
1

AVL tree and 2-4 tree 1

Problem of BST

Binary Search is 
not balanced.
Take this list of 
characters and 
form a tree
A  B  C  D  E  F

BST degenerates to a linked list
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AVL Tree

AVL trees are 
balanced.
An AVL Tree is a 
binary search tree
such that for every 
internal node v of T, 
the heights of the 
children of v can 
differ by at most 1.

88

44

17 78

32 50

48 62

2

4

1

1

2

3

1

1

An example of an AVL tree where the 
heights are shown next to the nodes:
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Height of an AVL Tree
Proposition: The height of an AVL tree T storing n 
keys is O(log n).
Justification: The easiest way to approach this problem 
is to find n(h): the minimum number of internal nodes of 
an AVL tree of height h.
We see that n(1) = 1 and n(2) = 2
For n = 3, an AVL tree of height h contains the root 
node, one AVL subtree of height n-1 and the other AVL 
subtree of height n-2.
i.e. n(h) = 1 + n(h-1) + n(h-2)
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Height of an AVL Tree (cont)
Knowing n(h-1) > n(h-2), we get n(h) > 2n(h-2)
n(h) > 2n(h-2)
n(h) > 4n(h-4)
n(h) > 8n(h-6)
…
n(h) > 2in(h-2i)
For any integer i such that h-2i ≥ 1
Let h – 2i = 1, then i = (h – 1)/2

Solving the base case we get: n(h) = 2 (h-1)/2

Taking logarithms: h < 2log n(h) + 1
Thus the height of an AVL tree is O(log n)
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Insertion
A binary search tree T is called balanced if for every 
node v, the height of v’s children differ by at most one.
Inserting a node into an AVL tree changes the heights of 
some of the nodes in T.
If an insertion causes T to become unbalanced, we travel 
up the tree from the newly created node until we find the 
first node x such that its grandparent z is unbalanced 
node.
Since z became unbalanced by an insertion in the subtree
rooted at its child y , height(y ) = height(sibling(y )) + 2 
Now to rebalance...
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Insertion: rebalancing
To rebalance the subtree rooted at z, we must 
perform a restructuring
we rename x, y, and z to a, b, and c based on 
the order of the nodes in an in-order traversal.
z is replaced by b, whose children are now a
and c whose children, in turn, consist of the 
four other subtrees formerly children of x, y, 
and z.
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Insertion (contd.)
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Restructuring
The four ways to rotate nodes in an AVL tree, graphically 
represented
-Single Rotations:

T0
T1

T2

T3

c = x
b = y

a = z

T0 T1 T2

T3

c = x
b = y

a = z
single rotation

T3
T2

T1

T0

a = x
b = y

c = z

T0T1T2

T3

a = x
b = y

c = z
single rotation
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Restructuring (contd.)
double rotations:

double rotationa = z

b = x
c = y

T0
T2

T1

T3 T0

T2
T3T1

a = z
b = x

c = y

double rotationc = z

b = x
a = y

T0
T2

T1

T3 T0
T2

T3 T1

c = z
b = x

a = y
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Restructure Algorithm
function restructure(x):

Input: A node x of a binary search tree T that has both a parent y and a 
grandparent z
Output: Tree T restructured by a rotation (either single or double) 
involving nodes x, y, and z.

1: Let (a, b, c) be an inorder listing of the nodes x, y, and z, and let 
(T0, T1, T2, T3) be an inorder listing of the the four subtrees of x, y, and 
z.

2. Replace the subtree rooted at z with a new subtree rooted at b
3. Let a be the left child of b and let T0, T1 be the left and right 

subtrees of a, respectively.
4. Let c be the right child of b and let T2, T3 be the left and right 

subtrees of c, respectively.
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Cut/Link Restructure Algorithm

Let’s go into a little more detail on this algorithm...
Any tree that needs to be balanced can be grouped into 7 
parts: x, y, z, and the 4 trees anchored at the children of 
those nodes (T0-T3)
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Cut/Link Restructure Algorithm
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Make a new tree which is balanced and put the 7 parts 
from the old tree into the new tree so that the 
numbering is still correct when we do an in-order-
traversal of the new tree.
This works regardless of how the tree is originally 
unbalanced.
Let’s see how it works!

z
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Cut/Link Restructure Algorithm

Number the 7 parts by doing an in-order-traversal. (note that 
x,y, and z are now renamed based upon their order within the 
traversal)
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Cut/Link Restructure Algorithm

Now create an Array, numbered 1 to 7 (the 0th element can be ignored 
with minimal waste of space)

1      2        3      4        5      6       7

•Cut() the 4 T trees and place them in their inorder rank in the array

T0 T1 T 2 T3

1      2        3      4        5      6       7
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Cut/Link Restructure Algorithm
Now cut x,y, and z in that order (child,parent,grandparent) 
and place them in their inorder rank in the array.

T0 T1 T 2 T378
c

62
ba

44

62

b4

1        2       3        4       5       6       7
•Now we can re-link these subtrees to the main tree.

•Link in rank 4 (b) where the subtree’s root formerly
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Cut/Link Restructure Algorithm

Link in ranks 2 (a) and 6 (c) as 4’s children.
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b4

44 78

a c2 6
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Cut/Link Restructure Algorithm
Finally, link in ranks 1,3,5, and 7 as the children of 2 and 6.
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88

T3

7
T2

• Now you have a balanced tree!
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Cut/Link Restructure algorithm

This algorithm for restructuring has the exact 
same effect as using the four rotation cases 
discussed earlier.
Advantages: no case analysis, more elegant
Disadvantage: can be more code to write
Same time complexity
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Removal
We can easily see that performing a remove(w) can 
cause T to become unbalanced.
Let z be the first unbalanced node encountered 
while traveling up the tree from w. Also, let y be the 
child of z with the larger height, and let x be the 
child of y with the larger height.
We can perform operation restructure(x) to restore 
balance at the subtree rooted at z.
As this restructuring may upset the balance of 
another node higher in the tree, we must continue 
checking for balance until the root of T is reached
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Removal (contd.)
example of deletion from an AVL tree:
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Oh no, unbalanced!
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Whew, 
balanced!

AVL tree and 2-4 tree 21

Removal (contd.)
example of deletion from an AVL tree:

Whew, 
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AVL Trees - Data Structures

AVL trees can be implemented with a flag to 
indicate the balance state

typedef enum {LeftHeavy, Balanced, 
RightHeavy} BalanceFactor;

typedef struct node {
BalanceFactor bf;
void *item;
struct node *left, *right;

} AVL_node;

(2,4) Trees

9

10  142  5  7
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Multi-Way Search Tree

A multi-way search tree is an ordered tree such that 
n Each internal node has at least two children and stores  d −1 

key-element items (ki, oi), where d is the number of children 
n For a node with children v1 v2 … vd storing  keys k1 k2 … kd−1

w keys in the subtree of v1 are less than k1

w keys in the subtree of vi are between k i−1 and k i (i = 2, …, d − 1)

w keys in the subtree of vd are greater than kd−1

11 24

2   6   8 15

30

27    32
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Multi-Way Inorder Traversal
We can extend the notion of inorder traversal from binary trees 
to multi-way search trees
Namely, we visit item (ki, oi) of node v between the recursive 
traversals of the subtrees of v rooted at children v i and v i + 1

An inorder traversal of a multi-way search tree visits the keys in 
increasing order

11 24

2   6   8 15

30

27    32

1 3 5 7 9 11 13 19

15 17

2 4 6 14 18

8 12

10

16
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Multi-Way Searching
Similar to search in a binary search tree
A each internal node with children v1 v2 … vd and keys k1 k2 … kd−1

n k = k i (i = 1, …, d − 1): the search terminates successfully
n k < k1: we continue the search in child v1
n k i−1 < k < k i (i = 2, …, d − 1): we continue the search in child vi
n k > kd−1: we continue the search in child vd

Reaching an external node terminates the search unsuccessfully
Example: search for 30

11 24

2   6   8 15

30

27    32
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(2,4) Tree
A (2,4) tree (also called 2-4 tree or 2-3-4 tree) is a multi-way 
search with the following properties
n Node-Size Property: every internal node has at most four children
n Depth Property: all the external nodes have the same depth

Depending on the number of children, an internal node of a 
(2,4) tree is called a 2-node, 3-node or 4-node

10   15   24

2   8 12 27    3218
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Height of a (2,4) Tree
Theorem: A (2,4) tree storing n items has height O(log n)
Proof:
n Let h be the height of a (2,4) tree with n items
n Since there are at least 2 i items at depth i = 0, … , h − 1 and no 

items at depth h, we have
n ≥ 1 + 2 + 4 + … + 2h−1 = 2h − 1

n Thus, h ≤ log (n + 1)
Searching in a (2,4) tree with n items takes O(log n) time
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Insertion
We insert a new item (k, o) at the parent v of the leaf reached by 
searching for k
n We preserve the depth property but 
n We may cause an overflow (i.e., node v may become a 5-node)

Example: inserting key 30 causes an overflow

27   32   35

10   15   24

2   8 12 18

10   15   24

2   8 12 27   30 32   3518

v

v
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Overflow and Split
We handle an overflow at a 5-node v with a split operation:
n let v1 … v5 be the children of v and  k1 … k4 be the keys of v
n node v is replaced nodes v'  and v"

w v' is a 3-node with keys k1 k2 and children v1 v2 v3

w v" is a 2-node with key k4 and children v4 v5

n key k3 is inserted into the parent u of v (a new root may be created)

The overflow may propagate to the parent node u

15   24

12 27  30  32 3518

v

u

v1 v2 v3 v4 v5

15 24  32

12 27  3018

v'

u

v1 v2 v3 v4 v5

35

v"
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Analysis of Insertion
function insertItem(k, o)

1. We search for key k to locate the 
insertion node v

2. We add the new item (k, o) at node v

3. while (overflow(v)){
if (isRoot(v))

create a new empty root above v;
v ← split(v) // return parent of v;
}

Let T be a (2,4) tree 
with n items
n Tree T has O(log n) 

height
n Step 1 takes O(log n)

time because we visit 
O(log n) nodes

n Step 2 takes O(1) time
n Step 3 takes O(log n)

time because each split 
takes O(1) time and we 
perform O(log n) splits

Thus, an insertion in a 
(2,4) tree takes O(log n)
time
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Deletion
We reduce deletion of an item to the case where the item is at the 
node with leaf children
Otherwise, we replace the item with its inorder successor (or, 
equivalently, with its inorder predecessor) and delete the latte r item

Example: to delete key 24, we replace it with 27 (inorder successor)

27   32   35

10   15   24

2   8 12 18

32   35

10   15   27

2   8 12 18
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Underflow and Transfer
Deleting an item from a node v may cause an underflow, where 
node v becomes a 1-node with one child and no keys
To handle an underflow at node v with parent u, we consider two 
cases 
Case 1: an adjacent sibling w of v is a 3-node or a 4-node
n Transfer operation:

1.  we move a child of w to v
2.  we move an item from u to v
3.  we move an item from w to u

n After a transfer, no underflow occurs

4  9

6  82

u

vw

4  8

62 9

u

vw
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Underflow and Fusion

Case 2: the adjacent siblings of v are 2-nodes
n Fusion operation: we merge v with an adjacent sibling w and 

move an item from u to the merged node v'
n After a fusion, the underflow may propagate to the parent u

9  14

2  5  7 10

u

v

9

10  14

u

v'w
2  5  7
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Analysis of Deletion

Let T be a (2,4) tree with n items
n Tree T has O(log n) height

In a deletion operation
n We visit O(log n) nodes to locate the node from 

which to delete the item
n We handle an underflow with a series of O(log n)

fusions, followed by at most one transfer
n Each fusion and transfer takes O(1) time

Thus, deleting an item from a (2,4) tree takes 
O(log n) time


