Chapter 4: Concurrent Programming

>

Distributed

Physically separate autonomous processors that interact and
collaborate

Parallel

Processing occurring on more than one processor within the
same time frame

Concurrent

Processing occurring on more than one processor that is
synchronized in real-time

Chapter 4 Concurrent
Programming

Process: A program in execution.

= Earlier processes are sequential processes as thereis only
one control flow in each process.

= A processincludes its program code, data, resources, and
virtual execution environment(CPU, memory).

Chapter 4 Concurrent
Programming

/*UNIX and C : process creation.c*/
#include<stdlib .h>
main(){
intpid;
if ((pid = fork() != 0){ /* father process*/
printf(* Father\n");
wait(0);
}
elseif ((pid = fork()) 1= 0){ /* son process*/
printf(* Son\n");
wait(0);
}
else{ /* grandson process */
printf(* Grandson\n”);
}
exit(0);

Chapter 4 Concurrent
Programming

| Heep 1 Hegp [| Hesp |

fProgramand frrogramand Frogramand
COMStart CONMS At COMSae
father son grandson

Every process has its own independent memory space

Chapter 4 Concurrent
Programming

Process Context Switch

»

Process Context switch:

allocate CPU from one process to another.

A Process context includes two portions:
CPU contextand Storagecontext.

= CPU context: program counter, registers, stack/heap pointers
and other control registers. Easy to switch.

= Storage context: program code, data, address space, memory
mapping, (disk) swapping, etc. Hard and time consuming to
switch.

Chapter 4 Concurrent
Programming

Thread: a(part of &) program in execution.

= Maintainsonly the minimum information to allow aCPU
to be shared by several threads.

= A thread includes nothing more than the CPU context,
and shares program code, data, resources, and virtual
execution environment(CPU, memory) with other threads

within a process.

Chapter 4 Concurrent
Programming

Threads and Processes(1 Threads and Pri 2
L . - oceses(2)

B 2B B
B T¢B 148 Tce_ Tes T¢B

SPST: Dos MPST: Unix

Multi-Threading System

55 55 |59 =

PCB : Process Control Block
TCB : Thread Control Block

SPMT: VM MPMT: Win-nt Solaris - ;
containsinformation and status of thread/process
Chapter 4 Concurrent Chapter 4 Concurrent
Programming 7 Programming 8

Design problems : User/System Level Threads
=0 Y

Two major design problems:

™ ™

= How to schedule threads? (user level vs system level, User level thread User level thread

preemptivevs. non-preemptive)

= How to handle blocking system calls: if auser level thread
issues a blocking system call, such as sleep, 1/0, etc, it may L I L I L I L I
blocks all threads within the same process.

Two well known thread package: |j |j |:| |j |j

IEEE and 0SI recommended POSIX (Portable Operating

SySTENTfeverTTEaTT

System Interface)

SUN LWP(Light Weight Process)
Chapter 4 Concurrent Chapter 4 Concurrent
Programming 9 Programming 10

POSIX Thread

3 Tbrea_d implementations u

N
POSIX thread: thread_creation.c*/
/* POSIX */ /* Win32 */ * Java */ compile goc—othread creationthread_creationc (=01 <10;i++){ /* waitingfor thread termination* /
- ipthread */ pthread _join(tids[i], NULL);
main(){ main(){ main(){ printf(Thread id %ld returnedn” , tigs[i]);
MyThread t; finclude <pthread h>
pthread_create(f,arg); |CreateThread(f,arg); t = newMyThread(); include <stdlib > Hit(0);
. . finclude<sdo .h> Y

_beginthread(f,arg); t.start();
} _xbeginthread(f,ar g); } id* mythreadvoid); /* thread prototype*/ H thread function*/

) d* mythreadvoid){/* add 1tosharedvariable*/

F(voi ME lockinitialization/ hile (x<4000)(
ReicRiorRaroN Ce=leed thread mutec t mylock = pthread _mutex_lock (&mylock); /* lock */
DWORM f(DWORD extends Thread{ PTHREAD_MUTEX_IITIALIZER: -+ * critical region */
thread_exit(status): |ar rintf(: Thread id %ld: x isnow %c, pthread self(), x);

)D _exit() [public veid runQi ihtx=o0; * sharedvariable*/ | thread_mutex_unlock(&mylock); /* uniock =/

ExitThread(status); iht main()}{ pphread exit(NULL); I*threadterminates*/

endthread (status); return; thread ttids[10]; /* identifier array*/ }

= ipti;

_xendthread(status); } | Each thread increasesx by 1 in each loop, until xisgreat er

+ + r (i=0;i<10; i++){ /* create10threads */ than or equal to4000. If wedo not uselock/unlock, what

thrcad AL oyihrcad ALY, -
}
Chapter 4 Concurrent Chapter 4 Concurrent

12

Programming 1 Programming

: Mutual Exclusion and Synchronization

Thread T Thread S
Ti{x++} Si{x++}
tLLOD RLx s LOD RLx
t2:ADD RL1 s2:ADD R1,1
t3:STO R1,x s3:STO R1x

Possible execution sequences:

(1) t1,t2,13,51,52,s3
(3) t1,t2,51,52,t3.53
(5) t1,51,t2,t3,52,s3
(7) tl,s1,t2

(2) t1,12,51,13,52,53
(4) t1,t2,51,52,53,t3
(6) t1,51,t2,52,13,53
(8) t1,51,52,12,13,s3

A CR(Critical Region) is an atomic sequence of program segment whose
execution must not be interrupted, i.e., must be executed mutual exclusively.

Chapter 4 Concurrent
Programming 13

:. Mutual Exclusion Mechanisms

Requirements:

= Should guarantee no more than one entity enters CR

= Should prevent interferences from entities outside of CR

= Should prevent starvation

Commonly used ME mechanismsare: semaphore and P/V

operations, lock/unlock primitives, conditiona variables,

shared variables, monitors, etc.

Chapter 4 Concurrent

Programming

14

: Synchronisation Using Shared Memory

Semaphore

- A semaphore s is anonnegative integer variable,
initially with value 1,
- A semaphore can only be changed or tested by one of
the following two indivisible access routines:
= P(s): [while (s=0) wait; s:=s-1]
= V(9): [s:=st+1]
- Semaphores are used for mutual exclusion

Chapter 4 Concurrent
Programming 15

:; Mutual Exclusion Using P/V Operations

Example m 9)
Push a?nd Pop operationson a 75)\ /(\
stack by concurrent processes. ush(x): 4 op(y)
€) R
L kcolis If top<k If top>0
then then
{ top++; {
STW y:=stack[top]; Y
t)

Yatal

Chapter 4 Concurrent

Mutual Exclusion Example(1): anaive solution
i

1 POSIX: producer_consumer.c*/
void* producer_function(void){
#include <pthread h> while(L{
pthread mutec lock (&mylock X
void*producer_function(void); /* prototype*/ f (flag==0){
Void* consumer_function(voic); (R =), e nliEm 7
= flag=1;

/* InitializeaME lock */
pthread_mute t mylock =

PTHREAD_MUTEX_IITIALIZER;

}

pthread mutex_unlock(&mylodk)

pthread delay_rp(&delay); /* sleep 2sec*/
}

I+ sharedvariablesamongthreads*/ }
int flag=0;
char buffer; void* consumer_function(void){
Sructtimespecdealy ; while(1)(
pthread mutex_lock(&mylo)
main{ if (flag==1){
pthread_t consumer; consume(buffer); /* consumeanitem */
delayty_sec=2; 1+ set 2secdelay*/ flag=0;
delayV_nsec=0;

}
pthread mutex_unlock(&myl

I* createconsumer */ lock Y
pthread delay_rp(&delay); /* deep 2sec*/
}

pthread_create(& consumer, NULL,
consumer_function, NULL);
producer_function(); /* main becomespr oducer */ }

Chapter 4 Concurrent
Programming 17

Programming 16
‘." Mutual Exclusion Example(2): a better solution
JPosx: pratuos consumeric:s p——
o
Andlude <pthreacth> phile (1)(
= produce();
/] thread prototypes pthread_mutex_lock(& mylock) ;
e Y honoay B T Shiaumer's sgnal 1
id *consumer_function(vaid); pthread_cond_wait(&w_consumer , & mylock);
e =x
[initiazeatoc and two condiiona veribles s 5
mu:d mutex. tmylud(PTHREAD)_MUTEX_IITIALIZER; pthread_mutex_unlock(& mylock) ;
\er = PTHREAD_COND_IITIALIZER; pthread_cond_signal(&w_producer);
hvmﬂ cond_t wJJrodurx PTHREAD_COND_TITIALIZER; pthread_delay_np(& delay);/* sleep 2 sec*/
e e
ift flag =
B unctonta
Jructtimespe deay: o
e
an({ ‘pthread_mutex_lock(& mylock),
thread_t consumer ;. while(flag==0) /* wait for producer'ssignal */
i P —— v cond wat(&w.produesr, &mylock
eyt oo - = buter
S v thread 1 i
thread_create(& consumer, NULL, consumer_function, NULL) pthread_mutex_unlock(& mylock)
roducer_function():/* main becomes producer thread * pthread_cond_signal (& w_consumer);
s
pthread_delay_np(& delay); /* sleep 2sec*/
i
Chapter 4 Concurrent
Programming 18

Client/Server Concurrent systems

r

Two design issues related with Client software :

= How tointeract with users: Graphic User Interface

= How to interact with remote servers: RPC/message

GUI Design:
Understand user’s habits and knowledge about computer
Easy to learn and easy to use
Provide user-friendly hint, help, warning and error report
Be consistency with commonly used conventions, such as

menu, icons, color, and terminologies.
Criapier 4 Loncurent
Programming 19

Client GUI Example:

B i =T

¢

CLLEE= !

LU

Chapter 4 Concurrent
Programming 20

Design of Concurrent Server

= —C
1 —
H: [m
0 _ ﬁl
A
: =
(g Center distribuf (p-Cancurrent threa

(c) Center scheduler (d) Round-robin schedule

Chapter 4 Concurrent
Programming 21

: Centralized request dispatcher
Fieguest thapatohed

Diepanichar thread 12 @ ik Tidad Server

L i A A eorioer thread

Rig{puisl coamin g i
S Ll il T

ity syshein

Consists of a centralized dispatcher and a set of long lived workers.
Different workers handle different kinds of requests.

Chapter 4 Concurrent
Programming 22

How a Client contacts a Server:

.

Demraws o pEEEEE 3 Client-to-server
- ..l TR | o binding using a
| L* d daemon asin
[T ek PO DCE
e fol
T 7 et [» Clientto-server
Foram] o TS '
g et [} et binding using a
_ [t == superserver as
- i in UNIX

Chapter 4 Concurrent
Programming 23

Software Agent Paradigm

= A software agent is a program in execution, on
behalf of itsowner to carry out the assigned
task.

= An agent is autonomous, may react in different
environments, may communicate with other
agents, may temporally continuously running,
may be driven by goals, and may move from
host to host.

Chapter 4 Concurrent
Programming 24

What is Mobile Agent?

»

= A self-contained processthat can autonomously
migrate from host to host in order to perform its
task on Internet.

= The motto of Mobile Agentsis:
move the computations to the data rather than
the data to the computations

Chapter 4 Concurrent
Programming 25

:- Why do we need mobile agents?

Client
Customer, '7"“—}} Gock market
v% tranfer IBM: $20
{g‘; = witNgrmation \Microsoft: §21
—e O « §20
_
pplement Clleg:[‘ transfer A
1itelligent information
P |Agent stocks
ifhplement
MObile ' | gisparch
=g fitelligent
Agent)

Chapter 4 Contufrent
Programming

Lesilt — 26

Examples of Potential Applications

B

= User-level applications

- Search and information filtering agents

- Personal assistants
= Middlewaresystems

- Global file systems

- Distributed collaboration and workflow systems
= System level tasks

- Network status monitoring and control

- Intrusion detection

- Softwaredistribution, installation, upgrades

Chapter 4 Concurrent
Programming 27

: Advantages of Mobile Agents
=
= Simulate human’s concurrent activities.

= Various abstractions: task agent, interface
agent, information agent, etc.

= Occupy less network traffics.
= Achieve moreflexibility.
= Reduce network delay.

= Suitable to disconnecting/reconnecting
networks.

Chapter 4 Concurrent
Programming

28

Software Agents in Distributed Systems

common to

DESCTIpTon
(e all agents? 4
Autonomous Yes Can act on its own
Reactive Yes Responds timely to changes in its environment
Proactive Yes Initiates actions that affects its environment

o Can exchange | jion with users and other

S re!

agents
Continuous No Has a relatively long lifespan
Mobile No Can migrate from one site to another
Adaptive No Capable of learning

Some important properties by which different
types of agents can be distinguished.

Chapter 4 Concurrent
Programming

29

A Comparison of different distributed models
@ I_l__l
> :I — RPC > Ei:l

(2) Client/server model

Data migration

(1) Remote file access model

E bata > E :lm'g;m' o E
< >

¥ . 2
T and T <

(3) Distributed database model (4) Mobile agent model

Chapter 4 Concurrent
Programming

30

Models for Program Migration

B ark g
Arcavar-ramied
ety .
L b R
By ey
o T
Serdacnemind
ety
TIPSl
Sirang robiey
Mamaker 4 e
Rsr faraml
T
3anm rror

program migration: move a program from one
host to another and resume its execution.

Chapter 4 Concurrent
Programming 31

1 What should we move?

A running program (any language) consists of:

= Code: source code, byte code, or binary code

= Data initia data, intermediate data

= Resource: hardware/software, such as printer,
communication link/port, file, library, URL, disk, etc.

= Execution state: snapshot of execution environment, such as
program counter, registers, stack pointers. content in stack,
etc.

Chapter 4 Concurrent
Programming 32

Types of Program Migration

y

Migration Migration components Continuation point after migration
‘model

Primeval Code, Initial data Start from entry point

migration

Wesk Code, data but
migration. follows flags to find-move point
Strong Code, intermediate data, and Continue execution at the instruction
migration execution state: immediately following the move point

Strong migfation: Weak migratlon
|

v
| if (not moved){

v moved =true;
move jto(A); move_to(A);
Continuation }
point else(4
v Continuation
Y point

)

Chapter 4 Concurrent
Programming 33

»

= Process migration allows a partially executed
processto berelocated to another node.
- Execution state of the processismigrated.

= Stack, memory, program counter, state of open files.

= Mainly used for load balancing.

= |n themid 1980s several mechanismswere
investigated and supported in alocal area
networ k environments.

Chapter 4 Concurrent
Programming 34

Object Migration

—r

= Object migration allows objects to be moved
across address spaces at different nodes.
- Requires mobility of object scode and data.

= Emerald supported object mobility under program
control. (Univ. of Washington) (1986)

= Chorus distributed system (1988) supported object
mobility with autonomous control by the object.

= Most of these system supported migrationin a

L —homogeneous system

Chapter 4 Concurrent
Programming 35

»

Remote Programming and Code Mobility:

ocedurecodetdata
Q —_— D Codetransported
Clien

« > Sever to the server
results (data)

4 Remote Evaluation model by Stamos and Gifford
(MIT) (1990).

4 Java Sun Microsystems (1995) allows code

Chapter 4 Concurrent
Programming 36

Agent Migration

Client
@T e 1
(codet+data) I:I

o
Server 3 Server 2

Chapter 4 Concurrent
Programming 37

M obile Agent Programming Systems

»

{4 Tacoma- Tcl based system developed at Cornell and
Tromso University (1994-95)

{4 Agent Tcl - Tcl based system developed at Dartmouth
College. (1994-95) D' Agents

{1 Aglets-Javabased system from IBM. (1996)

4 Concordia- Java based system from Mitsubishi
Resear ch. (1997)

{4 Voyager - Java based system from ObjectSpace

{1 Odyssey - Java based system from General Magic

Chapter 4 Concurrent
Programming 38

Migration and Local Resources

3

Resource-to machine binding

. o

Process-to- |By identifier |MV (or GR) GR (or MV) GR
resource |By value CP (or MV, GR) GR (or CP) GR
binding BY Type RB (0T GR, TPJ RB 0T GR, CTPJ_ RB (0T GRJ

= Actionsto be taken with respect to the references to local
resources when migrating code to another machine.

= GR: establish aglobal systemwide reference

= MV: movethe resource

= CP: copy the value of the resource

= RB: rebind processto locally available resource

Chapter 4 Concurrent
Programming 39

:; Agent Communication L anguages

= Communication between agents takes place by
means of an application-level communication
protocol, which is referred to as an ACL: Agent
Communication Language.

= Several well known ACLs: KQML: Knowledge Query
and Manipulation; KIF: Knowledge Interchange
Format), FIPA-ACL: Foundation for Intelligent
Physical Agent — ACL. Those ACLs are declarative
rather than procedural languages, that is, they
are based on logic (such as Prolog or Lisp), not
on procedure control (such as C or Java).

Chapter 4 Concurrent
Programming 40

A toB: (ask-if (> (classroom_201) (classroom_203))

BtoA: (replytrue)

Chapter 4 Concurrent
Programming 41

; FIPA ACL Specification

message purpose content description
TNFORW propusition IO tat & giverT propusiion is uoe
QUERV_TF proposition [uery whether a given proposition 1S true
QUERY_REF expression query Tor a given object
PROPOSE proposal provide a proposal

oLl that a g

REIECT_PROROSAL proposal id 4oy that a given proposal is rejected
REQUEST action Spec |request that an action be proferied
FFp proposal ask for a proposal

SUBSCRIBE reference Subscribe €0 an infornation source

Chapter 4 Concurrent
Programming 42

‘ Example of FIPA ACL

propose QUERY_IF propose INFORM

sender | A sender B

receiver B receiver A

tmese | prolog R

et | greater(classroom_201, content true
classroom_203)

Chapter 4 Concurrent
Programming

