Tries

Preprocessing Strings

A trie (retrieval) is a special kind information
access tree

If the text is large, immutable and searched
for often (e.g., works by Shakespeare), we
may want to preprocess the text

# A trie is a compact data structure for
representing a set of strings, such as all the
words in a text

= A tries supports pattern matching queries in time
proportional to the pattern size
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Standard Trie (1)

= Each node but the root is labeled with a character

= The children of a node are alphabetically ordered

= The paths from the external nodes to the root yield the strings of S
Example: standard trie for the set of strings

S = { bear, bell, bid, bull, buy, sell, stogk, stop }
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The standard trie for a set of strings S is an ordered tree such that:

tandard Trie (2)

® A standard trie uses O(n) space and supports
searches, insertions and deletions in time O(d m),
where:

n total length of all strings in S
m size of the string parameter of the operation
d size of the alphabet
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tion:

+ Use a trie to perform a special type of
pattern matching: word matching.

+ differ from standard pattern matching
since the pattern can not match with an
arbitrary substring of the text, but only
one of its words.

+ suitable for applications where a series
of queries is performed on a fixed text.
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atching with a Trie
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Compressed Tries:

+ an internal node v of T is redundant if
v has one child and is not the root.

#+ a chain of redundant nodes can be
compressed by replacing the chain with
a single node with the concatenation of
the labels of nodes in the chain.
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Compressed Trie

A compressed trie has
internal nodes of degree
at least two

It is obtained from
standard trie by
compressing chains of
“redundant” nodes
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Compact Representation

® Compact representation of a compressed trie for an arra
of strings:

Stores at the nodes ranges of indices instead of substrings

= Uses O(9 space, where sis the number of strings in the array

Serves as an auxiliary index structure

S is an array of strings S[0], ... S[s-1]

Instead of storing a node label X explicitly, we represent it

implicitly by a triplet of integers (i, j, k), such that X = s[i][j..k].

01234 0123 0123
so)= [s[ee] sla)= si7=
si= sis)= siel =
si2l= stel= [BITIA] st =
si3)= [s[t[o[c[K]
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act Representation

01234 0123 0123
sfo]= 4] = s[7)=
si= sts) = stel=
sia= sl = siol=
s31=
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Huffman Encoding

# Compression
= Typically, in files and messages,
+ Each character requires 1 byte or 8 bits
+ Already wasting 1 bit for most purposes!
# Question
= What's the smallest number of bits that can be
used to store an arbitrary piece of text?
#|dea
= Find the frequency of occurrence of each character
= Encode Frequent characters short bit strings
= Rarer characters longer bit strings
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g Trie (1)

A code is a mapping of each character of an alphabet to a binary
code-word

A prefix code is a binary code such that no code-word is the prefix
of another code-word

An encoding trie represents a prefix code

= Each leaf stores a character

= The code word of a character is given by the path from the root to
the leaf storing the character (O for a left child and 1 for ht child)
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Encoding Trie (2)

# Given a text string X, we want to find a prefix code for the
characters of X that yields a small encoding for X
® Example
= X = abracadabra
= T, encodes X into 29 bits
= T, encodes X into 24 bits

T T2
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Huffman Encoding
#Encoding

ree

= Encode by following
tree to leaf

= eg
+E is 00
+S is 011
= Frequent characters
E, T 2 bit encodings
= Others
A, S, N, O 3 bitencodings
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Huffman Encoding

reedy Approach
= Sort characters by frequency
= Form two lowest weight nodes into a sub-tree

+ Sub-tree weight = sum of weights of nodes

= Move new tree to correct place
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uffman’s Algaorithm

nction HuffmanEncoding (X)

# Given a string X, Input string X of sizen
Huffman’s Output optimal encoding trie for X
algorithm C = distinctCharacters(X);

construct a prefix computeFreguencies(C, X);

Q= new empty heap ;

code the for (all ¢ C){
nr_nnlmlzes the T = (new single-node tree storing c);
size Of the Q.insert(getFrequency(c), T); }
encoding of X while Q.size() > 1){
# A heap-based fi~ Qminkey);
priority queue is ar g;mf;‘f(h)ﬁ,m()‘
.- Q. g
useq.as an T, - Q.removeMin();
auxiliary T= join(Ty, Ty
structure Qinsert(f, +£, T); }

FettrA-Srermoreit
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Huffman Encoding - Operation
nitial sequence i H E H H
orted by frequency
ENiEmd

F E

Move it to correct
place
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Huffman Encoding - Operation

After shifting sub-tree E E E H

to its correct place ...

Move sub-tree to
correct place

Combine next lowest
pair
[ B F E
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Huffman Encoding - Operation

w tree
to the correct place ...

Now the lowest two are the
“14” sub-tree and D

Combine and move to
correct place

Tries and Huffman Codes

Huffman Encoding - Operation

W & H
THEE
i

Now the lowest two are the
the “25” and “30” trees

Move the new tree
to the correct place ...

Combine and move to
correct place
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Huffman Encoding - Operation

"| )

H-H'h.

Es :|:|

Combine
..1| last two trees
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Huffman Encoding - Decoding

Statstrost,  Startatroot,  Startstroot,
go ight ‘3" L“" . sengt e gonght

10% 007 311D

. PN oo
goleft 4go left * go left
leaf, output output

1t's aleaf, outpur
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Huffman Encoding - Time
Xity

+ Sort keys O(nlog n)
+ Repeat n times
= Form new sub-tree O(1)
= Move sub-tree O(logn)
(binary search)
= Total O(nlogn)
+ Overall O(nlog n)
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