(log n time

