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Chapter 6: Distributed Synchronization 
and Mutual Exclusion

n What is time? Do we have a global time in a 

distributed system?

n Synchronization with respect to physical time.

n Synchronization with respect to logical time.

n Distributed coordinator.

n Distributed mutual exclusion.
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What is time?
� an instance or single occasion for some event; "this time he succeeded"; "he called four times"; "he could do ten at a 

clip" 
� an indefinite period (usually marked by specific attributes or a ctivities); "he waited a long time"; "the time of year for 

planting"; "he was a great actor is his time" 
� a period of time considered as a resource under your control and sufficient to accomplish something; "take time to 

smell the roses"; "I didn't have time to finish"; "it took more than half my time" 
� a suitable moment; "it is time to go" 
� the continuum of experience in which events pass from the future through the present to the past 
� clock time: the time as given by a clock; "do you know what time it is?"; "the time is 10 o'clock" 
� clock: measure the time or duration of an event or action or the person who performs an action in a certain period of 

time; "he clocked the runners" 
� fourth dimension: the fourth coordinate that is required (along with three spatial dimensions) to specify a physical 

event 
� assign a time for an activity or event; "The candidate carefully timed his appearance at the disaster scene" 
� a person's experience on a particular occasion; "he had a time holding back the tears"; "they had a good time 

together" 
� set the speed, duration, or execution of; "we time the process to manufacture our cars very precisely" 
� regulate or set the time of; "time the clock" 
� meter: rhythm as given by division into parts of equal time 
� prison term: the period of time a prisoner is imprisoned; "he served a prison term of 15 months"; "his sentence was 5 

to 10 years"; "he is doing time in the county jail" 
� adjust so that a force is applied an an action occurs at the desired time; "The good player times his swing so as to hit 

the ball squarely" 
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“What then, is time? 

If no one asks me, 

I know. 

If I wish to explain it to 

someone who asks, 

I know it not.”

St. Augustine’s Dilemma:

St. Augustine
354-430
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Physical Clock

n Also called Timer, usually a quartz crystal, oscillating at a 

well-defined frequency. A timer is associated with  two 

registers: a counter and a holding register , and counter 

decreasing one at each oscillation.

n When the counter gets to zero, an interruption is generated 

and is called one clock tick.

n Crystals run at slightly different rates, the difference in time

value is called a clock skew.

n Clock skew causes time-related failures.
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How Clocks Work in Computer

Quartz 
crystal

Counter 

Holding 
register

Each crystal oscillation 
decrements the counter by 1

When counter gets 0, its 
value reloaded from the 

holding register

CPU

When counter is 0, an 
interrupt is generated, which 

is call a clock tick

At each clock tick, an interrupt 
service procedure add 1 to time 

stored in memory Memory

Oscillation at a well-
defined frequency
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Clock Skew problem

2146 2147 2148 2149 2150 2151 2152 2153 2154

2142 2143 2144 2145 2146 2147 2148 2149 2150

Compiler server

Editing computer

output.o file created Will output.c be 
recompiled?

output.c file created output.c file changed

Why clocks need to be synchronised
n Many applications rely on correct and accurate timing

− Real time applications, e.g. calculation of interests, 
− Version control and configuration management, e.g. the make command in 

Unix
n Correct and accurate clocks can simplify communication and concurrent control
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What’s Different in Distributed Systems

n In centralized systems, where processes can 
share a clock and memory, implementation of 
synchronization primitives relies on shared 
memory and the times that events happened.

n In distributed system, processes can run on 
different machines. 
− No shared memory physically exists in a multi-computer 

system
− No global clock to judge which event happens first
− Logical simulation of shared memory is not a good 

solution
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Synchronization With Physical Clocks

n How do we synchronize physical clocks with 
real-word clock?
− TAI (International Atomic Time): Cs133 atomic clock
− UTC (Universal Coordinated Time): modern civil time, 

can be received from WWV (shortwave radio station), 
satellite, or network time server.

− ITS (Internet Time Service) NTS (Network Time 
Protocol)

n How do we synchronize clocks with each 
other?
− Centralized Algorithm: Cristian’s Algorithm
− Distributed algorithm: Berkeley Algorithm
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How to synchronize local clock (1)

n If a local clock is slower, we can adjust it 
advancing forward (lost a few clock ticks), but 
how about it was faster than UTC?
− set clock backward might cause time -related failures

n Use a soft clock to provide continuous time :
− Let S be a soft clock, H the local physical clock
− S(t) = H(t) + δ(t) (1)
− The simplest compensating factor δ is a linear function of 

the physical clock:  δ(t) = aH(t) + b (2)
− Now, our problem is how to find constant a and b
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How to synchronize local clock (2)

n Replace formula (1), we have
− S(t) = (1 + a)H(t) + b (3)
− Let the value of S be Tskew, and the UTC at h be Treal, we 

may have that Tskew > Treal or Tskew < Treal. 
− So S is to give the actual time after N further ticks, we 

must have:
Tskew= (1 + a)h + b (4)
Treal + N = (1 + a)(h + N) + b (5)

n Solve (4) and (5), we have:
a = (Treal - Tskew)/N
b =  Tskew - (1 + a)h
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How to synchronize distributed clocks 

n Assume at UTC time t, a physical clock time 
is H(t):
− If they agree, then dH/dt = 1
− But it is virtually impossible, for each physical clock, there 

is a constant ρ (given by manufacturers, called maximum 
drift rate), such that

1 - ρ ≤ dH/dt ≤ 1 + ρ
− If two clocks drift away from UCT in the opposite 

direction, then after ∆t, they are 2ρ∆t apart. 
− Thus, if we want to guarantee that no two clocks ever 

differ by more than δ, clocks must be re-synchronized at 
least every δ/2ρ seconds.
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The relation between clock time and UTC when clocks tick at different rates.

Clocks Drifting
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Assumptions: There is a machine with WWV receiver, which 
receives precise UTC (Universal Coordinated Time). It is 
called the time server.

Algorithm:
1. A machine sends a request to the time server at least every 

δ/2ρ seconds, where δ is the maximum difference allowed 
between a clock and the UTC;

2. The time server sends a reply message with the current UTC 
when receives the request;

3. The machine measures the time delay between time serve’s 
sending the message and the machine’s receiving the 
message. Then, it uses the measure to adjust the clock. 

Cristian’s algorithm (1)
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Getting the current time from a time server

Cristian’s algorithm (2)
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Measure the message propagation time
− (T1−T0)/2
− (T1−T0− I)/2 
− Take a series of measures, and calculate the average;
− Take a series of measures, and use the fastest one.

Adjust the clock:
− If the local clock is faster than the UTC, add less to the time 

memory for each clock tick; 
− If the local clock is slower than the UTC, add more to the time 

memory for each clock tick.

Cristian’s algorithm (3)
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The Berkeley Algorithm

a) The time daemon asks all the other machines for their clock values
b) The machines answer
c) The time daemon tells everyone how to adjust their clocks
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Logical Clock

A person with one watch knows what time it is. 
A person with two or more watches is never sure.

Ø Lamport defined a relation called happens 
before, represented by →.
Ø The relation → on a set of events of a system is 
the relation satisfying three conditions:
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Conditions of Happens Before

§ If a and b are events in the same process, and a 
comes before b, then a → b.

§ If a is the sending event of a message msg by 
one process, and b is the receipt event of msg, 
then a → b.

§ If a → b, b → c, then a → c .

ØTwo distinct events a and b are concurrent if 

a  ? b   and b ? a
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e2

e1

e4

e5

e6

e3

e8

e7

P1 P2 P3

Realtime

e1 ? e2 ? e3
e1 ? e4 ? e5 ? e6 ? e3
e2 ? e7 ? e8

e2  ?e4   and e5 ? e7

Example: Event ordering
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Logical Clock Condition

v For any events a and b, if a → b then 
C(a) < C(b)

v From the definition of →, the Clock Condition is 
satisfied if the following two conditions hold:

v Condition 1:if a and b are events in P i, and a
comes before b, then 

C i(a) < C i(b).
v Condition 2:if a is the sending of a msg by P i

and b is the receipt of the msg by P j, then
C i(a) < C j(b).
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Implementation Rules

Ø IR1: Each process Pi increments Cibetween 
any two successive events (for Condition 1).

Ø IR2: If event a is the sending of msg m by 
Pi, then m contains a timestamp Tm = Ci(a).
Upon receiving a msg m, Pj sets Cj greater 
than or equal to Cj ’s present value and 
greater than Tm (for Condition 2).
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Total Ordering Relation

Ø If a is an event in Pi and b is an event in Pj, 
then 

a ⇒ b if and only if either:
(1) Ci(a) < Cj(b) , or
(2) Ci(a) == Cj(b) and Pi < Pj .

By ⇒ relation, we can totally order all events 
happened in a distributed system
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e2

e1

C2=2

e5

e6

e3

e8

e7

P1 P2 P3

Real time

e4

C1=1

C1=2

C1=5

C2=3

C2=4 C3=4

C3=3

Example: Event ordering wrt logical clocks

e1 ⇒ e2 ⇒ e4 ⇒ e5 ⇒ e7 ⇒ e6 ⇒ e8 ⇒ e3
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Distributed Mutual Exclusion

Ø Concurrent access to a shared resource (critical 
region) by several uncoordinated processes located 
on several sites is serialized to secure the integrity 
of the shared resource.

Ø The major differences comparing with the single 
processor ME problem are: (1) there is no shared 
memory  and (2) there is no common physical 
clock.

Ø Two kinds of algorithms: logical clock based and 
token based.
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Requirements of Distributed ME

Ø Mutual Exclusion: guarantee that only one request access 
the CR at a time.

Ø Freedom from deadlock: two or more sites(hosts) should 
not endlessly wait for msg’s that will never arrive.

Ø Freedom from starvation: a site should not be forced to wait 
indefinitely to access CR.

Ø Fairness: requests must be executed in the order they are 
made. (fairness → freedom of starvation, but not reverse)

Ø Fault tolerance: in the case of failure, the algorithm can 
reorganize itself so that it continues to function without any 
disruption.
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How to Measure Performance

Ø Number of msg’s per CR invocation.

Ø Synchronization Delay (SD).
Ø Response Time (RT).

Ø System Throughput (ST):
Ø ST = 1/(SD + E)

Ø where E is the average CR execution time.

last req exits CR next req enters CR
SD

enters CR exits CRCR req
E

RT
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Centralized Solution

Queue up the requests and grant CR one by one.

Cp2

p1

p3

Ø 3 msg’s per CR invocation: REQ, ACK, REL
Ø Single point of failure
Ø Control site is a bottleneck
Ø SD = 2T where T is the communication delay
Ø ST = 1/(2T + E)
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Distributed ME Algorithms

n Si: a site (or a process)
n Ri: a Request Set, contains id’s of all 

those sites from which Si must acquire 
permission before entering CR.

n For example, the Centralized Solution:
Ri = {SC}
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Lamport Algorithm

Ø ∀i : 1 ≤ i ≤ n    Ri = {S1, S2, … Sn}
Ø Assumption: msg’s to be delivered in the 

FIFO order between every pair of sites.
Ø Data structure: each site Si maintains a 

Request queue, rqi, which contains 
requests ordered by their timestamp.
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Lamport Algorithm (A) Request:

Ø When Si wants to enter the CR, it sends a 
REQ(t si, i)

to all sites in Ri and places the request on rqi ,    
where (t si, i) is the timestamp of the request.

Ø When Sj receives the REQ(t si, i) from Si, it returns
REPLY (t sj, j)

to Si, and places Si‘s REQ on rqj
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Ø Si enters the CR when the following two 
conditions hold:

L1: S i has receives a msg with 
timestamp later than (tsi, i) from all other 
sites.

L2: S i’s request is at the top of rqi.

Lamport Algorithm (B) Enter CR:
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Ø Si, upon exiting the CR, removes its 
request from the top of rqj , and sends a 
timestamped REL msg to all sites in Ri .

Ø When a site Sj receives a REL msg from 
Si, it removes Sj’s REQ from rqj.

Lamport Algorithm (C) Release:
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Ø Correctness: from the total ordering of 
timestamps, it is easy to prove that no 
two sites satisfy both L1 and L2 
simultaneously.

Ø Performance:
Number of msg’s: 3(N – 1)
SD:  T

Correctness and Performance:
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Ricart-Agrawala Algorithm 

Ø An optimization of Lamport’s 
Algorithm.

Ø ∀i : 1 ≤ i ≤ n    Ri = {S1, S2, … Sn}
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Ricart-Agrawala Algorithm (A) Request:

Ø When Si wants to enter the CR, it sends a 
REQ(t si, i)

to all sites in Ri . 
Ø When Sj receives the REQ(t si, i) from Si, it returns a 

REPLY (t sj, j)
to Si  if Sj is neither requesting nor executing the CR, 
or if Sj is requesting and Si’s REQ ⇒ Sj’s REQ, 
otherwise places Si’s REQ on rqj and the reply is 
deferred.
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Ricart-Agrawala Algorithm (B) Enter CR:

Ø Si enters the CR when the following 
condition holds:

L: Si has receives a REPLY from 
all other sites.
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Ø Si, upon exiting the CR,  sends a 
timestamped REL msg to all sites with a 
deferred REQ .

Performance:

Number of msg’s :  2(N – 1)
SD: T

Ricart-Agrawala Algorithm (C) Release:
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Maekawa Algorithm

Ø A site does not request permission from every other site, but 
only from a subset of the sites.

Ø A site locks all the sites in Ri in exclusive mode.
Ø Request set Ri is constructed to satisfy following conditions:

M1: ∀i ∀j  i ≠ j, 1 ≤ i, j ≤ n :  Ri ∩ Rj ≠ φ
M2: ∀i  1 ≤ i ≤ n : Si ∈ Ri

M3: ∀i  1 ≤ i ≤ n :  Ri = k
M4: ∀i ∀j  1 ≤ i, j ≤ n : any Si is contained in k number of

Rj’ s.
Ø Relationship between k and n: k = sqrt(n) + 1
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Ø At least one common site between Ri and 
Rj , from M1 and M2.

Ø All sites have to do an equal amount of 
work to invoke mutual exclusion, from 
M3.

Ø All sites have equal responsibility in 
granting permission to other sites, from 
M4.

Maekawa Algorithm: Comments
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S1

S5S6

S7

S8 S3

S2

S4

R1 = { S1, S2, S5, S8}
R2 = { S1, S2, S3, S6}
R3 = { S2, S3, S4, S7}
?

Ø take R5 = { S4, S5, S6, S1} and
R8 = { S7, S8, S1, S4},

we have R5 n R8 = { S4, S1}

Maekawa Algorithm: An example
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Ø When Si wants to enter the CR, it sends a 
REQ(t si, i)

to all sites in Ri . 
Ø When Sj receives the REQ(t si, i) from Si, it   

returns a 
REPLY (t sj, j)

to Si  if Sj has not send a REPLY to any 
site from the time it received the last REL 
msg. Otherwise, it defers the REQ.

Maekawa Algorithm (A) Request
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Maekawa Algorithm (B) Enter CR

Ø Si enters the CR when the following 
condition holds:

L: Si has receives a REPLY from all sites in 
Ri.
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Maekawa Algorithm (C) Release

Ø Si sends a REL(i) to all sites in Ri.

Ø Sj, upon receiving a REL(i) ,  sends a 
REPLY to the next waiting REQ and delete 
that entry. If the waiting queue is empty, set 

NO_REPLY_SINCE_LAST_REL.
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Correctness and Performance

Ø Correctness:
Suppose that two sites Si and Sj are concurrently 
in the CR. If  Ri ∩ Rj = {Sk} then Sk must have 
send REPLY to both Si and Sj concurrently, 
which is a contradiction to the role of 

NO_REPLY_SINCE_LAST_REL
Ø Performance:

number of msg’s: 3(sqrt (n) + 1)
SD: 2T
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Problem: Potential of Deadlock

Ø Without the loss of generality, assume that three sites Si, Sj and 
Sk simultaneously invoke Mutual Exclusion, and suppose:

Ri ∩ Rj= {Su} 
Rj ∩ Rk = {Sv} 
Rk ∩ Ri= {Sw} 

Ø Solution: extra msg’s to detect deadlock, maximum number of 
msg’s = 5(sqtr(n) + 1).

SiSw

Sk

Sv

Sj

Su
RW

R

W R

W
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Token-based ME Algorithms

Ø A unique Token is shared among all sites.
Ø A site is allowed to enter the CR if it holds the 

Token.
Ø Token-based algorithms use a sequence number 

instead of timestamps.
Ø Correctness proof is trivial.
Ø Rather, the issues of freedom from starvation and 

freedom from deadlock are more important.
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Suzuki-broadcasting Algorithm

Ø Distinguishing outdated REQ’s from the current REQ.

Ø Determining which site has an outstanding REQ for CR.
Ø Data structure:

REQ(j, n) : a request from Sj with sequencing number n.
RN j[1..n] : an array at Sj where RN j[i] is the largest 

sequencing number received so far from Si.
Token { Q: REQ queue;

LN[1..n] : where LN[j] is the most recent 
sequencing number of Sj .

}
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Suzuki Algorithm (A) Request

Ø If Si does not hold the token, it increments 
its sequencing number, RNi[i], and sends a

REQ(i, RNi[i] )
to all sites (broadcasting). 

Ø When Sj receives the REQ(i, n) from Si, it 
sets RNj[i] to max(RNj[i], n) . If Sj has the 
idle token, then it sends the token to Si if 
RNi[i] = LN[i] + 1 .
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Suzuki Algorithm (B) and (C)

Ø (B) Enter CR:
Ø Si enters the CR when it has the token

Ø (C) Release:
Ø Si sets a LN[i] to RN i[i], 

Ø For every Sj whose identifier is not in the token ’s Q,
it appends Sj into in the token’s Q if 

RN i[j] = LN[j] + 1 
Ø If the token’s Q is non-empty after the above update, the 

Si deletes the top identifier from the token’s Q and sends 
the token to that identified site.
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Correctness and Performance

Ø A requesting site enters the CR in finite time. 
Since one of the sites will release the token in 
finite time, site Si‘s request will be placed in the 
token’s Q in finite time. Since there can be at most 
n-1 requests in front of Si, Si will execute the CR in 
finite time.

Ø Performance:
number of msg’s: 0 or n
SD : 0 or T
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Singhal’s Heuristic Algorithm

Ø Each site maintains information about the 
state of other sites and uses it to select a set 
of sites that are likely to have the token.

Ø A site must select a subset of sites such that 
at least one of those sites is guaranteed to get 
the token in the near future, otherwise, there 
is a potential deadlock or starvation.
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Singhal Algorithm: Data Structure

Ø ∀i : 1 ≤ i ≤ n
SVi[1..n] :   Sj’ s state array {R, E, H, N}.
SN j[1..n] : Sj’ s highest sequencing number array

Ø Token 
TSV[1..n] :   Token’s state array {R, N}.
TSN[1..n] : highest sequencing number array

Ø States: a site can be in one of the following states: 
R: requesting the CR  
E: entering the CR 
H: holding the idle token
N: none of the above
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N…NNR…RR

0….0

N….N

0….0

SVi

SNi

TSV

TSN

Singhal Algorithm: Initialization

Ø Property: for any Si   and Sj, either
SVi[j] = R or SVj[i] = R

1 2 i-1 ni
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Singhal Algorithm (A) Request

Ø If Si does not hold the token:
(1) SVi[i]  ⇐ R;   (2) SNi[i] ⇐ SNi[i] + 1;
(3) sends REQ(i, SNi[i] ) to all sites for which SVi[i] == R . 

Ø When Sj receives the REQ(i, m) from Si,  if m ≤ SNj[i] do nothing;
otherwise SNj[i] ⇐ m,

cases:  
(1) If SVj[j] == N, then SVj[i] ⇐ R
(2) If SVj[j] == R && SVj[i] != R , then

SVj[i] ⇐ R , and sends REQ(j, SNj[j] ) to Si

(3) If SVj[j] == E, then SVj[i] ⇐ R
(4) If SVj[j] == H, then SVj[i] ⇐ R ,

TSV[i] ⇐ R, TSN[i] ⇐ m, SVj[j] ⇐ N
and sends Token to Si



10

Chapter 6 Synchronization and 
Mutual Exclusion 55

Singhal Algorithm (B) and (C)

Ø (B) Enter CR: when Si has the token, it sets SVi[i] == E 
and then enters the CR.

Ø (C) Release:
Ø If Si finishes CR, it sets  SVi[i] ⇐ N , TSV[i] ⇐ N ,
Ø For every Sj (j: 1..n) , if SNj[j] > TSN[j] , then update token: 

TSV[j] ⇐ SVi[j] , TSN[j] ⇐ SNj[j]  
else update local: 

SVj[j] ⇐ TSV[j] , SNj[j] ⇐ TSN[j] 
Ø If  (∀j : SVj[j] == N ) then SVj[i] ⇐ H,  else selects a Sj such that 

SVj[j] == R , and sends the token to that identified site.
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Correctness and Performance

Ø See Simghal, M. “A Heuristically-aided 
Algorithm for Mutual Exclusion in 
Distributed Systems”, IEEE Trans on 
Computer, Vol. 38, No. 5, 1989

Ø Performance:
number of msg’s: avarage n/2
SD : T
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Raymond Tree-based Algorithm

Ø Sites are logically arranged as a directed tree 
such that the edges of the tree are assigned 
directions towards the root site that has the 
token.

Ø Data structure: for each Si :
holder: points to an immediate neighbour 

node on directed path to the root (which is self-
pointed)

RQ: stores requests received by Si, but have 
not yet been sent the token. (An FIFO queue)
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Raymond Algorithm: An Example

Ø Root transition when Token has been 
passed to another node in the tree.
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Raymond Algorithm (A) Request

Ø If Si does not hold the token and its RQ i is empty, it sends a REQ(i) 
to holder, and appends the request to RQ i .

Ø when Sj receives the REQ(i) , it places the REQ(i) in its RQ jand 
sends a REQ(j) to holder provided it is not the root and its RQ jhas a 
single entry.

Ø when the root receives a REQ(k) , it sends the token to the sender Sk

and redirect holder to the sender.
Ø when Sj receives the token, if the top entry in RQ j  is not its own 

request, it deletes the top entry, sends the token to the top entry site, 
and redirect holder to that site. If RQ j is not empty at this point, then 
sends a REQ(j) to the new holder.
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Ø (C) Release:

Ø If Si finishes CR and its RQ j  is not empty, it deletes the 
top entry, sends the token to the top entry site, and 
redirect holder to that site.  

Ø If Si’ s RQ j  is not empty at this point, it sends a REQ(i) 
to holder .

Raymond Algorithm (B) and (C)

Ø (B) Enter CR:

Ø when Si has the token and its own request is on the top 
of RQ i, then deletes the top entry and enters the CR.
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Correctness and Performance

Ø Deadlock free: the acyclic nature of tree 
eliminates the possibility of circular wait among 
requesting sites.

Ø Starvation free: FIFO nature of request queue.
Ø Performance:

number of msg’s: O(log n)
SD : T*log n/2
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4log nTlog n/2T(log n) + ERaymond

nn/2T2T + ESinhal

nnT2T + ESuzuki -
Kasami

5(sqrt(n) + 1)3(sqrt(n) + 1)2T2T + EMaekawa

2(n – 1)2(n – 1)T2T + ERicart-
Agrawala

3(n –1)3(n – 1)T2T + ELamport

# of 
messages

(HL)

# of 
messages

(LL)

SDResponse 
time

Algorithm

LL: Light Load, HL: Heavy Load

Comparison of Distributed ME Algorithms
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Global State and Distributed Coordinator

Ø The global state of a distributed system consists 
of the local state of each process, together with 
the messages that are concurrently in transit.

Ø The coordinator of a distributed system is a 
process (assigned or elected) which takes special 
responsibility and performs some special role.
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Global State 

a) A consistent cut
b) An inconsistent cut
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Global State: Distributed Snapshot(1)

a) Organization of a process and channels for 
a distributed snapshot
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Global State: Distributed Snapshot(2)

b) Process Q receives a marker for the first time and records 
its local state

c) Q records all incoming message
d) Q receives a marker for its incoming channel and finishes 

recording the state of the incoming channel
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Election Algorithms

n Where a distributed algorithm requires a process to act as 
coordinator, an election algorithm can be invoked.

n The goal of an election algorithm is to ensure that when an 
election starts, it concludes with all processes agreeing on who
the new coordinator is to be. 

n Assumptions: 
− Each process has a unique number, for example, its network 

address. 
− Every process knows the process number of every other 

process. What is unknown is which ones are currently up 
and which ones are currently down. 

− The election algorithm attempts to locate the process with 
the highest number and designates it as coordinator.
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Election: The Bully Algorithm

n When a process notices that the coordinator is no longer responding to 
requests, it initiates an election. A process P holds an election as follows:
− P sends an ELECTIONmessage to all processes with higher number;
− If no one responds, P wins the election and announces that it is the 

new coordinator;
− If one of the higher-ups answers, it takes over. P’s job is done.

n When a process gets an ELECTIONmessage from one of its lower-
numbered colleagues,
− the receiver sends an OK message back to the sender, 
− it takes over the election, unless it is already the coordinator. 

n If a process that was previously down comes back, it holds an election. 
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The Bully Algorithm: An Example
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Election: A Ring Algorithm

1. The processes are logically organised as a ring
2. When a process notices that the coordinator is not functioning, it initiates 

election by send an ELECTION message to its successor.
− The ELECTIONmessage contains its number;
− If the successor is down, the sender skips over the the successor and 

goes to the next member alone the ring until a running process is 
located.

3. When a process receives an ELECTIONmessage, it checks if its own 
number is in the list of processes contained in the message, 
− If not, it inserts its number into the message and pass the message 

alone the ring.
− if yes, the highest number in the list is elected as the coordinator, a 

COORDINATORmessage is circulated, which contains who is the 
coordinator and who are the members of the ring. 
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A Ring Algorithm: An Example
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Performance Analysis

n Number of messages:
− Bully algorithm: 

(N 2– 1)
− Ring algorithm:  

2N,  where N is the number of processes.
n Time delay: 

− Bully algorithm: 
n If broadcasting messages: 3T.
n If no broadcasting messages: (N +1)T. 

− Ring algorithm: 
n (N – 1)T


