Tries

Preprocessing Strings

A trie (retrieval) is a special kind information
access tree

If the text is large, immutable and searched
for often (e.g., works by Shakespeare), we
may want to preprocess the text

A trie is a compact data structure for
representing a set of strings, such as all the
words in a text

= A tries supports pattern matching queries in time
proportional to the pattern size

Tries and Huffman Codes 2

Standard Trie (1)

= Each node but the root is labeled with a character

= The children of a node are alphabetically ordered

= The paths from the external nodes to the root yield the strings of S
Example: standard trie for the set of strings

S = { bear, bell, bid, bull, buy, sell, stogk, stop }

Tries and Huffman Codes 3

The standard trie for a set of strings S is an ordered tree such that:

tandard Trie (2)

® A standard trie uses O(n) space and supports
searches, insertions and deletions in time O(d m),
where:

n total length of all strings in S
m size of the string parameter of the operation
d size of the alphabet

Tries and Huffman Codes 4

tion:

+ Use a trie to perform a special type of
pattern matching: word matching.

+ differ from standard pattern matching
since the pattern can not match with an
arbitrary substring of the text, but only
one of its words.

+ suitable for applications where a series
of queries is performed on a fixed text.

Tries and Huffman Codes 5

atching with a Trie

We insert the ISIeIeI Ial IbIeIaIrI°I ISIeIIIII [s[tToJe k[T]

WOrdS Of the 0 516 1718 19 20 21 22 23

i |s|e|e| T BT TT L[sTTele[1L]

tl’ie 4 25 26 27 28 29 0 31 32 33 34 35 36 3738 39 40 4142 43 44 &5 46
bld sftlofclk]! blifd s|tfolclk|!

EaCh |eaf 47 48 49 50 51 52 53 54 55 56 57 58 59 6061 62 63 64 65 66 67 68

stores the [ATelalr]_LtInlel IplelT 1T 1?] IsItlolplt]

occurrences 697071727374 75 76 77 78 T 80 81 8283 84 85 8687 88

of the O

associated

word in the

™
®
@
[]
69 12

Tries and Huffman Codes 51,62 6

Compressed Tries:

+ an internal node v of T is redundant if
v has one child and is not the root.

#+ a chain of redundant nodes can be
compressed by replacing the chain with
a single node with the concatenation of
the labels of nodes in the chain.

Tries and Huffman Codes 7

Compressed Trie

A compressed trie has
internal nodes of degree
at least two

It is obtained from
standard trie by
compressing chains of
“redundant” nodes

Tries and Huffman Codes

Compact Representation

® Compact representation of a compressed trie for an arra
of strings:

Stores at the nodes ranges of indices instead of substrings

= Uses O(9 space, where sis the number of strings in the array

Serves as an auxiliary index structure

S is an array of strings S[0], ... S[s-1]

Instead of storing a node label X explicitly, we represent it

implicitly by a triplet of integers (i, j, k), such that X = s[i][j..k].

01234 0123 0123
so)= [s[ee] sla)= si7=
si= sis)= siel =
si2l= stel= [BITIA] st =
si3)= [s[t[o[c[K]

Tries and Huffman Codes 9

act Representation

01234 0123 0123
sfo]= 4] = s[7)=
si= sts) = stel=
sia= sl = siol=
s31=

Tries and Huffman Codes 10

Huffman Encoding

Compression
= Typically, in files and messages,
+ Each character requires 1 byte or 8 bits
+ Already wasting 1 bit for most purposes!
Question
= What's the smallest number of bits that can be
used to store an arbitrary piece of text?
#|dea
= Find the frequency of occurrence of each character
= Encode Frequent characters short bit strings
= Rarer characters longer bit strings

Tries and Huffman Codes 11

g Trie (1)

A code is a mapping of each character of an alphabet to a binary
code-word

A prefix code is a binary code such that no code-word is the prefix
of another code-word

An encoding trie represents a prefix code

= Each leaf stores a character

= The code word of a character is given by the path from the root to
the leaf storing the character (O for a left child and 1 for ht child)

Tries and Huffman Codes 12

Encoding Trie (2)

Given a text string X, we want to find a prefix code for the
characters of X that yields a small encoding for X
® Example
= X = abracadabra
= T, encodes X into 29 bits
= T, encodes X into 24 bits

T T2

Tries and Huffman Codes 13

Huffman Encoding
#Encoding

ree

= Encode by following
tree to leaf

= eg
+E is 00
+S is 011
= Frequent characters
E, T 2 bit encodings
= Others
A, S, N, O 3 bitencodings

Tries and Huffman Codes 14

Huffman Encoding

reedy Approach
= Sort characters by frequency
= Form two lowest weight nodes into a sub-tree

+ Sub-tree weight = sum of weights of nodes

= Move new tree to correct place

Tries and Huffman Codes 15

uffman’s Algaorithm

nction HuffmanEncoding (X)

Given a string X, Input string X of sizen
Huffman’s Output optimal encoding trie for X
algorithm C = distinctCharacters(X);

construct a prefix computeFreguencies(C, X);

Q= new empty heap ;

code the for (all ¢ C){
nr_nnlmlzes the T = (new single-node tree storing c);
size Of the Q.insert(getFrequency(c), T); }
encoding of X while Q.size() > 1){
A heap-based fi~ Qminkey);
priority queue is ar g;mf;‘f(h)ﬁ,m()‘
.- Q. g
useq.as an T, - Q.removeMin();
auxiliary T= join(Ty, Ty
structure Qinsert(f, +£, T); }

FettrA-Srermoreit

Tries and Huffman Codes 16

Huffman Encoding - Operation
nitial sequence i H E H H
orted by frequency
ENiEmd

F E

Move it to correct
place

Tries and Huffman Codes 17

Huffman Encoding - Operation

After shifting sub-tree E E E H

to its correct place ...

Move sub-tree to
correct place

Combine next lowest
pair
[B F E

Tries and Huffman Codes 18

Huffman Encoding - Operation

w tree
to the correct place ...

Now the lowest two are the
“14” sub-tree and D

Combine and move to
correct place

Tries and Huffman Codes

Huffman Encoding - Operation

W & H
THEE
i

Now the lowest two are the
the “25” and “30” trees

Move the new tree
to the correct place ...

Combine and move to
correct place

Tries and Huffman Codes 20

Huffman Encoding - Operation

"|)

H-H'h.

Es :|:|

Combine
..1| last two trees

Tries and Huffman Codes

= abracadabra
equencies

I— —l—l_k S
StatatatE =

i "
LELNCLEEL

Tries and Huffman Codes 22

Huffman Encoding - Decoding

Statstrost, Startatroot, Startstroot,
go ight ‘3" L“" . sengt e gonght

10% 007 311D

. PN oo
goleft 4go left * go left
leaf, output output

1t's aleaf, outpur

Tries and Huffman Codes

Huffman Encoding - Time
Xity

+ Sort keys O(nlog n)
+ Repeat n times
= Form new sub-tree O(1)
= Move sub-tree O(logn)
(binary search)
= Total O(nlogn)
+ Overall O(nlog n)

Tries and Huffman Codes 24

