
1

AVL tree and 2-4 tree 1

Problem of BST

Binary Search is
not balanced.
Take this list of
characters and
form a tree
A B C D E F

BST degenerates to a linked list

AVL tree and 2-4 tree 2

AVL Tree

AVL trees are
balanced.
An AVL Tree is a
binary search tree
such that for every
internal node v of T,
the heights of the
children of v can
differ by at most 1.

88

44

17 78

32 50

48 62

2

4

1

1

2

3

1

1

An example of an AVL tree where the
heights are shown next to the nodes:

AVL tree and 2-4 tree 3

Height of an AVL Tree
Proposition: The height of an AVL tree T storing n
keys is O(log n).
Justification: The easiest way to approach this problem
is to find n(h): the minimum number of internal nodes of
an AVL tree of height h.
We see that n(1) = 1 and n(2) = 2
For n = 3, an AVL tree of height h contains the root
node, one AVL subtree of height n-1 and the other AVL
subtree of height n-2.
i.e. n(h) = 1 + n(h-1) + n(h-2)

AVL tree and 2-4 tree 4

Height of an AVL Tree (cont)
Knowing n(h-1) > n(h-2), we get n(h) > 2n(h-2)
n(h) > 2n(h-2)
n(h) > 4n(h-4)
n(h) > 8n(h-6)
…
n(h) > 2in(h-2i)
For any integer i such that h-2i ≥ 1
Let h – 2i = 1, then i = (h – 1)/2

Solving the base case we get: n(h) = 2 (h-1)/2

Taking logarithms: h < 2log n(h) + 1
Thus the height of an AVL tree is O(log n)

AVL tree and 2-4 tree 5

Insertion
A binary search tree T is called balanced if for every
node v, the height of v’s children differ by at most one.
Inserting a node into an AVL tree changes the heights of
some of the nodes in T.
If an insertion causes T to become unbalanced, we travel
up the tree from the newly created node until we find the
first node x such that its grandparent z is unbalanced
node.
Since z became unbalanced by an insertion in the subtree
rooted at its child y , height(y) = height(sibling(y)) + 2
Now to rebalance...

AVL tree and 2-4 tree 6

Insertion: rebalancing
To rebalance the subtree rooted at z, we must
perform a restructuring
we rename x, y, and z to a, b, and c based on
the order of the nodes in an in-order traversal.
z is replaced by b, whose children are now a
and c whose children, in turn, consist of the
four other subtrees formerly children of x, y,
and z.

2

AVL tree and 2-4 tree 7

Insertion (contd.)

88

44

17 78

32 50

48 62

2

5

1

1

3

4

2

1

54

1

T 0
T 2

T 3

x

y

z

2

3

4

5

6
7

1

88

44

17

7832 50

48

62
2

4

1

1

2 2

3

1
54

1

T0 T 1

T 2

T3

x

y zunbalanced...

...balanced

1
2

3

4

5

6

7

AVL tree and 2-4 tree 8

Restructuring
The four ways to rotate nodes in an AVL tree, graphically
represented
-Single Rotations:

T0
T1

T2

T3

c = x
b = y

a = z

T0 T1 T2

T3

c = x
b = y

a = z
single rotation

T3
T2

T1

T0

a = x
b = y

c = z

T0T1T2

T3

a = x
b = y

c = z
single rotation

AVL tree and 2-4 tree 9

Restructuring (contd.)
double rotations:

double rotationa = z

b = x
c = y

T0
T2

T1

T3 T0

T2
T3T1

a = z
b = x

c = y

double rotationc = z

b = x
a = y

T0
T2

T1

T3 T0
T2

T3 T1

c = z
b = x

a = y

AVL tree and 2-4 tree 10

Restructure Algorithm
function restructure(x):

Input: A node x of a binary search tree T that has both a parent y and a
grandparent z
Output: Tree T restructured by a rotation (either single or double)
involving nodes x, y, and z.

1: Let (a, b, c) be an inorder listing of the nodes x, y, and z, and let
(T0, T1, T2, T3) be an inorder listing of the the four subtrees of x, y, and
z.

2. Replace the subtree rooted at z with a new subtree rooted at b
3. Let a be the left child of b and let T0, T1 be the left and right

subtrees of a, respectively.
4. Let c be the right child of b and let T2, T3 be the left and right

subtrees of c, respectively.

AVL tree and 2-4 tree 11

Cut/Link Restructure Algorithm

Let’s go into a little more detail on this algorithm...
Any tree that needs to be balanced can be grouped into 7
parts: x, y, z, and the 4 trees anchored at the children of
those nodes (T0-T3)

88

44

17

7850

48

62

54T0

T 1

T 2

T 3

y

x

z

AVL tree and 2-4 tree 12

Cut/Link Restructure Algorithm

88

44

17

7850

48

62

54T 0

T 1

T 2

T 3

y

x

Make a new tree which is balanced and put the 7 parts
from the old tree into the new tree so that the
numbering is still correct when we do an in-order-
traversal of the new tree.
This works regardless of how the tree is originally
unbalanced.
Let’s see how it works!

z

3

AVL tree and 2-4 tree 13

Cut/Link Restructure Algorithm

Number the 7 parts by doing an in-order-traversal. (note that
x,y, and z are now renamed based upon their order within the
traversal)

88

44

17

7850

48

62

54T 0

T1

T2

T3

z (a)

y (b)

x (c)

1 2

3
4

5
6

7

AVL tree and 2-4 tree 14

Cut/Link Restructure Algorithm

Now create an Array, numbered 1 to 7 (the 0th element can be ignored
with minimal waste of space)

1 2 3 4 5 6 7

•Cut() the 4 T trees and place them in their inorder rank in the array

T0 T1 T 2 T3

1 2 3 4 5 6 7

AVL tree and 2-4 tree 15

Cut/Link Restructure Algorithm
Now cut x,y, and z in that order (child,parent,grandparent)
and place them in their inorder rank in the array.

T0 T1 T 2 T378
c

62
ba

44

62

b4

1 2 3 4 5 6 7
•Now we can re-link these subtrees to the main tree.

•Link in rank 4 (b) where the subtree’s root formerly

AVL tree and 2-4 tree 16

Cut/Link Restructure Algorithm

Link in ranks 2 (a) and 6 (c) as 4’s children.

62

b4

44 78

a c2 6

AVL tree and 2-4 tree 17

Cut/Link Restructure Algorithm
Finally, link in ranks 1,3,5, and 7 as the children of 2 and 6.

62

y4

44 78

z x

17

T0

2 6

50

48 54

T 1

3 5
88

T3

7
T2

• Now you have a balanced tree!
AVL tree and 2-4 tree 18

Cut/Link Restructure algorithm

This algorithm for restructuring has the exact
same effect as using the four rotation cases
discussed earlier.
Advantages: no case analysis, more elegant
Disadvantage: can be more code to write
Same time complexity

4

AVL tree and 2-4 tree 19

Removal
We can easily see that performing a remove(w) can
cause T to become unbalanced.
Let z be the first unbalanced node encountered
while traveling up the tree from w. Also, let y be the
child of z with the larger height, and let x be the
child of y with the larger height.
We can perform operation restructure(x) to restore
balance at the subtree rooted at z.
As this restructuring may upset the balance of
another node higher in the tree, we must continue
checking for balance until the root of T is reached

AVL tree and 2-4 tree 20

Removal (contd.)
example of deletion from an AVL tree:

8 8

4 4

1 7

7 8

3 2

5 0

4 8

6 2
1

4

1

2 2

3

1
5 4

1
T 0

T 1

T 2

T 3

y

x

0

Oh no, unbalanced!

8817

78

50

48

62

1

1

2

23

1

54
1

T 0

T 2

T 3

y

x
44

4

z

0

Whew,
balanced!

AVL tree and 2-4 tree 21

Removal (contd.)
example of deletion from an AVL tree:

Whew,
balanced!88

17 78

50

48

62
1 1

4

2

3

1
54

1

T 0 T 1 T 2

y

x

0

44
2

z

88

44

17

78

32

50

48

62
1

4

1

2 2

3

1
54

1
T 0

T 1 T 2
T 3

z

y

x

0

Oh no,
unbalanced!

AVL tree and 2-4 tree 22

AVL Trees - Data Structures

AVL trees can be implemented with a flag to
indicate the balance state

typedef enum {LeftHeavy, Balanced,
RightHeavy} BalanceFactor;

typedef struct node {
BalanceFactor bf;
void *item;
struct node *left, *right;

} AVL_node;

(2,4) Trees

9

10 142 5 7

AVL tree and 2-4 tree 24

Multi-Way Search Tree

A multi-way search tree is an ordered tree such that
n Each internal node has at least two children and stores d −1

key-element items (ki, oi), where d is the number of children
n For a node with children v1 v2 … vd storing keys k1 k2 … kd−1

w keys in the subtree of v1 are less than k1

w keys in the subtree of vi are between k i−1 and k i (i = 2, …, d − 1)

w keys in the subtree of vd are greater than kd−1

11 24

2 6 8 15

30

27 32

5

AVL tree and 2-4 tree 25

Multi-Way Inorder Traversal
We can extend the notion of inorder traversal from binary trees
to multi-way search trees
Namely, we visit item (ki, oi) of node v between the recursive
traversals of the subtrees of v rooted at children v i and v i + 1

An inorder traversal of a multi-way search tree visits the keys in
increasing order

11 24

2 6 8 15

30

27 32

1 3 5 7 9 11 13 19

15 17

2 4 6 14 18

8 12

10

16

AVL tree and 2-4 tree 26

Multi-Way Searching
Similar to search in a binary search tree
A each internal node with children v1 v2 … vd and keys k1 k2 … kd−1

n k = k i (i = 1, …, d − 1): the search terminates successfully
n k < k1: we continue the search in child v1
n k i−1 < k < k i (i = 2, …, d − 1): we continue the search in child vi
n k > kd−1: we continue the search in child vd

Reaching an external node terminates the search unsuccessfully
Example: search for 30

11 24

2 6 8 15

30

27 32

AVL tree and 2-4 tree 27

(2,4) Tree
A (2,4) tree (also called 2-4 tree or 2-3-4 tree) is a multi-way
search with the following properties
n Node-Size Property: every internal node has at most four children
n Depth Property: all the external nodes have the same depth

Depending on the number of children, an internal node of a
(2,4) tree is called a 2-node, 3-node or 4-node

10 15 24

2 8 12 27 3218

AVL tree and 2-4 tree 28

Height of a (2,4) Tree
Theorem: A (2,4) tree storing n items has height O(log n)
Proof:
n Let h be the height of a (2,4) tree with n items
n Since there are at least 2 i items at depth i = 0, … , h − 1 and no

items at depth h, we have
n ≥ 1 + 2 + 4 + … + 2h−1 = 2h − 1

n Thus, h ≤ log (n + 1)
Searching in a (2,4) tree with n items takes O(log n) time

1

2

2h−1

0

items
0

1

h−1

h

depth

AVL tree and 2-4 tree 29

Insertion
We insert a new item (k, o) at the parent v of the leaf reached by
searching for k
n We preserve the depth property but
n We may cause an overflow (i.e., node v may become a 5-node)

Example: inserting key 30 causes an overflow

27 32 35

10 15 24

2 8 12 18

10 15 24

2 8 12 27 30 32 3518

v

v

AVL tree and 2-4 tree 30

Overflow and Split
We handle an overflow at a 5-node v with a split operation:
n let v1 … v5 be the children of v and k1 … k4 be the keys of v
n node v is replaced nodes v' and v"

w v' is a 3-node with keys k1 k2 and children v1 v2 v3

w v" is a 2-node with key k4 and children v4 v5

n key k3 is inserted into the parent u of v (a new root may be created)

The overflow may propagate to the parent node u

15 24

12 27 30 32 3518

v

u

v1 v2 v3 v4 v5

15 24 32

12 27 3018

v'

u

v1 v2 v3 v4 v5

35

v"

6

AVL tree and 2-4 tree 31

Analysis of Insertion
function insertItem(k, o)

1. We search for key k to locate the
insertion node v

2. We add the new item (k, o) at node v

3. while (overflow(v)){
if (isRoot(v))

create a new empty root above v;
v ← split(v) // return parent of v;
}

Let T be a (2,4) tree
with n items
n Tree T has O(log n)

height
n Step 1 takes O(log n)

time because we visit
O(log n) nodes

n Step 2 takes O(1) time
n Step 3 takes O(log n)

time because each split
takes O(1) time and we
perform O(log n) splits

Thus, an insertion in a
(2,4) tree takes O(log n)
time

AVL tree and 2-4 tree 32

Deletion
We reduce deletion of an item to the case where the item is at the
node with leaf children
Otherwise, we replace the item with its inorder successor (or,
equivalently, with its inorder predecessor) and delete the latte r item

Example: to delete key 24, we replace it with 27 (inorder successor)

27 32 35

10 15 24

2 8 12 18

32 35

10 15 27

2 8 12 18

AVL tree and 2-4 tree 33

Underflow and Transfer
Deleting an item from a node v may cause an underflow, where
node v becomes a 1-node with one child and no keys
To handle an underflow at node v with parent u, we consider two
cases
Case 1: an adjacent sibling w of v is a 3-node or a 4-node
n Transfer operation:

1. we move a child of w to v
2. we move an item from u to v
3. we move an item from w to u

n After a transfer, no underflow occurs

4 9

6 82

u

vw

4 8

62 9

u

vw

AVL tree and 2-4 tree 34

Underflow and Fusion

Case 2: the adjacent siblings of v are 2-nodes
n Fusion operation: we merge v with an adjacent sibling w and

move an item from u to the merged node v'
n After a fusion, the underflow may propagate to the parent u

9 14

2 5 7 10

u

v

9

10 14

u

v'w
2 5 7

AVL tree and 2-4 tree 35

Analysis of Deletion

Let T be a (2,4) tree with n items
n Tree T has O(log n) height

In a deletion operation
n We visit O(log n) nodes to locate the node from

which to delete the item
n We handle an underflow with a series of O(log n)

fusions, followed by at most one transfer
n Each fusion and transfer takes O(1) time

Thus, deleting an item from a (2,4) tree takes
O(log n) time

