
1

Tries

e

b

ar ll

s

u

ll y

ell to

ck p

id

Tries and Huffman Codes 2

Preprocessing Strings
A trie (retrieval) is a special kind information
access tree
If the text is large, immutable and searched
for often (e.g., works by Shakespeare), we
may want to preprocess the text
A trie is a compact data structure for
representing a set of strings, such as all the
words in a text
n A tries supports pattern matching queries in time

proportional to the pattern size

Tries and Huffman Codes 3

Standard Trie (1)
The standard trie for a set of strings S is an ordered tree such that:
n Each node but the root is labeled with a character
n The children of a node are alphabetically ordered
n The paths from the external nodes to the root yield the strings of S

Example: standard trie for the set of strings
S = { bear, bell, bid, bull, buy, sell, stock, stop }

a

e

b

r

l

l

s

u

l

l

y

e t

l

l

o

c

k

p

i

d

Tries and Huffman Codes 4

Standard Trie (2)
A standard trie uses O(n) space and supports
searches, insertions and deletions in time O(d m),
where:
n total length of all strings in S
m size of the string parameter of the operation
d size of the alphabet

a

e

b

r

l

l

s

u

l

l

y

e t

l

l

o

c

k

p

i

d

Tries and Huffman Codes 5

Application:

use a trie to perform a special type of
pattern matching: word matching.
differ from standard pattern matching
since the pattern can not match with an
arbitrary substring of the text, but only
one of its words.
suitable for applications where a series
of queries is performed on a fixed text.

Tries and Huffman Codes 6

Word Matching with a Trie
We insert the
words of the
text into a
trie
Each leaf
stores the
occurrences
of the
associated
word in the
text

s e e b e a r ? s e l l s t o c k !

s e e b u l l ? b u y s t o c k !

b i d s t o c k !

a

a

h e t h e b e l l ? s t o p !

b i d s t o c k !

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

a r
87 88

a

e

b

l

s

u

l

e t

e

0, 24

o

c

i

l

r

6

l

78

d

47, 58
l

30

y

36
l

12
k

17, 40,
51, 62

p

84

h

e

r

69

a

2

Tries and Huffman Codes 7

Compressed Tries:

an internal node v of T is redundant if
v has one child and is not the root.
a chain of redundant nodes can be
compressed by replacing the chain with
a single node with the concatenation of
the labels of nodes in the chain.

Tries and Huffman Codes 8

Compressed Trie
A compressed trie has
internal nodes of degree
at least two
It is obtained from
standard trie by
compressing chains of
“redundant” nodes

e

b

ar ll

s

u

ll y

ell to

ck p

id

a

e

b

r

l

l

s

u

l

l

y

e t

l

l

o

c

k

p

i

d

Tries and Huffman Codes 9

Compact Representation
Compact representation of a compressed trie for an array
of strings:
n Stores at the nodes ranges of indices instead of substrings
n Uses O(s) space, where s is the number of strings in the array
n Serves as an auxiliary index structure
n S is an array of strings S[0], … S[s-1]
n Instead of storing a node label X explicitly, we represent it

implicitly by a triplet of integers (i, j, k), such that X = s[i][j..k].

s e e

b e a r
s e l l

s t o c k

b u l l

b u y
b i d

h e

b e l l
s t o p

0 1 2 3 4
a rS[0] =

S[1] =

S[2] =

S[3] =

S[4] =

S[5] =

S[6] =

S[7] =

S[8] =

S[9] =

0 1 2 3 0 1 2 3

Tries and Huffman Codes 10

Compact Representation

s e e
b e a r

s e l l
s t o c k

b u l l
b u y

b i d

h e
b e l l

s t o p

0 1 2 3 4
a rS[0] =

S[1] =

S[2] =

S[3] =

S[4] =

S[5] =

S[6] =

S[7] =

S[8] =

S[9] =

0 1 2 3 0 1 2 3

1, 1, 1

1, 0, 0 0, 0, 0

4, 1, 1

0, 2, 2

3, 1, 2

1, 2, 3 8, 2, 3

6, 1, 2

4, 2, 3 5, 2, 2 2, 2, 3 3, 3, 4 9, 3, 3

7, 0, 3

0, 1, 1

Tries and Huffman Codes 11

Huffman Encoding
Compression
n Typically, in files and messages,
w Each character requires 1 byte or 8 bits
w Already wasting 1 bit for most purposes!

Question
n What’s the smallest number of bits that can be

used to store an arbitrary piece of text?

Idea
n Find the frequency of occurrence of each character
n Encode Frequent characters short bit strings

n Rarer characters longer bit strings

Tries and Huffman Codes 12

Encoding Trie (1)
A code is a mapping of each character of an alphabet to a binary
code-word
A prefix code is a binary code such that no code-word is the prefix
of another code-word
An encoding trie represents a prefix code
n Each leaf stores a character

n The code word of a character is given by the path from the root to
the leaf storing the character (0 for a left child and 1 for a right child)

a

b c

d e

111001101000

edcba

3

Tries and Huffman Codes 13

Encoding Trie (2)
Given a text string X, we want to find a prefix code for the
characters of X that yields a small encoding for X
Example
n X = abracadabra

n T1 encodes X into 29 bits
n T2 encodes X into 24 bits

c

a r

d b a

c d

b r

T1 T2

Tries and Huffman Codes 14

Huffman Encoding
Encoding
n Use a tree

n Encode by following
tree to leaf

n eg
w E is 00
w S is 011

n Frequent characters
E, T 2 bit encodings

n Others
A, S, N, O 3 bit encodings

Tries and Huffman Codes 15

Huffman Encoding

Greedy Approach
n Sort characters by frequency

n Form two lowest weight nodes into a sub-tree

w Sub-tree weight = sum of weights of nodes

n Move new tree to correct place

Tries and Huffman Codes 16

Huffman’s Algorithm
Given a string X,
Huffman’s
algorithm
construct a prefix
code the
minimizes the
size of the
encoding of X
A heap-based
priority queue is
used as an
auxiliary
structure

function HuffmanEncoding (X)
Input string X of size n
Output optimal encoding trie for X
C = distinctCharacters(X);
computeFrequencies(C, X);
Q = new empty heap ;
for (all c ∈ C) {

T = (new single-node tree storing c);
Q.insert(getFrequency(c), T); }

while (Q.size() > 1){
f1 ← Q.minKey();
T1 ← Q.removeMin();
f2 ← Q.minKey();
T2 ← Q.removeMin();
T ← join(T1, T2);
Q.insert(f1 + f2, T); }

return Q.removeMin()

Tries and Huffman Codes 17

Huffman Encoding - Operation

Initial sequence
Sorted by frequency

Combine lowest two
into sub-tree

Move it to correct
place

Tries and Huffman Codes 18

After shifting sub-tree
to its correct place ...

Huffman Encoding - Operation

Combine next lowest
pair

Move sub-tree to
correct place

4

Tries and Huffman Codes 19

Move the new tree
to the correct place ...

Huffman Encoding - Operation

Now the lowest two are the
“14” sub-tree and D

Combine and move to
correct place

Tries and Huffman Codes 20

Move the new tree
to the correct place ...

Huffman Encoding - Operation

Now the lowest two are the
the “25” and “30” trees

Combine and move to
correct place

Tries and Huffman Codes 21

Huffman Encoding - Operation

Combine
last two trees

Tries and Huffman Codes 22

Example

rdcba

21125

X = abracadabra
Frequencies

ca rdb
5 2 1 1 2

ca rdb

2

5 2 2
ca bd r

2

5

4

ca bd r

2

5

4

6

c

a

bd r

2 4

6

11

Tries and Huffman Codes 23

Huffman Encoding - Decoding

Tries and Huffman Codes 24

Huffman Encoding - Time
Complexity

Sort keys O(n log n)
Repeat n times
n Form new sub-tree O(1)
n Move sub-tree O(logn)

(binary search)

n Total O(n log n)
Overall O(n log n)

