
1

Chapter 3 Network and
Communication 1

Chapter 3: Network and Communication

n What is a network?

n What types of network are there?

n What networking standards are there?

n How do you represent information?

n What is communication protocol?

n What are communication models? (message-

passing, stream communication and RPC)

Chapter 3 Network and
Communication 2

Anatomy of a network
n A set of interconnected

resources
n Hosts that run network

applications software
− Clients and servers
− Set of peers

n The network infrastructure that
interconnects the hosts

− The networking hardware
and software
n Network node devices

such as routers and
switches

n Links: cables,
connectors, network
interfaces

Chapter 3 Network and
Communication 3

Transmission links

n Convey bits, bytes, packets
n Physical medium

− Copper (or aluminium)
− Optical fibre

n Glass, plastic
− Free-space optical

n Laser
− Radio

n Satellite, microwave link, mobile, wireless LAN,
‘Bluetooth’

n Mode
− Point-to-point
− Shared medium (multicast)
− Broadcast

Chapter 3 Network and
Communication 4

Representing data: bits and bytes

n Bits
− Different codes used in different interface standards
− Images, multi-media
− Require special bit pattern as delimiter

n Bytes
− Text is usually ASCII or Unicode characters
− Text files, documents
− Character set includes special control characters

01100001011000111 01110101

Bits Bytes

00000010 10000000 10100001

Chapter 3 Network and
Communication 5

Representing data: Frames

n A block of data is called a frame
− Basic unit of transfer between switches

n Main purpose of frame is to carry packets from one point to another on a
network
− Header carries

n Addressing (usually rather low level)
n Control information for receiving network device (host/network

node)
− Trailer (if present) carries error check

n Used for detecting errors in received frame
n Block sizes restricted by buffer sizes in the network device interfaces

header Data or payload trailerFrame:

Chapter 3 Network and
Communication 6

Representing data: Packets

n Blocks of application data with some networking routing information
− Basic unit of transfer between routers

n Header carries
− Network-wide addressing information
− Control information for receiving network device (host, router)

n No information is appended to a packet
− There is no trailer, as there is with frames

n In theory, packets can be quite large

header Data or payloadPacket:

2

Chapter 3 Network and
Communication 7

Types of network

n Main types:
− LAN, WAN, MAN, and Internet

n LAN (Local Area Network) is mainly private
− Ether net, Token ring
− Or interconnected

n WAN (Wide Area Network) can be private or public
− Interconnected

n MAN (Metropolitan Area Network) is mainly public
− Interconnected by Optical fibre

n Global Network is public
− The internet
− The telephone network

Chapter 3 Network and
Communication 8

Interconnecting LANs and WANs

To offsite
LANs

To the
Internet

§ Host systems usually connect into a
LAN switch
– Number of hosts limited by the

number of ports on the switch
n Routers have two main uses

− Interconnecting LANs
− Connecting to a WAN or to the

Internet
n Routers interconnect LANs

− To separate the users
− To separate the traffic

switch

router

Chapter 3 Network and
Communication 9

Ethernet

n Developed by Xerox PARC 1973. ISO published the
standard in 1985 (IEEE 802.3).

n Share common bus, CSMA/CD protocol. packet)?

n Communicate by broadcasting packet (64 – 1518 bytes)

destination
address

source
address

type data CRC

6 bytes 6 bytes 2 bytes 46 ≤ data-size ≤ 1500 4 bytes

Chapter 3 Network and
Communication 10

CSMA/CD Protocol

t

t

time(min_packet) > 2t

A B

n Receiver: receives the packet if address matches;

n Sender: sends the packet if the bus is idle.
n Sender: during transmission, if a collision is

detected, then stops transmission, waits for a
random time, and re-sends the packet.

Chapter 3 Network and
Communication 11

ATM Network

n ATM (Asynchronous Transfer Mode): transmit all
information in small, fixed packets called cell (53
bytes), and the technique is called cell relay.

n ATM networks are organized like transitional WANs,
with lines and switches (routers).

n ATM is connection-oriented. A connection is a VC
(Virtual Channel) nested in a VP (Virtual Path).

VP VC flags data

cell head : 5 bytes cell body: 48 bytes

Chapter 3 Network and
Communication 12

OSI: The International Standards Model

n Created in the 1980s by the standards bodies
− ISO, ITU-T(Telecommunication Standardization Sector) , IEEE
− Contributors included people from all sectors of the industry,

government and academia
n Designed originally to overcome the problems of non-interoperability

between different manufacturers’ computers
n Is a protocol suite

− A set of interdependent layer functions
− A set of interdependent protocols

n Ten years of development rendered it too complex to be of real
practical use, however, we still use

− Most of the Layer names
− Some of the terminology

3

Chapter 3 Network and
Communication 13

OSI: A Seven Layer Protocol

high level application
support tools

conversion between different
machine representations

applications synchronization and
connection management

last chance to correct network
errors before passing to application

network addressing & routing

link control &
data transmission

physical medium control,
bit transmission & timing

networking
protocols

application
protocols

Layer 1 - Physical

Layer 2 - Link:

Layer 3 - Network

Layer 4 - Transport

Layer 5 - Session

Layer 6 - Presentation

Layer 7 - Application

Chapter 3 Network and
Communication 14

The OSI and IETF Protocol Suites

layers 5/6/7:
Application

TCP, UDP

IP

PPP, 802.3,5,11, etc

Physical

networking
protocols

application
protocols

IETF model OSI model

Layer 1 - Physical

Layer 2 - Link:

Layer 3 - Network

Layer 4 - Transport

Layer 5 - Session

Layer 6 - Presentation

Layer 7 - Application

Logical

MAC

IETF: The Internet Engineering Task Force
OSI: Open System Interconnection Reference Model

Chapter 3 Network and
Communication 15

Protocol Data Encapsulation

Application data

Transport header and
payload (e.g. TCP segment)

Network header and
payload (e.g. IP packet)

Physical Layer

Network
Layer

Transport
Layer

Application
Layer

Link Layer Link header and payload
(e.g. Ethernet frame)

101011100101

T hdr App data

N hdr Transport

L hdr CRCNetwork

Chapter 3 Network and
Communication 16

A Typical Message on the Network

Chapter 3 Network and
Communication 17

Protocol Data Flow

Destination IP

Destination port

Transport protocol

Source IP

Source port

Transport protocol

Encapsulation

Physical network

IP

TCP UDP

DNS
client

Web
client

Encapsulation

Physical network

IP

TCP UDP

Web server

Addresses Addresses

Source NIC
Destination NIC

URL

Chapter 3 Network and
Communication 18

Communication Models

• Message Passing
lowest level of communication, e.g. sockets
unstructured peer-peer IPC
varieties of communication patterns

• Data Stream
continuous media
satisfy real time data services

• Request / Reply semantics
basis of Client-Server
RPC (Remote Procedure Call)
RMI (Remote Method Invocation)

4

Chapter 3 Network and
Communication 19

n Procedures: send, receive, accept, create, connect, locate , reply,
acknowledge

n Multiplicity: point-to-point, broadcast, multicast
n Message Content: data or instruction, by value or by reference (address)
n Channels:

- link, port, mailbox
- direction can be uni-diection or bi-direction
- capacity can be unbounded (i.e. asynchronous, no blocking)

or null (implies synchronous) or fixed (implies buffering)
n Message Receipt:

explicit receive – receiver can select message
implicit receive– receiver must receive from sender

Message Passing Definitions(1)

Chapter 3 Network and
Communication 20

Message Passing Definitions(2)

n Synchronous/Asynchronous
− Synchronous – receiver waits ready for sender message and responds in

real time (e.g. phone call). Both sender and receiver return when transfer is
complete. No buffer is required.

− Asynchronous – sender sends message into buffer, message picked up
later at receivers convenience (e.g. mailbox). Sender process returns
whether or not a message is received. Receiver blocks until themessage is
available

n Blocking/Non-Blocking
− Blocking – sender cannot proceed after sending message until receiver

picks up message
− Non Blocking – sender can continue as soon as message send is done

(e.g. added to buffer)
n Sender/Receiver Naming

− Static – sender and receiver names (location) fixed
− Dynamic – names may change (e.g. ask a static name server)

Chapter 3 Network and
Communication 21

Message Passing Definitions(3)

n Connection Link
− Connection Oriented– link is established and held for duration of

service. Guaranteed link but bandwidth may be wasted.
− Connectionless– connection not established until message send

occurs e.g. different packets sent by different routes

n Transient
− message is only stored by system while sender and receiver are

executing (e.g. MSN messenger)

n Persistent
− message is stored and delivered by system, even if receiver is not

executing (e.g. email)

Chapter 3 Network and
Communication 22

Address Mechanisms

sender

receiver

sender

sender

sender

sender

sender

receiver

receiver

receiver

mailbox

sender

sender

receiverport

(a) process name (b) link

(c) mail box

(d) port

Chapter 3 Network and
Communication 23

Ø sender calls send primitive to pass message to sender’s buffer

Ø communication module transmits the message to the destination

Ø destination communication module puts the message to receiver’s buffer

Ø receiver calls receive primitive to get the message

Point-to-point Message passing

Chapter 3 Network and
Communication 24

Blocking, Buffering, and
Reliable Communication

Synchronization
point

Send buffer Reliable?

Block sender until
buffer not full

yes not necessary

Block sender until
message sent

no not necessary

Block sender until
message received

no yes

Block sender until
message delivered

no yes

5

Chapter 3 Network and
Communication 25

Persistence and Synchronicity in Communication (1)

General organization of a communication system in
which hosts are connected through a network

Chapter 3 Network and
Communication 26

Persistence and Synchronicity in Communication (2)

(a) Persistent asynchronous communication
(b) Persistent synchronous communication

Chapter 3 Network and
Communication 27

Persistence and Synchronicity in Communication (3)

(c) Transient asynchronous communication
(d) Receipt-based transient synchronous communication

Chapter 3 Network and
Communication 28

Persistence and Synchronicity in Communication (4)

(e) Delivery-based transient synchronous communication
at message delivery

(f) Response-based transient synchronous communication

Chapter 3 Network and
Communication 29

• A socket is a communication endpoint between processes
• A socket forms the API that allows processes to communicate
point-to-point over the internet, within a LAN or within a single
computer
• Each internet host implements the TCP/IP family of protocols
• A socket is identified by a socket address consisting of an IP
(version 4) address and port number e.g. 129.86.5.20:80
• IP addresses are stored as unsigned 32 bit integer, and frequently
represented in dotted decimal notation.

/* Internet address structure */
struct in_addr {unsigned int s_addr;};

• Port numbers are unsigned 16 bit integers (range 0-65535). Port
numbers 0-1024 are well known and reserved, e.g. 21 ftp, 23 telnet,
25 email, 80 http...

Socket Programming

Chapter 3 Network and
Communication 30

Socket Families and Types

• AF_UNIX – for communicating between processes on the same
(UNIX) computer.

• AF_INET – for communicating between processes on different
machines connected by the internet or a LAN.

•SOCK_STREAM is for reliable TCP (Transmission Control Protocol)
connection oriented communication that can be for AF_UNIX or
AF_INET sockets. These streaming sockets allow for continuous
communication.

• SOCK_DGRAM is for unreliable UDP (User Datagram Protocol)
connectionless communication in which process are not required to
connect to the socket continuously. These datagram sockets allow
data to be sent in finite packets (or datagrams). The datagram
protocol applies only to internet AF_INET sockets.

6

Chapter 3 Network and
Communication 31

Socket primitives for TCP/IP

Release the connectionClose

Receive some data over the connectionReceive

Send some data over the connectionSend

Actively attempt to establish a connectionConnect

Block caller until a connection request
arrives

Accept

Announce willingness to accept
connections

Listen

Attach a local address to a socketBind

Create a new communication endpointSocket

MeaningPrimitive

Chapter 3 Network and
Communication 32

TCP/IP Socket Calls for Connection

socket()

bind()

listen()

accept()

socket()

connect()

recv ()

send()

close()

send()

recv ()

close()

Server Client

Blocks until
connection
from client

Process request

create socket

bind local IP address of socket to port

place socket in passive mode ready
to accept requests

take next request from queue (or wait) then forks
and create new socket for client connection

Issue connection request to server

Transfer message strings with
send/recv or read/write

Close socket

Chapter 3 Network and
Communication 33

UDP/IP Socket Calls for Connection

socket()

bind()

recvfrom()

socket()

sendto ()

sendto () recvfrom()

close()

Server Client

blocks until
datagram
received
from a client

Process request

create socket

bind local IP address of socket to port

Receive senders address
and senders datagram

request

Close socket

reply

specify senders address
and send datagram

Chapter 3 Network and
Communication 34

#include <stdio .h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet /in.h>

#define PORT_NUM 2222
char message[20];

main(){ /* process: Romeo.c */
int romeo ,fromlen;
struct sockaddr_in romeo _addr, juliet _addr;

romeo = socket(AF_INET, SOCK_DGRAM, 0);
romeo _addr.sin_family = AF_INET;
romeo _addr.sin_addr.s_addr = INADDR_ANY;
romeo _addr.sin_port = 0;

bind(romeo , (struct sockaddr*)&romeo _addr,
sizeof(romeo _addr));

juliet _addr.sin_family = AF_INET;
juliet _addr.sin_addr.s_addr =
inet _addr(“xxx.xxx.xxx .xxx”);
juliet _addr.sin_port = PORT_NUM;

strcpy(message, “Juliet, I love you!”);

sendto(romeo , message, sizeof(message), 0,
(struct sockaddr) &juliet _addr, sizeof(juliet _addr));

fromlen = sizeof(juliet _addr);

recvfrom(romeo , message, sizeof(message), 0,
(struct sockaddr) &juliet _addr, &fromlen);

printf(“Juliet says: %s\n”, message);

close(romeo);
}

UDP/IP Socket program example(1)

Chapter 3 Network and
Communication 35

UDP/IP Socket program example(2)

#include <stdio .h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet /in.h>

#define PORT_NUM 2222
char message[20];

main(){ /* process: Juliet.c */

int juliet ,fromlen;
struct sockaddr_in romeo _addr, juliet _addr;

juliet = socket(AF_INET, SOCK_DGRAM, 0);
juliet _addr.sin_family = AF_INET;
juliet _addr.sin_addr.s_addr = INADDR_ANY;
juliet _addr.sin_port = PORT_NUM;

bind(juliet , (struct sockaddr*)&juliet _addr,
sizeof(juliet _addr));

fromlen = sizeof(juliet _addr);

recvfrom(juliet , message,sizeof(message), 0,
(struct sockaddr) &romeo _addr, &fromlen);

printf(“Romeo says: %s \n”, message);

strcpy(message, “Oh, Romeo! I love you too!”);

sendto(juliet , message, sizeof(message), 0,
(struct sockaddr) &romeo _addr,
sizeof(romeo _addr));

close(juliet);
}

Chapter 3 Network and
Communication 36

sender receiver

Stream Oriented Communication

n Continuous Media: the temporal relationships between different
data item are fundamental to correctly interpreting what the data
actually means (movies, audio streams).

n Discrete Media: the temporal relationships between data items are
not important (text, still images).

7

Chapter 3 Network and
Communication 37

n Asynchronous mode: no timing constraints on data stream.
n Synchronous mode: there is a max end-to-end delay, but how about

too fast?
n Isochronous mode: data items are transferred on time, both max

delay and min delay.

Data Stream transmission modes

Chapter 3 Network and
Communication 38

n Loss sensitivity (bytes)
n Loss interval (µ sec)

n Burst loss sensitivity (data units)
n Minimum delay noticed (µ sec)

n Maximum delay variation (µ sec)

n Quality of guarantee

n maximum data unit size (bytes)
n Token bucket rate (bytes/sec)
n Toke bucket size (bytes)
n Maximum transmission rate
(bytes/sec)

Service RequiredCharacteristics of the Input

Specifying QoS

n QoS(Quality of Service): a set of requirements describing what is
needed from the underlying distributed system and network to ensure
the temporal relationships, transmission rates, reliability, etc .

Chapter 3 Network and
Communication 39

Token bucket algorithm

n Tokens are generated at a constant rate, and a token represents a fixed
number of bytes, say k.

n Tokens are buffered in a bucket.
n When an application wants to pass N bytes, it will take N/k tokens

from the bucket.

Chapter 3 Network and
Communication 40

Request / Reply Model

Principle of RPC between a client and server program.

Chapter 3 Network and
Communication 41

Local Procedure Call

main(){
char cip [] = “Buubdl!bu!ebxo”; /* cipher*/
int key = 1;/* secret key */
int len = decrypt(cip , key); /* LPC */
/* other processing */

}

int decrypt(char * s, int key){ /* decryption */
int i = 0;
while(*s) { *s -= key; i++; s++;}
return i;

}

stack stack

cip ->Buubdl!bu!ebxo
len -> ?
key -> 1

stack

cip ->Attack at dawn
len -> 14
key -> 1

Return address
i -> 0
s -> main.cip
key -> 1

cip ->Buubdl!bu!ebxo
len -> ?
key -> 1

afterbefore

LPC
procedure

call

return

Chapter 3 Network and
Communication 42

Remote Procedure Call

program stub

(1)

(8)

LPC Bind req

Recv bind
marshal
Send req

Recv
result

unmarsh

return

stub procedure

(5)

(6)

execute

return

recv req

unmarsh

LPC

marshal

send
result

binder

recv req
register
or search
return

client server

Binding server

(8)

(0)

(1)

(7)
(6)

(5)

(4)

(3)

(2)

8

Chapter 3 Network and
Communication 43

Remote Procedure Call: steps

(0) Remote procedures registration;
(1) Client procedure calls client stub in normal way;
(2) Client stub sends a binding request asking for information;
(3) Binding server searches for binding and reply to client stub;
(4) Client stub packs a message (marshalling) and send to server stub;
(5) Server stub unpacks parameters (unmarshalling), invokes LPC;
(6) Server procedure executes and returns results to server stub;
(7) Server stub packs results (marshalling) and sends to client stub;
(8) Client stub unpacks results and returns to client procedure.

Call-by-value: parameter is a straight value (int, float, …)
Call-by-reference: parameter is a pointer to anything (int,

record, array, pointer, …)

Chapter 3 Network and
Communication 44

Example: SUN RPC (1)

/* eXtended Data Representation (XDR) definition , file name : caesar.x */

const MAX = 100;

typedef struct { /* return type */
int len;
char code[MAX];

} Data;

typedef struct { /* parameter type */
int key;
char cipher[MAX];

} Args;

program CAESAR { /* CAESAR program */
version VERSION {

Data DECRYPT(Args) = 1; /* decryption procedure */
Data ENCRYPT(Args) = 2; /* encryption procedure */

} = 5;
} = 8888;

Chapter 3 Network and
Communication 45

Example: SUN RPC(2)

Invoke XDR compiler rpcgen to generate the
following files:

q Client stub
q Server main program and server stub

q XDR parameter marshalling/ unmarshalling functions
q Program header file, caesar.h, which includes constants,

user defined types, remote procedure prototypes.

Now, we are ready to design other programs.

Chapter 3 Network and
Communication 46

/* client program file : client.c */

#include <rpc/rpc.h>
#include “caesar.h”

main(){
CLIENT *cp;
char * serverName = “Caesar_server”;
Args arg;
Data * plaintext;
/* create client pointer */
cp = clnt_create(serverName, CRESAR, VERSION, “udp”);
if (cp == NULL) exit(1);
arg .key = 1; /* set RPC parameters */
arg .cipher = “Buubdl!bu!ebxo”;
plaintext = decrypt_2(&arg , cp); /* issue RPC */

/* other processing */
…
clnt_destroy(cp); /* delete client pointer */

}

/* server program file : server.c */

#include <rpc/rpc.h>
#include “ceasar.h”

Data* decrypt_2(Args *a){ /* decryption */
static Data output; /* must be static */
char s = a->cipher;
int i = 0;
while(*s) { output.code[i] = *s - key; i++; s++;}

output.len = i;
return &output; /* return result*/

}

Data* encrypt_2(args *a){ /* encryption*/
/* … */
}

Example: SUN RPC(3)

Chapter 3 Network and
Communication 47

Example: SUN RPC(4)

Server program

XDR Definition

Client program

Server stub

Header file

client stub

RPC
library

Server code

Client code

The steps in writing a client and a server in SUN RPC

C compilerC compiler

IDL compilerIDL compiler

Chapter 3 Network and
Communication 48

The steps in writing a client and a server in DCE RPC

IDL: Interface Definition Language; uuidgen: IDL file generator
DCE: Distributed Computing Environment (Open Software foundation)

9

Chapter 3 Network and
Communication 49

RPC Semantics

LPC has exact-once semantics, how about RPC?
Server dead? RPC request lost? Reply lost?
q Re-sending RPC (time out)

q Replica filtering
q Re-sending results

Re-sending RPC Replica filtering Re-sending results RPC semantics

no no no maybe

yes no no at-least-once

yes yes no maybe-once

yes yes yes at-most-once

Chapter 3 Network and
Communication 50

RMI: Remote Method Invocation

