
1

Chapter 6 Synchronization and
Mutual Exclusion 1

Chapter 6: Distributed Synchronization
and Mutual Exclusion

n What is time? Do we have a global time in a

distributed system?

n Synchronization with respect to physical time.

n Synchronization with respect to logical time.

n Distributed coordinator.

n Distributed mutual exclusion.

Chapter 6 Synchronization and
Mutual Exclusion 2

What is time?
� an instance or single occasion for some event; "this time he succeeded"; "he called four times"; "he could do ten at a

clip"
� an indefinite period (usually marked by specific attributes or a ctivities); "he waited a long time"; "the time of year for

planting"; "he was a great actor is his time"
� a period of time considered as a resource under your control and sufficient to accomplish something; "take time to

smell the roses"; "I didn't have time to finish"; "it took more than half my time"
� a suitable moment; "it is time to go"
� the continuum of experience in which events pass from the future through the present to the past
� clock time: the time as given by a clock; "do you know what time it is?"; "the time is 10 o'clock"
� clock: measure the time or duration of an event or action or the person who performs an action in a certain period of

time; "he clocked the runners"
� fourth dimension: the fourth coordinate that is required (along with three spatial dimensions) to specify a physical

event
� assign a time for an activity or event; "The candidate carefully timed his appearance at the disaster scene"
� a person's experience on a particular occasion; "he had a time holding back the tears"; "they had a good time

together"
� set the speed, duration, or execution of; "we time the process to manufacture our cars very precisely"
� regulate or set the time of; "time the clock"
� meter: rhythm as given by division into parts of equal time
� prison term: the period of time a prisoner is imprisoned; "he served a prison term of 15 months"; "his sentence was 5

to 10 years"; "he is doing time in the county jail"
� adjust so that a force is applied an an action occurs at the desired time; "The good player times his swing so as to hit

the ball squarely"

Chapter 6 Synchronization and
Mutual Exclusion 3

“What then, is time?

If no one asks me,

I know.

If I wish to explain it to

someone who asks,

I know it not.”

St. Augustine’s Dilemma:

St. Augustine
354-430

Chapter 6 Synchronization and
Mutual Exclusion 4

Physical Clock

n Also called Timer, usually a quartz crystal, oscillating at a

well-defined frequency. A timer is associated with two

registers: a counter and a holding register , and counter

decreasing one at each oscillation.

n When the counter gets to zero, an interruption is generated

and is called one clock tick.

n Crystals run at slightly different rates, the difference in time

value is called a clock skew.

n Clock skew causes time-related failures.

Chapter 6 Synchronization and
Mutual Exclusion 5

How Clocks Work in Computer

Quartz
crystal

Counter

Holding
register

Each crystal oscillation
decrements the counter by 1

When counter gets 0, its
value reloaded from the

holding register

CPU

When counter is 0, an
interrupt is generated, which

is call a clock tick

At each clock tick, an interrupt
service procedure add 1 to time

stored in memory Memory

Oscillation at a well-
defined frequency

Chapter 6 Synchronization and
Mutual Exclusion 6

Clock Skew problem

2146 2147 2148 2149 2150 2151 2152 2153 2154

2142 2143 2144 2145 2146 2147 2148 2149 2150

Compiler server

Editing computer

output.o file created Will output.c be
recompiled?

output.c file created output.c file changed

Why clocks need to be synchronised
n Many applications rely on correct and accurate timing

− Real time applications, e.g. calculation of interests,
− Version control and configuration management, e.g. the make command in

Unix
n Correct and accurate clocks can simplify communication and concurrent control

2

Chapter 6 Synchronization and
Mutual Exclusion 7

What’s Different in Distributed Systems

n In centralized systems, where processes can
share a clock and memory, implementation of
synchronization primitives relies on shared
memory and the times that events happened.

n In distributed system, processes can run on
different machines.
− No shared memory physically exists in a multi-computer

system
− No global clock to judge which event happens first
− Logical simulation of shared memory is not a good

solution

Chapter 6 Synchronization and
Mutual Exclusion 8

Synchronization With Physical Clocks

n How do we synchronize physical clocks with
real-word clock?
− TAI (International Atomic Time): Cs133 atomic clock
− UTC (Universal Coordinated Time): modern civil time,

can be received from WWV (shortwave radio station),
satellite, or network time server.

− ITS (Internet Time Service) NTS (Network Time
Protocol)

n How do we synchronize clocks with each
other?
− Centralized Algorithm: Cristian’s Algorithm
− Distributed algorithm: Berkeley Algorithm

Chapter 6 Synchronization and
Mutual Exclusion 9

How to synchronize local clock (1)

n If a local clock is slower, we can adjust it
advancing forward (lost a few clock ticks), but
how about it was faster than UTC?
− set clock backward might cause time -related failures

n Use a soft clock to provide continuous time :
− Let S be a soft clock, H the local physical clock
− S(t) = H(t) + δ(t) (1)
− The simplest compensating factor δ is a linear function of

the physical clock: δ(t) = aH(t) + b (2)
− Now, our problem is how to find constant a and b

Chapter 6 Synchronization and
Mutual Exclusion 10

How to synchronize local clock (2)

n Replace formula (1), we have
− S(t) = (1 + a)H(t) + b (3)
− Let the value of S be Tskew, and the UTC at h be Treal, we

may have that Tskew > Treal or Tskew < Treal.
− So S is to give the actual time after N further ticks, we

must have:
Tskew= (1 + a)h + b (4)
Treal + N = (1 + a)(h + N) + b (5)

n Solve (4) and (5), we have:
a = (Treal - Tskew)/N
b = Tskew - (1 + a)h

Chapter 6 Synchronization and
Mutual Exclusion 11

How to synchronize distributed clocks

n Assume at UTC time t, a physical clock time
is H(t):
− If they agree, then dH/dt = 1
− But it is virtually impossible, for each physical clock, there

is a constant ρ (given by manufacturers, called maximum
drift rate), such that

1 - ρ ≤ dH/dt ≤ 1 + ρ
− If two clocks drift away from UCT in the opposite

direction, then after ∆t, they are 2ρ∆t apart.
− Thus, if we want to guarantee that no two clocks ever

differ by more than δ, clocks must be re-synchronized at
least every δ/2ρ seconds.

Chapter 6 Synchronization and
Mutual Exclusion 12

The relation between clock time and UTC when clocks tick at different rates.

Clocks Drifting

3

Chapter 6 Synchronization and
Mutual Exclusion 13

Assumptions: There is a machine with WWV receiver, which
receives precise UTC (Universal Coordinated Time). It is
called the time server.

Algorithm:
1. A machine sends a request to the time server at least every

δ/2ρ seconds, where δ is the maximum difference allowed
between a clock and the UTC;

2. The time server sends a reply message with the current UTC
when receives the request;

3. The machine measures the time delay between time serve’s
sending the message and the machine’s receiving the
message. Then, it uses the measure to adjust the clock.

Cristian’s algorithm (1)

Chapter 6 Synchronization and
Mutual Exclusion 14

Getting the current time from a time server

Cristian’s algorithm (2)

Chapter 6 Synchronization and
Mutual Exclusion 15

Measure the message propagation time
− (T1−T0)/2
− (T1−T0− I)/2
− Take a series of measures, and calculate the average;
− Take a series of measures, and use the fastest one.

Adjust the clock:
− If the local clock is faster than the UTC, add less to the time

memory for each clock tick;
− If the local clock is slower than the UTC, add more to the time

memory for each clock tick.

Cristian’s algorithm (3)

Chapter 6 Synchronization and
Mutual Exclusion 16

The Berkeley Algorithm

a) The time daemon asks all the other machines for their clock values
b) The machines answer
c) The time daemon tells everyone how to adjust their clocks

Chapter 6 Synchronization and
Mutual Exclusion 17

Logical Clock

A person with one watch knows what time it is.
A person with two or more watches is never sure.

Ø Lamport defined a relation called happens
before, represented by →.
Ø The relation → on a set of events of a system is
the relation satisfying three conditions:

Chapter 6 Synchronization and
Mutual Exclusion 18

Conditions of Happens Before

§ If a and b are events in the same process, and a
comes before b, then a → b.

§ If a is the sending event of a message msg by
one process, and b is the receipt event of msg,
then a → b.

§ If a → b, b → c, then a → c .

ØTwo distinct events a and b are concurrent if

a ? b and b ? a

4

Chapter 6 Synchronization and
Mutual Exclusion 19

e2

e1

e4

e5

e6

e3

e8

e7

P1 P2 P3

Realtime

e1 ? e2 ? e3
e1 ? e4 ? e5 ? e6 ? e3
e2 ? e7 ? e8

e2 ?e4 and e5 ? e7

Example: Event ordering

Chapter 6 Synchronization and
Mutual Exclusion 20

Logical Clock Condition

v For any events a and b, if a → b then
C(a) < C(b)

v From the definition of →, the Clock Condition is
satisfied if the following two conditions hold:

v Condition 1:if a and b are events in P i, and a
comes before b, then

C i(a) < C i(b).
v Condition 2:if a is the sending of a msg by P i

and b is the receipt of the msg by P j, then
C i(a) < C j(b).

Chapter 6 Synchronization and
Mutual Exclusion 21

Implementation Rules

Ø IR1: Each process Pi increments Cibetween
any two successive events (for Condition 1).

Ø IR2: If event a is the sending of msg m by
Pi, then m contains a timestamp Tm = Ci(a).
Upon receiving a msg m, Pj sets Cj greater
than or equal to Cj ’s present value and
greater than Tm (for Condition 2).

Chapter 6 Synchronization and
Mutual Exclusion 22

Total Ordering Relation

Ø If a is an event in Pi and b is an event in Pj,
then

a ⇒ b if and only if either:
(1) Ci(a) < Cj(b) , or
(2) Ci(a) == Cj(b) and Pi < Pj .

By ⇒ relation, we can totally order all events
happened in a distributed system

Chapter 6 Synchronization and
Mutual Exclusion 23

e2

e1

C2=2

e5

e6

e3

e8

e7

P1 P2 P3

Real time

e4

C1=1

C1=2

C1=5

C2=3

C2=4 C3=4

C3=3

Example: Event ordering wrt logical clocks

e1 ⇒ e2 ⇒ e4 ⇒ e5 ⇒ e7 ⇒ e6 ⇒ e8 ⇒ e3

Chapter 6 Synchronization and
Mutual Exclusion 24

Distributed Mutual Exclusion

Ø Concurrent access to a shared resource (critical
region) by several uncoordinated processes located
on several sites is serialized to secure the integrity
of the shared resource.

Ø The major differences comparing with the single
processor ME problem are: (1) there is no shared
memory and (2) there is no common physical
clock.

Ø Two kinds of algorithms: logical clock based and
token based.

5

Chapter 6 Synchronization and
Mutual Exclusion 25

Requirements of Distributed ME

Ø Mutual Exclusion: guarantee that only one request access
the CR at a time.

Ø Freedom from deadlock: two or more sites(hosts) should
not endlessly wait for msg’s that will never arrive.

Ø Freedom from starvation: a site should not be forced to wait
indefinitely to access CR.

Ø Fairness: requests must be executed in the order they are
made. (fairness → freedom of starvation, but not reverse)

Ø Fault tolerance: in the case of failure, the algorithm can
reorganize itself so that it continues to function without any
disruption.

Chapter 6 Synchronization and
Mutual Exclusion 26

How to Measure Performance

Ø Number of msg’s per CR invocation.

Ø Synchronization Delay (SD).
Ø Response Time (RT).

Ø System Throughput (ST):
Ø ST = 1/(SD + E)

Ø where E is the average CR execution time.

last req exits CR next req enters CR
SD

enters CR exits CRCR req
E

RT

Chapter 6 Synchronization and
Mutual Exclusion 27

Centralized Solution

Queue up the requests and grant CR one by one.

Cp2

p1

p3

Ø 3 msg’s per CR invocation: REQ, ACK, REL
Ø Single point of failure
Ø Control site is a bottleneck
Ø SD = 2T where T is the communication delay
Ø ST = 1/(2T + E)

Chapter 6 Synchronization and
Mutual Exclusion 28

Distributed ME Algorithms

n Si: a site (or a process)
n Ri: a Request Set, contains id’s of all

those sites from which Si must acquire
permission before entering CR.

n For example, the Centralized Solution:
Ri = {SC}

Chapter 6 Synchronization and
Mutual Exclusion 29

Lamport Algorithm

Ø ∀i : 1 ≤ i ≤ n Ri = {S1, S2, … Sn}
Ø Assumption: msg’s to be delivered in the

FIFO order between every pair of sites.
Ø Data structure: each site Si maintains a

Request queue, rqi, which contains
requests ordered by their timestamp.

Chapter 6 Synchronization and
Mutual Exclusion 30

Lamport Algorithm (A) Request:

Ø When Si wants to enter the CR, it sends a
REQ(t si, i)

to all sites in Ri and places the request on rqi ,
where (t si, i) is the timestamp of the request.

Ø When Sj receives the REQ(t si, i) from Si, it returns
REPLY (t sj, j)

to Si, and places Si‘s REQ on rqj

6

Chapter 6 Synchronization and
Mutual Exclusion 31

Ø Si enters the CR when the following two
conditions hold:

L1: S i has receives a msg with
timestamp later than (tsi, i) from all other
sites.

L2: S i’s request is at the top of rqi.

Lamport Algorithm (B) Enter CR:

Chapter 6 Synchronization and
Mutual Exclusion 32

Ø Si, upon exiting the CR, removes its
request from the top of rqj , and sends a
timestamped REL msg to all sites in Ri .

Ø When a site Sj receives a REL msg from
Si, it removes Sj’s REQ from rqj.

Lamport Algorithm (C) Release:

Chapter 6 Synchronization and
Mutual Exclusion 33

Ø Correctness: from the total ordering of
timestamps, it is easy to prove that no
two sites satisfy both L1 and L2
simultaneously.

Ø Performance:
Number of msg’s: 3(N – 1)
SD: T

Correctness and Performance:

Chapter 6 Synchronization and
Mutual Exclusion 34

Ricart-Agrawala Algorithm

Ø An optimization of Lamport’s
Algorithm.

Ø ∀i : 1 ≤ i ≤ n Ri = {S1, S2, … Sn}

Chapter 6 Synchronization and
Mutual Exclusion 35

Ricart-Agrawala Algorithm (A) Request:

Ø When Si wants to enter the CR, it sends a
REQ(t si, i)

to all sites in Ri .
Ø When Sj receives the REQ(t si, i) from Si, it returns a

REPLY (t sj, j)
to Si if Sj is neither requesting nor executing the CR,
or if Sj is requesting and Si’s REQ ⇒ Sj’s REQ,
otherwise places Si’s REQ on rqj and the reply is
deferred.

Chapter 6 Synchronization and
Mutual Exclusion 36

Ricart-Agrawala Algorithm (B) Enter CR:

Ø Si enters the CR when the following
condition holds:

L: Si has receives a REPLY from
all other sites.

7

Chapter 6 Synchronization and
Mutual Exclusion 37

Ø Si, upon exiting the CR, sends a
timestamped REL msg to all sites with a
deferred REQ .

Performance:

Number of msg’s : 2(N – 1)
SD: T

Ricart-Agrawala Algorithm (C) Release:

Chapter 6 Synchronization and
Mutual Exclusion 38

Maekawa Algorithm

Ø A site does not request permission from every other site, but
only from a subset of the sites.

Ø A site locks all the sites in Ri in exclusive mode.
Ø Request set Ri is constructed to satisfy following conditions:

M1: ∀i ∀j i ≠ j, 1 ≤ i, j ≤ n : Ri ∩ Rj ≠ φ
M2: ∀i 1 ≤ i ≤ n : Si ∈ Ri

M3: ∀i 1 ≤ i ≤ n : Ri = k
M4: ∀i ∀j 1 ≤ i, j ≤ n : any Si is contained in k number of

Rj’ s.
Ø Relationship between k and n: k = sqrt(n) + 1

Chapter 6 Synchronization and
Mutual Exclusion 39

Ø At least one common site between Ri and
Rj , from M1 and M2.

Ø All sites have to do an equal amount of
work to invoke mutual exclusion, from
M3.

Ø All sites have equal responsibility in
granting permission to other sites, from
M4.

Maekawa Algorithm: Comments

Chapter 6 Synchronization and
Mutual Exclusion 40

S1

S5S6

S7

S8 S3

S2

S4

R1 = { S1, S2, S5, S8}
R2 = { S1, S2, S3, S6}
R3 = { S2, S3, S4, S7}
?

Ø take R5 = { S4, S5, S6, S1} and
R8 = { S7, S8, S1, S4},

we have R5 n R8 = { S4, S1}

Maekawa Algorithm: An example

Chapter 6 Synchronization and
Mutual Exclusion 41

Ø When Si wants to enter the CR, it sends a
REQ(t si, i)

to all sites in Ri .
Ø When Sj receives the REQ(t si, i) from Si, it

returns a
REPLY (t sj, j)

to Si if Sj has not send a REPLY to any
site from the time it received the last REL
msg. Otherwise, it defers the REQ.

Maekawa Algorithm (A) Request

Chapter 6 Synchronization and
Mutual Exclusion 42

Maekawa Algorithm (B) Enter CR

Ø Si enters the CR when the following
condition holds:

L: Si has receives a REPLY from all sites in
Ri.

8

Chapter 6 Synchronization and
Mutual Exclusion 43

Maekawa Algorithm (C) Release

Ø Si sends a REL(i) to all sites in Ri.

Ø Sj, upon receiving a REL(i) , sends a
REPLY to the next waiting REQ and delete
that entry. If the waiting queue is empty, set

NO_REPLY_SINCE_LAST_REL.

Chapter 6 Synchronization and
Mutual Exclusion 44

Correctness and Performance

Ø Correctness:
Suppose that two sites Si and Sj are concurrently
in the CR. If Ri ∩ Rj = {Sk} then Sk must have
send REPLY to both Si and Sj concurrently,
which is a contradiction to the role of

NO_REPLY_SINCE_LAST_REL
Ø Performance:

number of msg’s: 3(sqrt (n) + 1)
SD: 2T

Chapter 6 Synchronization and
Mutual Exclusion 45

Problem: Potential of Deadlock

Ø Without the loss of generality, assume that three sites Si, Sj and
Sk simultaneously invoke Mutual Exclusion, and suppose:

Ri ∩ Rj= {Su}
Rj ∩ Rk = {Sv}
Rk ∩ Ri= {Sw}

Ø Solution: extra msg’s to detect deadlock, maximum number of
msg’s = 5(sqtr(n) + 1).

SiSw

Sk

Sv

Sj

Su
RW

R

W R

W

Chapter 6 Synchronization and
Mutual Exclusion 46

Token-based ME Algorithms

Ø A unique Token is shared among all sites.
Ø A site is allowed to enter the CR if it holds the

Token.
Ø Token-based algorithms use a sequence number

instead of timestamps.
Ø Correctness proof is trivial.
Ø Rather, the issues of freedom from starvation and

freedom from deadlock are more important.

Chapter 6 Synchronization and
Mutual Exclusion 47

Suzuki-broadcasting Algorithm

Ø Distinguishing outdated REQ’s from the current REQ.

Ø Determining which site has an outstanding REQ for CR.
Ø Data structure:

REQ(j, n) : a request from Sj with sequencing number n.
RN j[1..n] : an array at Sj where RN j[i] is the largest

sequencing number received so far from Si.
Token { Q: REQ queue;

LN[1..n] : where LN[j] is the most recent
sequencing number of Sj .

}

Chapter 6 Synchronization and
Mutual Exclusion 48

Suzuki Algorithm (A) Request

Ø If Si does not hold the token, it increments
its sequencing number, RNi[i], and sends a

REQ(i, RNi[i])
to all sites (broadcasting).

Ø When Sj receives the REQ(i, n) from Si, it
sets RNj[i] to max(RNj[i], n) . If Sj has the
idle token, then it sends the token to Si if
RNi[i] = LN[i] + 1 .

9

Chapter 6 Synchronization and
Mutual Exclusion 49

Suzuki Algorithm (B) and (C)

Ø (B) Enter CR:
Ø Si enters the CR when it has the token

Ø (C) Release:
Ø Si sets a LN[i] to RN i[i],

Ø For every Sj whose identifier is not in the token ’s Q,
it appends Sj into in the token’s Q if

RN i[j] = LN[j] + 1
Ø If the token’s Q is non-empty after the above update, the

Si deletes the top identifier from the token’s Q and sends
the token to that identified site.

Chapter 6 Synchronization and
Mutual Exclusion 50

Correctness and Performance

Ø A requesting site enters the CR in finite time.
Since one of the sites will release the token in
finite time, site Si‘s request will be placed in the
token’s Q in finite time. Since there can be at most
n-1 requests in front of Si, Si will execute the CR in
finite time.

Ø Performance:
number of msg’s: 0 or n
SD : 0 or T

Chapter 6 Synchronization and
Mutual Exclusion 51

Singhal’s Heuristic Algorithm

Ø Each site maintains information about the
state of other sites and uses it to select a set
of sites that are likely to have the token.

Ø A site must select a subset of sites such that
at least one of those sites is guaranteed to get
the token in the near future, otherwise, there
is a potential deadlock or starvation.

Chapter 6 Synchronization and
Mutual Exclusion 52

Singhal Algorithm: Data Structure

Ø ∀i : 1 ≤ i ≤ n
SVi[1..n] : Sj’ s state array {R, E, H, N}.
SN j[1..n] : Sj’ s highest sequencing number array

Ø Token
TSV[1..n] : Token’s state array {R, N}.
TSN[1..n] : highest sequencing number array

Ø States: a site can be in one of the following states:
R: requesting the CR
E: entering the CR
H: holding the idle token
N: none of the above

Chapter 6 Synchronization and
Mutual Exclusion 53

N…NNR…RR

0….0

N….N

0….0

SVi

SNi

TSV

TSN

Singhal Algorithm: Initialization

Ø Property: for any Si and Sj, either
SVi[j] = R or SVj[i] = R

1 2 i-1 ni

Chapter 6 Synchronization and
Mutual Exclusion 54

Singhal Algorithm (A) Request

Ø If Si does not hold the token:
(1) SVi[i] ⇐ R; (2) SNi[i] ⇐ SNi[i] + 1;
(3) sends REQ(i, SNi[i]) to all sites for which SVi[i] == R .

Ø When Sj receives the REQ(i, m) from Si, if m ≤ SNj[i] do nothing;
otherwise SNj[i] ⇐ m,

cases:
(1) If SVj[j] == N, then SVj[i] ⇐ R
(2) If SVj[j] == R && SVj[i] != R , then

SVj[i] ⇐ R , and sends REQ(j, SNj[j]) to Si

(3) If SVj[j] == E, then SVj[i] ⇐ R
(4) If SVj[j] == H, then SVj[i] ⇐ R ,

TSV[i] ⇐ R, TSN[i] ⇐ m, SVj[j] ⇐ N
and sends Token to Si

10

Chapter 6 Synchronization and
Mutual Exclusion 55

Singhal Algorithm (B) and (C)

Ø (B) Enter CR: when Si has the token, it sets SVi[i] == E
and then enters the CR.

Ø (C) Release:
Ø If Si finishes CR, it sets SVi[i] ⇐ N , TSV[i] ⇐ N ,
Ø For every Sj (j: 1..n) , if SNj[j] > TSN[j] , then update token:

TSV[j] ⇐ SVi[j] , TSN[j] ⇐ SNj[j]
else update local:

SVj[j] ⇐ TSV[j] , SNj[j] ⇐ TSN[j]
Ø If (∀j : SVj[j] == N) then SVj[i] ⇐ H, else selects a Sj such that

SVj[j] == R , and sends the token to that identified site.

Chapter 6 Synchronization and
Mutual Exclusion 56

Correctness and Performance

Ø See Simghal, M. “A Heuristically-aided
Algorithm for Mutual Exclusion in
Distributed Systems”, IEEE Trans on
Computer, Vol. 38, No. 5, 1989

Ø Performance:
number of msg’s: avarage n/2
SD : T

Chapter 6 Synchronization and
Mutual Exclusion 57

Raymond Tree-based Algorithm

Ø Sites are logically arranged as a directed tree
such that the edges of the tree are assigned
directions towards the root site that has the
token.

Ø Data structure: for each Si :
holder: points to an immediate neighbour

node on directed path to the root (which is self-
pointed)

RQ: stores requests received by Si, but have
not yet been sent the token. (An FIFO queue)

Chapter 6 Synchronization and
Mutual Exclusion 58

Raymond Algorithm: An Example

Ø Root transition when Token has been
passed to another node in the tree.

Chapter 6 Synchronization and
Mutual Exclusion 59

Raymond Algorithm (A) Request

Ø If Si does not hold the token and its RQ i is empty, it sends a REQ(i)
to holder, and appends the request to RQ i .

Ø when Sj receives the REQ(i) , it places the REQ(i) in its RQ jand
sends a REQ(j) to holder provided it is not the root and its RQ jhas a
single entry.

Ø when the root receives a REQ(k) , it sends the token to the sender Sk

and redirect holder to the sender.
Ø when Sj receives the token, if the top entry in RQ j is not its own

request, it deletes the top entry, sends the token to the top entry site,
and redirect holder to that site. If RQ j is not empty at this point, then
sends a REQ(j) to the new holder.

Chapter 6 Synchronization and
Mutual Exclusion 60

Ø (C) Release:

Ø If Si finishes CR and its RQ j is not empty, it deletes the
top entry, sends the token to the top entry site, and
redirect holder to that site.

Ø If Si’ s RQ j is not empty at this point, it sends a REQ(i)
to holder .

Raymond Algorithm (B) and (C)

Ø (B) Enter CR:

Ø when Si has the token and its own request is on the top
of RQ i, then deletes the top entry and enters the CR.

11

Chapter 6 Synchronization and
Mutual Exclusion 61

Correctness and Performance

Ø Deadlock free: the acyclic nature of tree
eliminates the possibility of circular wait among
requesting sites.

Ø Starvation free: FIFO nature of request queue.
Ø Performance:

number of msg’s: O(log n)
SD : T*log n/2

Chapter 6 Synchronization and
Mutual Exclusion 62

4log nTlog n/2T(log n) + ERaymond

nn/2T2T + ESinhal

nnT2T + ESuzuki -
Kasami

5(sqrt(n) + 1)3(sqrt(n) + 1)2T2T + EMaekawa

2(n – 1)2(n – 1)T2T + ERicart-
Agrawala

3(n –1)3(n – 1)T2T + ELamport

of
messages

(HL)

of
messages

(LL)

SDResponse
time

Algorithm

LL: Light Load, HL: Heavy Load

Comparison of Distributed ME Algorithms

Chapter 6 Synchronization and
Mutual Exclusion 63

Global State and Distributed Coordinator

Ø The global state of a distributed system consists
of the local state of each process, together with
the messages that are concurrently in transit.

Ø The coordinator of a distributed system is a
process (assigned or elected) which takes special
responsibility and performs some special role.

Chapter 6 Synchronization and
Mutual Exclusion 64

Global State

a) A consistent cut
b) An inconsistent cut

Chapter 6 Synchronization and
Mutual Exclusion 65

Global State: Distributed Snapshot(1)

a) Organization of a process and channels for
a distributed snapshot

Chapter 6 Synchronization and
Mutual Exclusion 66

Global State: Distributed Snapshot(2)

b) Process Q receives a marker for the first time and records
its local state

c) Q records all incoming message
d) Q receives a marker for its incoming channel and finishes

recording the state of the incoming channel

12

Chapter 6 Synchronization and
Mutual Exclusion 67

Election Algorithms

n Where a distributed algorithm requires a process to act as
coordinator, an election algorithm can be invoked.

n The goal of an election algorithm is to ensure that when an
election starts, it concludes with all processes agreeing on who
the new coordinator is to be.

n Assumptions:
− Each process has a unique number, for example, its network

address.
− Every process knows the process number of every other

process. What is unknown is which ones are currently up
and which ones are currently down.

− The election algorithm attempts to locate the process with
the highest number and designates it as coordinator.

Chapter 6 Synchronization and
Mutual Exclusion 68

Election: The Bully Algorithm

n When a process notices that the coordinator is no longer responding to
requests, it initiates an election. A process P holds an election as follows:
− P sends an ELECTIONmessage to all processes with higher number;
− If no one responds, P wins the election and announces that it is the

new coordinator;
− If one of the higher-ups answers, it takes over. P’s job is done.

n When a process gets an ELECTIONmessage from one of its lower-
numbered colleagues,
− the receiver sends an OK message back to the sender,
− it takes over the election, unless it is already the coordinator.

n If a process that was previously down comes back, it holds an election.

Chapter 6 Synchronization and
Mutual Exclusion 69

7

1 2

5

3

4

6

election

election

7

1 2

5

3

4

6

OK

OK

7

1 2

5

3

4

6

election

election

election

7

1 2

5

3

4

6

OK

7

1 2

5

3

4

6
coordinator coordinator

(a) (b) (c)

(d) (e)

The Bully Algorithm: An Example

Chapter 6 Synchronization and
Mutual Exclusion 70

Election: A Ring Algorithm

1. The processes are logically organised as a ring
2. When a process notices that the coordinator is not functioning, it initiates

election by send an ELECTION message to its successor.
− The ELECTIONmessage contains its number;
− If the successor is down, the sender skips over the the successor and

goes to the next member alone the ring until a running process is
located.

3. When a process receives an ELECTIONmessage, it checks if its own
number is in the list of processes contained in the message,
− If not, it inserts its number into the message and pass the message

alone the ring.
− if yes, the highest number in the list is elected as the coordinator, a

COORDINATORmessage is circulated, which contains who is the
coordinator and who are the members of the ring.

Chapter 6 Synchronization and
Mutual Exclusion 71

A Ring Algorithm: An Example

Chapter 6 Synchronization and
Mutual Exclusion 72

Performance Analysis

n Number of messages:
− Bully algorithm:

(N 2– 1)
− Ring algorithm:

2N, where N is the number of processes.
n Time delay:

− Bully algorithm:
n If broadcasting messages: 3T.
n If no broadcasting messages: (N +1)T.

− Ring algorithm:
n (N – 1)T

