
1

Chapter 4 Concurrent 
Programming 1

Chapter 4: Concurrent Programming

Distributed
Physically separate autonomous processors that interact and 

collaborate
Parallel

Processing occurring on more than one processor within the 
same time frame

Concurrent

Processing occurring on more than one processor that is 
synchronized in real-time

Chapter 4 Concurrent 
Programming 2

Processes

run

blockreadycreation

termination

Process: A program in execution. 

n Earlier processes are sequential processes as there is only 

one control flow in each process.

n A process includes its program code, data, resources, and 

virtual execution environment(CPU, memory).

Chapter 4 Concurrent 
Programming 3

Process Creation

/* UNIX  and C : process_creation.c */

#include <stdlib . h >

main(){
int pid ;

if ((pid = fork()) != 0){ /* father process */
printf(“Father\n”);
wait(0);

}
else if ((pid = fork()) != 0){ /* son process */

printf(“Son\n”);
wait(0);

}
else { /* grandson process  */

printf(“Grandson\n”);
}
exit(0);

}

Chapter 4 Concurrent 
Programming 4

Memory Space of a Process

Stack

Heap

Program and
constant

Stack

Heap

Program and
constant

Stack

Heap

Program and
constant

father grandsonson

Every process has its own independent memory space

Chapter 4 Concurrent 
Programming 5

Process Context Switch

Process Context switch: 

allocate CPU from one process to another.

A Process context includes two portions: 

CPU context and Storage context. 

n CPU context: program counter, registers, stack/heap pointers 

and other control registers. Easy to switch.

n Storage context: program code, data, address space, memory 

mapping, (disk) swapping, etc. Hard and time consuming to 

switch.

Chapter 4 Concurrent 
Programming 6

Threads

Thread: a (part of a) program in execution. 

n Maintains only the minimum information to allow a CPU 

to be shared by several threads.

n A thread includes nothing more than the CPU context, 

and shares program code, data, resources, and virtual 

execution environment(CPU, memory) with other threads 

within a process.



2

Chapter 4 Concurrent 
Programming 7

Threads and Processes(1)

SPST: Dos MPST: Unix

SPMT: JVM MPMT: Win-nt Solaris

Chapter 4 Concurrent 
Programming 8

Threads and Processes(2)

PCB PCB
TCB    TCB     TCB

PCB
TCB    TCB      TCB

Multi-Threading System

OS

ST MT MT

PCB : Process Control Block
TCB : Thread Control Block
contains information and status of thread/process

Chapter 4 Concurrent 
Programming 9

Design problems
Two major design problems:

n How to schedule threads? (user level vs. system level, 

preemptive vs. non-preemptive)

n How to handle blocking system calls: if a user level thread 

issues a blocking system call, such as sleep, I/O, etc, it may 

blocks all threads within the same process.

Two well known thread package: 

§ IEEE and OSI recommended POSIX (Portable Operating 

System Interface)

§ SUN LWP(Light Weight Process)
Chapter 4 Concurrent 

Programming 10

User/System Level Threads 

LWP LWP LWP LWP

User level thread User level thread

System  level thread

Heavyweight process Heavyweight process

Chapter 4 Concurrent 
Programming 11

Thread implementations

/* POSIX */
main(){
…
pthread_create(f,arg);
…
}

void *f(void *arg){
…
pthread_exit(status);

}

/* Win32  */
main(){
…
CreateThread(f,arg);
_beginthread(f,arg);
_xbeginthread(f,arg);
}

DWORM f(DWORD
arg){
…
ExitThread(status);
_endthread (status);
_xendthread(status);
}

/* Java */
main(){
MyThread t;
t = new MyThread();
t.start();

}

class MyThread 
extends Thread{

public void run(){
…
return;

}
}

Chapter 4 Concurrent 
Programming 12

POSIX Thread

/* POSIX thread: thread_creation.c */
/* compile: gcc –o thread_creation thread_creation.c 
–lpthread */

#include <pthread.h>
#include <stdlib .h>
#include <stdio .h>

void * mythread(void);   /* thread prototype */

/* ME-lock initialization */
pthread_mutex_t mylock =    

PTHREAD_MUTEX_IITIALIZER;

int x = 0;                         /*  shared variable */

int main(){
pthread_ttids[10];    /*  identifier array */
int i;

for (i = 0; i < 10; i++){  /*  create 10 threads  */
pthread_create(&tids[i], NULL, mythread, NULL);

}

for (i = 0; i < 10; i++){   /*  waiting for thread termination * /
pthread _join( tids[i], NULL);
printf(“Thread id %ld returned\n”, tids[i]);

}
exit(0);
}

/*  thread function*/
void * mythread(void){ /*  add 1 to shared variable */
while (x < 4000){

pthread _mutex_lock(&mylock);  /* lock */
x++; /* critical region  */
printf(“Thread id %ld: x is now %d\n”, pthread_self(), x);
pthread_mutex_unlock(&mylock); /* unlock  */

}
pthread_exit(NULL); /* thread terminates */
}

/* Each thread increases x  by 1  in each loop, until x is great er 
than or equal to 4000 . If we do not use lock/unlock, what 
happen?  */



3

Chapter 4 Concurrent 
Programming 13

Mutual Exclusion and Synchronization

Thread T Thread S

Possible execution sequences: 

(1) t1,t2,t3,s1,s2,s3 (2) t1,t2,s1,t3,s2,s3
(3) t1,t2,s1,s2,t3.s3 (4) t1,t2,s1,s2,s3,t3
(5) t1,s1,t2,t3,s2,s3 (6) t1,s1,t2,s2,t3,s3
(7) t1,s1,t2,s2,s3,t3 (8) t1,s1,s2,t2,t3,s3
(9) t1,s1,s2,t2,t3,s3 …

T: { x++; }

t1: LOD R1, x
t2: ADD R1, 1
t3: STO R1, x

S: { x++; }

s1: LOD R1, x
s2: ADD R1, 1
s3: STO R1, x

A CR(Critical Region) is an atomic sequence of program segment whose 
execution must not be interrupted, i.e., must be executed mutual exclusively.

Chapter 4 Concurrent 
Programming 14

Mutual Exclusion Mechanisms

Requirements:

n Should guarantee no more than one entity enters CR

n Should prevent interferences from entities outside of CR

n Should prevent starvation

Commonly used ME mechanisms are: semaphore and P/V 

operations, lock/unlock primitives, conditional variables, 

shared variables, monitors, etc.

Chapter 4 Concurrent 
Programming 15

Synchronisation Using Shared Memory

Semaphore

− A semaphore s is a nonnegative integer variable, 
initially with value 1, 

− A semaphore can only be changed or tested by one of 
the following two indivisible access routines:

n P(s): [while (s=0) wait; s := s -1]
n V(s): [s := s+1]

− Semaphores are used for mutual exclusion

Chapter 4 Concurrent 
Programming 16

Push(x):
Repeat
If top<k 
then

{ top++;
stack[top]:=x;}

end

Pop(y):
Repeat
If top>0 
then

{ 
y:=stack[top];

top--; }
end

Stack

d1 d2 d3 d4 dn...

top

k cells

Example
Push and Pop operations on a 
stack by concurrent processes. 

P(s) V(s)Semaphore s;

Mutual Exclusion Using P/V Operations

Chapter 4 Concurrent 
Programming 17

Mutual Exclusion Example(1): a naïve solution

/* POSIX : producer_consumer.c */

#include <pthread.h>

void *producer_function(void); /* prototype */
void *consumer_function(void);

/* Initialize a ME lock */
pthread_mutex_t mylock = 

PTHREAD_MUTEX_IITIALIZER;

/*  shared variables among threads */
int flag = 0;
char buffer;
struct timespec dealy ;

main(){
pthread_t consumer;
delay.tv_sec = 2;  /* set 2 sec delay */
delay.tv_nsec = 0;
/* create consumer  */
pthread_create(&consumer, NULL, 

consumer_function,  NULL);
producer_function();  /* main becomes producer */

}

void *producer_function(void){
while (1){

pthread_mutex_lock(&mylock);
if (flag == 0){

buffer = produce();  /* produce an item */
flag = 1;

}
pthread_mutex_unlock(&mylock);
pthread_delay_ np(&delay);  /* sleep 2 sec */

}
}

void *consumer_function(void){
while (1){

pthread_mutex_lock(&mylock);
if (flag == 1){

consume(buffer);  /* consume an item */
flag = 0;

}
pthread_mutex_unlock(&mylock);
pthread_delay_ np(&delay);   /* sleep 2 sec */

}
}

Chapter 4 Concurrent 
Programming 18

Mutual Exclusion Example(2): a better solution

/* POSIX : producer_consumer1.c */

#include <pthread.h>

/*  thread prototypes */
void *producer_function(void);
void *consumer_function(void);

/* initialize a lock and two conditional variables */
pthread_mutex_t mylock = PTHREAD_MUTEX_IITIALIZER;
pthread_cond_t  w_consumer = PTHREAD_COND_IITIALIZER;
pthread_cond_t  w_producer = PTHREAD_COND_IITIALIZER;

/* threads shared variables */
int flag = 0;
char buffer;
struct timespec dealy;

main(){
pthread_t consumer;
delay.tv_sec = 2;  /* set 2 sec time delay*/
delay.tv_nsec = 0;
/*  create consumer thread */
pthread_create(&consumer, NULL, consumer_function, NULL);
producer_function();/* main becomes producer thread  */

}

void *producer_function(void){
char x;
while (1){

x = produce();
pthread_mutex_lock(&mylock) ;
while (flag == 1) /* wait for consumer’s signal */

pthread_cond_wait(&w_consumer, &mylock);
buffer = x;
flag = 1;
pthread_mutex_unlock(&mylock) ;
pthread_cond_signal(&w_producer);
pthread_delay_np(&delay);/* sleep 2 sec */

}
}

void *consumer_function(void){
char x;
while (1){

pthread_mutex_lock(&mylock);
while (flag == 0) /*  wait  for producer’s signal  */

pthread_cond_wait(&w_producer, &mylock);
x = buffer;
flag = 0;
pthread_mutex_unlock(&mylock) ;
pthread_cond_signal(&w_consumer);
consume(x);
pthread_delay_np(&delay);  /* sleep 2 sec */

}
}



4

Chapter 4 Concurrent 
Programming 19

Client/Server Concurrent systems

Two design issues related with Client software :

n How to interact with users: Graphic User Interface

n How to interact with remote servers: RPC/message

GUI Design: 

§ Understand user’s habits and knowledge about computer

§ Easy to learn and easy to use 

§ Provide user-friendly hint, help, warning and error report

§ Be consistency with commonly used conventions, such as 

menu, icons, color, and terminologies.
Chapter 4 Concurrent 

Programming 20

Client GUI Example:

Chapter 4 Concurrent 
Programming 21

Design of Concurrent Server

D
I
S
P
A
T
C
H

Thread A

Thread B

Thread C

Thread D

Thread A

Thread B

Thread C

Thread D

Thread A

Thread B

Thread C
Thread C

S
C
H
D
U
L
E

Q
U
E
U
E

Thread

Thread

(a) Center  distributor (b) Concurrent threads

(c) Center  scheduler (d) Round-robin schedule

Chapter 4 Concurrent 
Programming 22

Centralized request dispatcher 

Consists of a centralized dispatcher and a set of long lived workers. 
Different workers handle different kinds of requests.

Chapter 4 Concurrent 
Programming 23

a) Client-to-server 
binding using a 
daemon as in 
DCE

b) Client-to-server 
binding using a 
superserver as 
in UNIX

How a Client contacts a Server:

Chapter 4 Concurrent 
Programming 24

Software Agent Paradigm

n A software agent is a program in execution, on 
behalf of its owner to carry out the assigned 
task. 

n An agent is autonomous, may react in different 
environments, may communicate with other 
agents, may temporally continuously running, 
may be driven by goals, and may move from 
host to host.



5

Chapter 4 Concurrent 
Programming 25

What is Mobile Agent?

n A self-contained process that can autonomously 
migrate from host to host in order to perform its 
task on Internet. 

n The motto of Mobile Agents is:
move the computations to the data rather than 
the data to the computations

Chapter 4 Concurrent 
Programming 26

Why do we need mobile agents?

Stock market
IBM: $20
Microsoft: $21
HP: $22

Stock
server 

Client 

buy / sell stocks transfer
information

Customer 

Intelligent
Agent

implement Client transfer
informationbuy / sell 

stocks 

Client 

Mobile
Intelligent

Agent

…

…

implement buy / sell 
stocks

Carry the 
result

send agent

receive agentdispatch

Chapter 4 Concurrent 
Programming 27

Examples of Potential Applications

n User-level applications
− Search and information filtering agents
− Personal assistants

n Middleware systems
− Global file systems 
− Distributed collaboration  and workflow systems

n System level tasks
− Network status monitoring and control
− Intrusion detection
− Software distribution, installation, upgrades

Chapter 4 Concurrent 
Programming 28

n Simulate human’s concurrent activities.
n Various abstractions: task agent, interface 

agent, information agent, etc.
n Occupy less network traffics.
n Achieve more flexibility.
n Reduce network delay.
n Suitable to disconnecting/reconnecting 

networks.

Advantages of Mobile Agents

Chapter 4 Concurrent 
Programming 29

Capable of learningNoAdaptive

Can migrate from one site to anotherNoMobile

Has a relatively long lifespanNoContinuous

Can exchange information with users and other 
agents

YesCommunicative

Initiates actions that affects its environmentYesProactive

Responds timely to changes in its environmentYesReactive

Can act on its ownYesAutonomous

Description
Common to 
all agents?

Property

Software Agents in Distributed Systems

Some important properties by which different 
types of agents can be distinguished.

Chapter 4 Concurrent 
Programming 30

C D
C C

D

DD

C C C C

D

(1) Remote file access model (2) Client/server model

(3) Distributed database model (4) Mobile agent model

Data migration RPC

Data distribution
and coordination

Program migration

A Comparison of different distributed models



6

Chapter 4 Concurrent 
Programming 31

Models for Program Migration

program migration: move a program from one 
host to another and resume its execution.

Chapter 4 Concurrent 
Programming 32

What should we move?

A running program (any language) consists of:

n Code: source code, byte code, or binary code

n Data: initial data, intermediate data

n Resource: hardware/software, such as printer, 

communication link/port, file, library, URL, disk, etc.

n Execution state: snapshot of execution environment, such as 

program counter, registers, stack pointers. content in stack, 

etc.

Chapter 4 Concurrent 
Programming 33

Migration 
model

Migration components Continuation point after migration

Primeval 
migration

Code, Initial data Start from entry  point

Weak 
migration

Code, intermediate data Resume execution from beginning, but 
program follows flags to find move point

Strong 
migration

Code, intermediate data, and 
execution state

Continue execution at the instruction 
immediately following the move point

Types of Program Migration

Strong migration:

move_to(A);
Continuation
point

Weak migration:

if (not moved){
moved = true;
move_to(A);

}
else{

Continuation
point

}

Chapter 4 Concurrent 
Programming 34

Process Migration

n Process migration allows a partially executed 
process to be relocated to another node.
− Execution state of the process is migrated.

n Stack, memory, program counter, state of open files.

n Mainly used for load balancing.
n In the mid 1980s several mechanisms were 

investigated and supported in  a local area 
network environments.

Chapter 4 Concurrent 
Programming 35

n Object migration allows objects to be moved 
across address spaces at different nodes.
− Requires mobility of object’ s code and data.

n Emerald supported object mobility under program 
control. (Univ. of Washington)  (1986)

n Chorus distributed system (1988) supported object 
mobility with autonomous control by the object.

n Most of these system supported migration in  a 
homogeneous system.

Object Migration

Chapter 4 Concurrent 
Programming 36

Remote Programming and Code Mobility:

procedure code + data
ServerClient

results (data )

Code transported
to the server

• Remote Evaluation model by Stamos and Gifford 
(MIT) (1990).

• Java Sun Microsystems (1995) allows code 
migration across heterogeneous platforms.

Code Migration



7

Chapter 4 Concurrent 
Programming 37

Client
agent

(code+data)
Mobile Agent

Server 1

Server 3 Server 2

Agent Migration

Chapter 4 Concurrent 
Programming 38

Mobile Agent Programming Systems

n Tacoma - Tcl based system developed at Cornell and  
Tromso University (1994-95)

n Agent Tcl - Tcl based system developed at Dartmouth 
College. (1994-95) D’Agents

n Aglets - Java based system from IBM. (1996)
n Concordia - Java based system from Mitsubishi 

Research. (1997)
n Voyager - Java based system from ObjectSpace

n Odyssey - Java based system from General Magic

Chapter 4 Concurrent 
Programming 39

Migration and Local Resources

n Actions to be taken with respect to the references to local 
resources when migrating code to another machine.

n GR: establish a global systemwide reference
n MV: move the resource
n CP: copy the value of the resource
n RB: rebind process to locally available resource

GR
GR

RB (or GR)

GR (or MV)
GR (or CP)

RB (or GR, CP)

MV (or GR)
CP ( or MV, GR)

RB (or GR, CP)

By identifier
By value

By type

FixedFastenedUnattached

Resource-to machine binding

Process-to-
resource 

binding

Chapter 4 Concurrent 
Programming 40

n Communication between agents takes place by 
means of an application-level communication 
protocol, which is referred to as an ACL: Agent 
Communication Language.

n Several well known ACLs: KQML: Knowledge Query 
and Manipulation; KIF: Knowledge Interchange 
Format), FIPA-ACL: Foundation for Intelligent 
Physical Agent – ACL. Those ACLs are declarative 
rather than procedural languages, that is, they 
are based on logic (such as Prolog or Lisp), not 
on procedure control (such as C or Java).

Agent Communication Languages

Chapter 4 Concurrent 
Programming 41

A to B: (ask-if ( > (classroom_201) (classroom_203) )

B to A: (reply true)

Example of KQML

Chapter 4 Concurrent 
Programming 42

message purpose content description

INFORM proposition inform that a given proposition is true

QUERY_IF proposition query whether a given proposition is true

QUERY_REF expression query for a given object

PROPOSE proposal provide a proposal

ACCEPT_PROPOSAL proposal id tell that a given proposal is accepted

REJECT_PROPOSAL proposal id

REQUEST action spec request that an action be profermed

CFP proposal 
sepc

ask for a proposal

SUBSCRIBE reference subscribe to an information source

FIPA ACL Specification

tell that a given proposal is rejected



8

Chapter 4 Concurrent 
Programming 43

propose INFORM

sender B

receiver A

language Prolog

content true

propose QUERY_IF

sender A

receiver B

language Prolog

content greater(classroom_201,   
classroom_203 )

Example of FIPA ACL

Agent A: Agent B:


