Problem of BST

Binary Search is Q

not balanced. B |

Take this list of
characters and

form a tree D |
A B C D E F a

BST degeneratesto alinked list

AVL tree and 2-4 tree 1

AVL Tree

AVL trees are
balanced.

An AVL Tree is a
binary search tree
such that for every
internal node v of T,
the heights of the
children of v can

differ by at most 1. Anexample of an AVL tree where the
heights are shown next to the nodes:

AVL tree and 2-4 tree 2

Height of an AVL Tree

® Proposition: The height of an AVL tree T storing n
keys is O(log n).

#® Justification: The easiest way to approach this problem
is to find n(h): the minimum number of internal nodes of
an AVL tree of height h.

® \We see that n(1) = 1 and n(2) = 2

® Forn = 3, an AVL tree of height h contains the root
node, one AVL subtree of height n-1 and the other AVL
subtree of height n-2.

#® i.e. n(h) = 1 + n(h-1) + n(h-2)

AVL tree and 2-4 tree 3

ht of an AVL Tree (cont)

Knowing n(h-1) > n(h-2), we get n(h) > 2n(h-2)
n(h) > 2n(h-2)
n(h) > 4n(h-4)
n(h) > 8n(h-6)

n(h) > 2in(h-2i)
For any integer i such that h-2i3 1
Leth—2i=1, theni= (h-1)/2
Solving the base case we get: n(h) =2 (12
Taking logarithms: h < 2log n(h) + 1
Thus the height of an AVL tree is O(log n)

AVL tree and 2-4 tree 4

Insertion

A binary search tree T is called balanced if for every

node v, the height of v’s children differ by at most one.

Inserting a node into an AVL tree changes the heights of

some of the nodes in T.

If an insertion causes T to become unbalanced, we travel

up the tree from the newly created node until we find the

first node x such that its grandparent z is unbalanced

node.

® Since z became unbalanced by an insertion in the subtree
rooted at its child y, height(y) = height(sibling(y)) + 2

#® Now to rebalance...

AVL tree and 2-4 tree 5

tion: rebalancing

To rebalance the subtree rooted at z, we must
perform a restructuring

we rename X, v, and z to a, b, and ¢ based on
the order of the nodes in an in-order traversal.
47 is replaced by b, whose children are now
and ¢ whose children, in turn, consist of the

four other subtrees formerly children of x, v,
and z.

AVL tree and 2-4 tree 6

Insertion (contd.)

unbalanced...

AVL tree and 2-4 tree 7

Restructuring

#® The four ways to rotate nodes in an AVL tree, graphically

-Single Rotations:

AVL tree and 2-4 tree 8

Restructuring (contd.)

#® dpuble rotations:

AVL tree and 2-4 tree 9

Restructure Algorithm

re(x):

Input: A node x of a binary search tree T that has both a parent y and a
gtandparent z

tput: Tree T restructured by a rotation (either single or double)
olving nodes ¥, y, and z.

Let (a, b, ¢) be an inorder listing of the nodes X, y, and z, and let
0, T1, T2, T3) be an inorder listing of the the four subtrees of x, y, and

ful

2. Replace the subtree rooted at z with a new subtree rooted at b

3. Let a be the left child of band let TO, T1 be the left and right
subtrees of a, respectively.

4. Let c be the right child of b and let T2, T3 be the left and right

subtrees of ¢, respectively.

AVL tree and 2-4 tree 10

Cut/Link Restructure Algorithm

Let’s go into a little more detail on this algorithm...

Any tree that needs to be balanced can be grouped into 7
parts: X, y, z, and the 4 trees anchored at the children of
those nodes (TO-T3)

AVL tree and 2-4 tree 11

Cut/Link Restructure Algorithm

® Make a new tree which is balanced and put the 7 parts
from the old tree into the new tree so that the
numbering is still correct when we do an in-order-
traversal of the new tree.

® This works regardless of how the tree is originally
unbalanced.
& | et's see how it works!

AVL tree and 2-4 tree 12

Cut/Link Restructure Algorithm

#® Number the 7 parts by doing an in-order-traversal. (note that
x|y, and z are now renamed based upon their order within the
trjaversal)

AVL tree and 2-4 tree 13

Cut/Link Restructure Algorithm

Npw create an Array, numbered 1 to 7 (the Oth element can be ignored
ith minimal waste of space)

1 2 3 4 5 6 7

«Cut() the4 T trees and place themin their inorder rank in the array

ENENENE

4 B—1-6——T-

2

AVL tree and 2-4 tree 14

Cut/Link Restructure Algorithm

® Now cut x,y, and z in that order (child,parent,grandparent)
and place them in their inorderrank in the array.

[HETR[STF[BTF

*Now we can re-link these subtrees to the main tree.

eLink inrank 4 (b) where the subtree’ s root formerly

4. b
D,

AVL tree and 2-4 tree 15

Cut/Link Restructure Algorithm

#Link in ranks 2 (a) and 6 (c) as 4's children.

AVL tree and 2-4 tree 16

k Restructure Algorithm

® Finally, link in ranks 1,3,5, and 7 as the children of 2 and 6.

* Now you have abalanced tree!

AVL tree and 2-4 tree 17

ut/Link Restructure algorithm

This algorithm for restructuring has the exact
same effect as using the four rotation cases
discussed earlier.

Advantages: no case analysis, more elegant
Disadvantage: can be more code to write
#Same time complexity

AVL tree and 2-4 tree 18

Removal

e can easily see that performing a remove(w) can
ause T to become unbalanced.

#| et z be the first unbalanced node encountered

hile traveling up the tree from w. Also, lety be the

hild of z with the larger height, and let x be the
child of y with the larger height.

#\We can perform operation restructure(x) to restore
balance at the subtree rooted at z.

As this restructuring may upset the balance of
another node higher in the tree, we must continue
checking for balance until the root of T is reached

AVL tree and 2-4 tree 19

Removal (contd.)

AVL tree and 2-4 tree 20

Removal (contd.)

xample of deletion froman AVL tree:

Oh no,
unbalanced!

AVL tree and 2-4 tree 21

AVL Trees - Data Structures

AVL trees can be implemented with a flag to
indicate the balance state

typedef enum { LeftHeavy, Bal anced,
Ri ght Heavy} Bal anceFactor ;

typedef struct node {

Bal anceFact or bf;

void *item

struct node *left, *right;
} AVL_node;

AVL tree and 2-4 tree 22

(2,4) Trees

Multi-Way Search Tree

® A multi-way search tree is an ordered tree such that
= Each internal node has at least two children and stores d-1
key-element items (k;, 0), where dis the number of children
= For a node with children v,v, ... v, storing keys k,k; ... ky
* keys in the subtree of v, are less than k;
+ keys in the subtree of v are between k; jand k; (i =2, ...,d - 1)
* keys in the subtree of v, ar r than k. ;

AVL tree and 2-4 tree 24

Multi-Way Inorder Traversal

\We can extend the notion of inorder traversal from binary trees
to multi-way search trees

Namely, we visit item (k;, 0) of node v between the recursive
traversals of the subtrees of v rooted at children v; and v, , ;

An inorder traversal of a multi-way search tree visits the keys in
increasing order

AVL tree and 2-4 tree 25

Multi-Way Searching

#® Similar to search in a binary search tree

A each internal node with children v,v, ... v, and keys k k, ... ky_,
= k=k;(i=1,..,d- 1) the search terminates successfully

=k <k;: we continue the search in child v,

= ki;<k<k;({=2 ..,d- 1): we continue the search in child v

=k >k;,: we continue the search in child v

Reaching an external node terminates the search unsuccessfully
® Example: search for 30

AVL tree and 2-4 tree 26

* A (2,4) tree (also called 24 tree or 2-3-4 tree) is a multrway
search with the following properties
= Node-Size Property: every internal node has at most four children
= Depth Property: all the external nodes have the same depth

* Depending on the number of children, an internal node of a
(2,4) tree is called a 2-node, 3-node or 4-node

AVL tree and 2-4 tree 27

ht of a (2,4) Tree

® Theorem: A (2,4) tree storing nitems has height O(log n)

Proof:
= Let h be the height of a (2,4) tree with n items
= Since there are at least 2! items at depthi =0, ..., h - 1and no
items at depth h, we have
N3 1+2+4+ +201=0_1
= Thus, h £log (n+1)
® Searching in a (2,4) tree with n items takes O(log n) time

depth items
0 1
1 2
h-1 2h1
h 0

AVL tree and 2-4 tree 28

on

#* \We insert a new item (k, 0 at the parent v of the leaf reached by
searching for k
= We preserve the depth property but
= We may cause an overflow (i.e., node v may become a 5-node)

Example: inserting key rflow
15
2 12 18 27 132

AVL tree and 2-4 tree 29

w and Split

* We handle an overflow at a 5-node v with a split operation:
= letv; ... g be the children of vand k, ...k, be the keys of v
= node vis replaced nodes v and v*
+ V'is a 3-node with keys k, k, and children v, v, v,
* V" is a 2-node with key k, and children v, v,
= key k; is inserted into the parent u of v (a new root may be created)
The overflow may propagate to the parent node u

ViV, VoV, Vg

AVL tree and 2-4 tree 30

Analysis of Insertion

function insertl tem(k, o) ® Let The a(2,4) tree
with n items
1. We search for keyk to locate the = Tree T has O(log n)
insertion node v height
= Step 1 takes O(log n)
2. We add the new item (k, 0) at nodev time because we visit

O(log n) nodes
Step 2 takes O(1) time
Step 3 takes O(log n)

3. while (overflow(v)){

if (isRoot(v)) time because each split
creste anew empty root abovev; takes O(1) time and we
v = split(v) // return parent of v; perform O(log n) splits
} # Thus, an insertion in a
(2,4) tree takes O(log n)
time
AVL tree and 2-4 tree 31

Deletion

We reduce deletion of an item to the case where the item is at the
node with leaf children

Otherwise, we replace the item with its inorder successor (or,
equivalently, with its inorder predecessor) and delete the latter item

Example: to delete key 24, we replace it with 27 (inorder successor)

AVL tree and 2-4 tree 32

Underflow and Transfer

L] item from a node v may cause an underflow, where
node v becomes a 1-node with one child and no keys
To handle an underflow at node v with parent u, we consider two
cases
Case 1: an adjacent sibling wof vis a 3-node or a 4-node
= Transfer operation:
1. we move a child of wto v
2. we move an item from u to v
3. we move an item from w to u
= After a transfer, no underflow occurs

=

AVL tree and 2-4 tree 33

nderflow and Fusion

® Case 2: the adjacent siblings of v are 2-nodes
= Fusion operation: we merge v with an adjacent sibling w and
move an item from u to the merged node vV

= After a fusion, the underflow may propagate to the parent u

R

AVL tree and 2-4 tree 34

is of Deletion

#Let T be a (2,4) tree with n items
= Tree T has O(log n) height
In a deletion operation

= We visit O(log n) nodes to locate the node from
which to delete the item

= We handle an underflow with a series of O(log n)
fusions, followed by at most one transfer

= Each fusion and transfer takes O(1) time
#Thus, deleting an item from a (2,4) tree takes
O(log n) time

AVL tree and 2-4 tree 35

