Chapter 6: Distributed Synchronization

= What istime? Do wehaveaglobal timeina

distributed system?

= Synchronization with respect to physical time.

= Synchronization with respect to logical time.

= Distributed coordinator.

= Distributed mutual excl

usion.

Chapter 6 Synchronization and

Mutual

Exclusion 1

What is time?

o aninsanceor for someevent; ; " hecalled four times'; * hecould doten at a
ip"

o anindefi iod (usually marked by ibutesor activities); " hewai ime'; " thetimeof year for
planting"; " hewasagreat actor ishistime"

® aperiodof ed asar esourceunder your control " taketimeto
smél theroses'; " | didn't havetimetofinish”; *it took morethan half mytime"

® asuitablemoment; "it istimetogo"

® exper om ough the present to the past

o clocktime: timeitis?'; “thetimeis100'clock”

o clock: measurethetimeor duration of an event or action or the person who performsan action in a certain period of
time; " heclocked therunners”

o fourl thefour equir spatial specify aphy
event

o event; " Tl efully anceat thedisaster scene”

® aperson'sexper ticular occasion; " thetears'; " they
together"

» setthespeed, duration, or execution of; " wetimetheprocesstomanufactur eour carsvery precisely”
o regulateor setthetimeof; "timetheclock”
® meter:r ivisioni tsof equal time
o prisonterm: theperiod of timeaprisoner isimprisoned; * heserved aprison term of 15months'; " hissentencewas
tol0years'; " heisdoingtimeinthecounty;ail"
® adjustsothat at thedesiredtime; " Tl
theball squarely”

Chiapter o synmozauon i
Mutual Exclusion 2

“What

then, istime?

If no one asks me,
| know.

If I wishto explainit to

<. Augustine someone who asks,

354-430

| know it not.”

Chapter 6 Synchronization and

Mutual

Exclusion 3

Physical Clock

x

= Also called Timer, usually aquartz crystal, oscillating at a
well-defined frequency. A timer is associated with two
registers: acounter and aholding register, and counter
decreasing one at each oscillation.

= When the counter getsto zero, an interruption is generated
and is called oneclock tick.

= Crystalsrun a dightly different rates, the differencein time
valueiscalled aclock skew.

= Clock skew causes time-related failures.

Chapter 6 Synchronization and
Mutual Exclusion 4

How Clocks Work in Computer

Holding
Tegi

When counter gets0, its
value reloaded from the
holding register

At each clock tick, an interrupt
service procedure add 1 to time
stored in memory

Quartz Occillation at awell-
or defined frequency

Each crystal oscillation
rements the counter by 1

When counter is0, an
jnterrupt is generated, which
iscall aclock tick

emory

Chapter 6 Synchronization and

Mutual

Exclusion 5

Clock Skew problem
» P

Compiler server L\~ -
output.ofilecreated Wl output.c be
_ recompiled?
B QB R ans R AR v ar i o
Editing computer = "\ L~ -
output.c file created output.c file changed
Why clocks need to be synchronised

= Many applicationsrely on correct and accurate timing
Real time applications, e.g. calculation of interests,
Version control and configuration management, e.g. the makecommand in
Unix

= Correct and accurate clocks can simplify communication and concurrent control

Chapter 6 Synchronization and
Mutual Exclusion 6

What's Different in Distributed Systems

>

= |n centralized systems, where processes can
share aclock and memory, implementation of
synchronization primitives relies on shared
memory and thetimesthat events happened.

= Indistributed system, processes can run on
different machines.

- No shared memory physically existsin a multi-computer
system
- Noglobal clock to judge which event happens first

Logical simulation of shared memory is not a good
solution

Chapter 6 Synchronization and

Mutual Exclusion 7

:. Synchronization With Physical Clocks

= How do we synchronize physical clockswith
real-word clock?
- TAI (International Atomic Time): Cs133 atomic clock

- UTC (Universal Coordinated Time): modern civil time,
can be received from WWYV (shortwave radio station),
satellite, or network time server.

- ITS(Internet Time Service) NTS (Network Time
Protocol)
= How do we synchronize clocks with each
other?
- Centralized Algorithm: Cristian's Algorithm
- Distributed algorithm: Berkeley Algorithm

Chapter 6 Synchronization and
Mutual Exclusion 8

E How tosynchronize local clock (1)

= If alocal clock isslower, we can adjust it
advancing forward (lost afew clock ticks), but
how about it was faster than UTC?
- set clock backward might cause time-related failures
= Useasoft clock to provide continuoustime:
- Let Sheasoft clock, H thelocal physical clock
- S(t) = H(®) + d(t) 1)
- The simplest compensating factor disalinear function of
the physical clock: d(t) =aH(t)+b (2)
- Now, our problem is how to find constantaand b

Chapter 6 Synchronization and
Mutual Exclusion 9

How tosynchronize local clock (2)

>

= Replaceformula(l), we have
- St =(1+aH(t) +b ©)
- Letthevalueof SbeTgyy,, andtheUTC ath beT,.,, we
may havethat Ty, > Treq OF Ty < Trea-

- So Sistogivetheactual timeafter N further ticks, we

must have:
Tkew= (1 +8)h + b @
Trea tN=(1+2a)(h+N) +b 5

= Solve (4) and (5), we have:
a=(Trea - Tokew)/N
b= Tyew-(L+a)h

Chapter 6 Synchronization and

:i How tosynchronize distributed clocks

= Assumeat UTC timet, aphysical clock time
isH(t):
- If they agree, thendH/dt =1
- Butitisvirtually impossible, for each physical clock, there
isaconstantr (given by manufacturers, called maximum
drift rate), such that
1-r £EdH/dtE£1+r

If two clocks drift away from UCT in the opposite
direction, then after Dt, they are 2r Dt apart.

- Thus, if wewant to guarantee that no two clocks ever
differ by more thand, clocks must be re-synchronized at
least every d/2r seconds.

Chapter 6 Synchronization and
Mutual Exclusion 1

Mutual Exclusion 10
:: Clocks Drifting
a
5 i L]l dC
Clock tme, © " di =1
& &‘H
L. u
< g o
i
UTC &

Therelation between clock timeand UTC when clockstick at different rates.

Chapter 6 Synchronization and
Mutual Exclusion 12

Cristian’s agorithm (1)

Assumptions: There is amachine with WWV receiver, which
receives precise UTC (Universal Coordinated Time). It is
called thetimeserver.

Algorithm:

1. A machine sends arequest to the time server at least every
d/2r seconds, where dis the maximum difference allowed
between aclock and the UTC;

2. The time server sends areply message with the current UTC
when receives the request;

3. The machine measures the time delay between time serve's
sending the message and the machine’ s receiving the
message. Then, it uses the measure to adjust the clock.

Chapter 6 Synchronization and
Mutual Exclusion 13

Crigtian’s dgorithm (2)

>

Both Toand T) ave measunsd wif the same clack

Ta 1

—

Cli=nt

Reguaes] Sy

Time serves i
T -

Inteenagnd haredbirg time

Getting the current time from atime server

Crigtian’s agorithm (3)

M easure the message propagation time
- (T1-TO)/2
- (T1-To- 1)/2
- Take aseries of measures, and calculate the average;
- Take aseries of measures, and use the fastest one.

Adjust the clock:
- If thelocal clock isfaster than the UTC, add less to the time
memory for each clock tick;
- If thelocal clock is slower than the UTC, add more to thetime
memory for each clock tick.

Chapter 6 Synchronization and
Mutual Exclusion 15

Chapter 6 Synchronization and
Mutual Exclusion 14
The Berkeley Algorithm
Trrm dasmon
% E, 300 500 o i RS
: -
A - ool i
300 10 - +15
I 500 [= =]
4 [Reteoik] I I + [»
i 3 24 3= 10 Era]
L K

) Thetime daemon asks all the other machines for their clock values
») Themachinesanswer
9 The time daemon tells everyone how to adjust their clocks

Chapter 6 Synchronization and
Mutual Exclusion 16

Logical Clock

A person with onewatch knowswhat timeit is.
A person with two or more watchesis never sure.

Lamport defined arelation called happens
befor e, represented by ®

Therelation® on aset of eventsof asystemis
the relation satisfying three conditions:

Chapter 6 Synchronization and
Mutual Exclusion 17

- If aand b are eventsin the same process, anda
comesheforeb, thena® b.

- If aisthe sending event of a message mgy by
one process, and b isthe receipt event of msg,
thena® h.

- Ifa® b,b® c,thena® c.

Two distinct eventsa and b are concurrent if
a?b andb?a

Chapter 6 Synchronization and
Mutual Exclusion 18

Example: Event ordering

Realtime
L]

el? e2? e3
el? e4? e5? e6? e3
e2? e7? e8

e2 ?e4 ande5? 7

Chapter 6 Synchronization and
Mutual Exclusion 19

Logical Clock Condition
»

- For any eventsa and b, if a® bthen
C(a) < C(b)
- From the definition of ® , the Clock Conditionis
satisfied if the following two conditions hold:
Condition 1:if a and b areeventsin P;, and a
comes before b, then
C,() <C(b).
Condition 2:if a is the sending of amsg by P;
and b isthe receipt of themsg by P;, then
C,(@ <Cj(b).
" el Excluson 20

Implementation Rules

r

> IR1: Each processP, increments C;between
any two successive events (for Condition 1).

> IR2: If event aisthe sending of msg m by
P,, then m containsatimestamp T, = C,(a).
Upon receiving amsg m, P, sets C, greater
than or equal to C; s present value and
greater than T, (for Condition 2).

Chapter 6 Synchronization and
Mutual Exclusion 21

- IfaisaneventinP,andbisan eventinP;,
then

ab bifandonly if either:
(1) C(@ < C(b), or
(@ C(@ ==C(b) and P, <P;.

By b relation, we can totally order al events
happened in adistributed system

Chapter 6 Synchronization and
Mutual Exclusion 22

Example: Event ordering wrt logical clocks

Redl time

elb e2b e4b e5b e7b e6b e8b €3

Chapter 6 Synchronization and
Mutual Exclusion 23

» Distributed Mutual Exclusion
Concurrent access to a shared resource (critical
region) by several uncoordinated processes located
on severa sitesis serialized to secure the integrity
of the shared resource.

The major differences comparing with the single
processor ME problem are: (1) thereis no shared
memory and (2) thereis no common physical

clock.
Two kinds of algorithms: logical clock based and
token based

e Boson 24

Requirements of Distributed ME

>

> Mutual Exclusion: guarantee that only one request access
theCR at atime.

» Freedom from deadlock: two or more sites(hosts) should
not endlessly wait for msg’ s that will never arrive.

» Freedom from starvation: asite should not be forced to wait
indefinitely to access CR.

» Fairness: requests must be executed in the order they are

made. (fairness® freedom of starvation, but not reverse)

Fault tolerance: in the case of failure, the algorithm can

reorganize itself so that it continues to function without any

disruption.

\

Chapter 6 Synchronization and
Mutual Exclusion 25

How to Measure Performance

> Number of msg' s per CR invocation.

» Synchronization Delay (SD).

» Response Time (RT).

» System Throughput (ST):

> ST =1/(SD +E)

» where E isthe average CR execution time.

last req exits GR next req enfers CR
< D |
CR enters CR exits CR
! e —|
« RT 5 !
Chapter 6 Synchronization and
Mutual Exclusion 26

Centralized Solution

Queue up the requi d grant CR one by one.

3msy’s per CR invocation: REQ, ACK, REL
Single point of failure

Control siteis a bottleneck

SD = 2T where T isthe communication delay
ST=1(2T +E)

Chapter 6 Synchronization and
Mutual Exclusion 27

= S:asite(or aprocess)

» R:aRequest Set, containsid’sof al
those sitesfrom which S must acquire
permission before entering CR.

= For example, the Centralized Solution:
R={S}

Chapter 6 Synchronization and
Mutual Exclusion 28

Lamport Algorithm

b

> "i:lEiEn R={S,S,...S}

> Assumption: msg'sto be delivered in the
FIFO order between every pair of sites.

> Datastructure: each site § maintainsa
Request queue, rg;, which contains
requestsordered by their timestamp.

Chapter 6 Synchronization and
Mutual Exclusion 29

: Lamport Algorithm (A) Request:
> When § wantsto enter the CR, it sendsa
REQ(s;. i)
to all sitesin R, and placestherequestonrgq ,
where (tg, i) isthe timestamp of the request.

> When § receivesthe REQ(ty, i) from §, it returns
REPLY (g, J)
to §, and places §'sREQon rq

Chapter 6 Synchronization and
Mutual Exclusion 30

. Lamport Algorithm (B) Enter CR:
>

> § entersthe CR when the following two
conditionshold:

L1 S, hasreceives amsg with
timestamp later than (tg, i) from all other
sites.

L2 S’s request isat thetop of r;.

Chapter 6 Synchronization and
Mutual Exclusion 31

> S, upon exiting the CR, removesiits
request fromthetop of rq; , and sendsa
timestamped REL msg to all sitesinR, .

~ When asite § receivesaREL msg from
S, itremoves§’s REQfromrg;.

Chapter 6 Synchronization and
Mutual Exclusion 32

Correctness and Performance:

»

» Correctness: from the total ordering of

timestamps, it is easy to provethat no
two sitessatisfy bothL1 and L2

simultaneously.
> Performance:
Number of msy's: 3(N - 1)
ST

Chapter 6 Synchronization and
Mutual Exclusion 33

Ricart-Agrawala Algorithm

> An optimization of Lamport’s
Algorithm.
> "iI:1EiEn R={S,S, ...S}

Chapter 6 Synchronization and
Mutual Exclusion 34

; Ricart-Agrawala Algorithm (A) Reguest:

> When § wantsto enter the CR, it sendsa
REQ(ty;, i)
toal sitesinR .
When § receivesthe REQ(t, i) from §, it returnsa
REPLY (. j)
to § if § isneither requesting nor executing the CR,
orif § isrequestingand §'sREQP §'sREQ,
otherwise places §'s REQ onrg andthereply is
deferred.

Chapter 6 Synchronization and
Mutual Exclusion 35

Ricart-Agrawala Algorithm (B) Enter CR:

>

> § entersthe CR when the following
condition holds:

L: S hasreceivesaREPLY from
al other sites.

Chapter 6 Synchronization and
Mutual Exclusion 36

; Ricart-Agrawala Algorithm (C) Release:

» S, upon exiting the CR, sendsa
timestamped REL msg to al siteswitha
deferred REQ .

Performance:

Number of msg's: 2(N—1)
SD: T

Chapter 6 Synchronization and
Mutual Exclusion 37

Maekawa Algorithm

> A site does not request permission from every other site, but
only from a subset of the sites.

» A sitelocksall the sitesinR; in exclusive mode.

» Request set R, is constructed to satisfy following conditions:

ML:"i"jitj, 1£i,jEn: R GRf

M2:"i 1£i£n: S 1 R
i
i

M3:"i 1£i£n: YRY%=k

M4:"i"j 1£i,j£n:any S iscontained in k number of
R’s.

1

» Relationship between k and n: k =sgrt(n) + 1

Chapter 6 Synchronization and
Mutual Exclusion 38

Maekawa Algorithm: Comments

> Atleast one common site betweenR and
R, fromMland M2.

» All siteshaveto do an equal amount of
work to invoke mutual exclusion, from
M3.

> All sites have equal responsibility in
granting permission to other sites, from
M4.

Chapter 6 Synchronization and
Mutual Exclusion 39

Maekawa Algorithm: An example

[R={S, S. S §
R={S, S S §)

[R,={S. S. S §)
?

> takeR;={S, S, S, S} and
R;={S. §. S, S},
wehaveRn R;={S,, S}

Chapter 6 Synchronization and
Mutual Exclusion 40

Maekawa Algorithm (A) Request

> When § wantsto enter the CR, it sendsa
REQ(tg, i)
toal stesinR,.
> When § receivesthe REQ(ty, i) from S, it
returnsa
REPLY (g,)
to § if § hasnot send aREPLY to any
site from the timeit received the last REL
msg. Otherwise, it defers the REQ.

Chapter 6 Synchronization and
Mutual Exclusion 41

> § enters the CR when the following
condition holds:

L: S hasreceivesaREPLY from dl sitesin

R.

Chapter 6 Synchronization and
Mutual Exclusion 42

Maekawa Algorithm (C) Release

> §sendsaREL(i) toal stesinR.

» §, uponreceivingaREL (i) , sendsa
REPLY to the next waiting REQ and delete
that entry. If the waiting queue is empty, set

NO _REPLY_SINCE LAST REL.

Chapter 6 Synchronization and
Mutual Exclusion 43

Correctness and Performance

»

» Correctness:
Supposethat two sites § and § are concurrently
intheCR. If R C R ={§} then § must have
send REPLY to both § and § concurrently,
which is acontradiction to the role of
NO_REPLY_SINCE_LAST_REL
» Performance:
number of msg’'s: 3(srt(n) + 1)
SD: 2T

Chapter 6 Synchronization and
Mutual Exclusion

Problem: Potential of Deadlock

r

> Without theloss of generdlity, assumethat three sites §, § and
S, simultaneously invoke Mutual Exclusion, and suppose:
R C R={S}
R CR={S}
R C R={S}
» Solution: extramsg's to detect deadlock, maximum number of
msg’'s =5(sgtr(n) +1).

v

w R

Chapter 6 Synchronization and
Mutual Exclusion 45

> A unique Token is shared among all sites.

» A siteisalowed to enter the CRif it holds the
Token.

» Token-based agorithms use a sequence number
instead of timestamps.

> Correctness proof istrivial.

> Rather, theissues of freedom from starvation and
freedom from deadlock are more important.

Chapter 6 Synchronization and
Mutual Exclusion

46

Suzuki-broadcasting Algorithm

=

> Distinguishing outdated REQ s from the current REQ.
» Determining which site has an outstanding REQ for CR.
» Datastructure:
REQ(j, n) : arequest from § with sequencing number n.
RN;[1..n] : an array at S where RN[i] isthe largest
sequencing number received so far from S.
Token { Q: REQ queus;

LN[1..n] : where LN[j] is the most recent
sequencing number of §.

Chapter 6 Synchronization and
Mutual Exclusion

47

Suzuki Algorithm (A) Request
>

> If § doesnot hold the token, it increments

its sequencing number, RN/[i], and sendsa
REQ(i, RN/[i])

to al sites (broadcasting).

> When § receivesthe REQ(i, n) from S, it
sets RN[i] to max(RN,[i], n) . If § hasthe
idle token, then it sendsthetokento S if
RN[i] =LN[i] +1.

Chapter 6 Synchronization and
Mutual Exclusion

Suzuki Algorithm (B) and (C)
. —
> (B) Enter CR:

> § entersthe CR when it has the token

> (C) Release:

» S setsaLN[i] toRN;[i],

» For every § whoseidentifier isnot in thetoken's Q,
it appends §into in the token'sQ if

RN;[j] = LN[j] +1

» If thetoken' s Q is non-empty after the above update, the
S deletesthe top identifier from the token’ s Q and sends
the token to that identified site.

Chapter 6 Synchronization and
Mutual Exclusion 49

Correctness and Parformance

»

» A requesting site entersthe CR in finite time.
Since one of the sites will release the tokenin
finitetime, site §*srequest will be placed in the
token’s Q in finite time. Since there can be at most
n-1requestsin front of §, § will executethe CRin
finitetime.

» Performance:

number of msg's Oorn

D OorT

Chapter 6 Synchronization and
Mutual Exclusion 50

> Each site maintainsinformation about the
state of other sitesand usesit to select aset
of sitesthat arelikely to have the token.

> A sitemust select asubset of sites such that
at least one of those sitesis guaranteed to get
the token in the near future, otherwise, there
isapotential deadlock or starvation.

Chapter 6 Synchronization and
Mutual Exclusion 51

Singhal Algorithm: Data Structure

> "i:1£i£En
SVi[1.n] : §' sstatearray {R, E, H, N}.
SNj[1..n] : §' s highest sequencing number array
> Token
TSV[1..n] : Token sstatearray {R, N}.
TSN[1..n] : highest sequencing number array
» States: asite can be in one of the following states:
R: requesting the CR
E: entering the CR
H: holding theidle token
N: none of the above

Chapter 6 Synchronization and
Mutual Exclusion 52

Singhal Algorithm: Initialization

L L [
S\/I R—R R—NN N
SNi |u | |u |
|| ||
TSV N N
|| |

Property: forany S and S, either
SV[j] =Ror Sv;[i] =R

Chapter 6 Synchronization and
Mutual Exclusion 53

> If § doesnot hold the token:
D SVi]UR (2 N[i]U SN[i]+1;
(3) sends REQ(i, S\|[i]) to all sitesfor which SV[i] == R .
> When § receivesthe REQ(i, m) fromS, if m£ SNJ[i] do nothing;
otherwise SN[[i]U m,
cases.
(1) If SV[j]==N, thenSV|[i] U R
@ If SV[[j]==R&& SV[i] =R, then
Sv|[i]U R, and sendsREQ(j, N[j]) to §
(3)If SV/[j]==E,then SV|[i] U R
(4) If Sv|[j]==H,thenSV[i] U R,
TSV[i]U R, TSN[i] U m, SV [j]U N
and sends Tokento §

Chapter 6 Synchronization and
Mutual Exclusion 54

Singhal Algorithm (B) and (C)

> (B) Enter CR: when S hasthe token, it setsSV[i] == E
and then entersthe CR.

> (C) Release:
> If SfinishesCR, it sets SV[i]U N,TSV[i]U N,
» Forevery §(: 1.n), if S\;[j]> TSNIj] , then update token:
TSVI1 U SV[j] , TSN[i] U SNl
else update local:
SV([j1U TSVl , N[j]U TSNIj]
> If ("j:SV|[j]==N)then SV[i]U H, elseselectsa§ such that
SV{[i]==R, and sends the token to that identified site.

Chapter 6 Synchronization and
Mutual Exclusion 55

» See Simghal, M. “A Heuristically-aided
Algorithm for Mutual Exclusionin
Digributed Systems”, IEEE Trans on
Computer, Vol. 38, No. 5, 1989

» Performance:

number of msy’s: avaragen/2
SO T

Chapter 6 Synchronization and
Mutual Exclusion

56

Raymond Tree-based Algorithm

r

» Sitesarelogicaly arranged as a directed tree
such that the edges of the tree are assigned
directionstowards the root site that hasthe
token.

» Datastructure: for each § :

holder: pointsto an immediate neighbour
node on directed path to the root (which is self-
pointed)
RQ: stores requests received by S, but have
not yet been sent the token. (An FIFO queue)

Chapter 6 Synchronization and
Mutual Exclusion 57

Raymond Algorithm: An Example

»

v = ~

> Root transition when Token has been
passed to another node in the tree.

Chapter 6 Synchronization and
Mutual Exclusion

58

Raymond Algorithm (A) Request

> If § doesnot hold the token and its RQ; is empty, it sends a REQ(i)
to holder, and appends the request to RQ, .

> when § receivesthe REQ(i) , it places the REQ(i) in its RQ;and
sends a REQ(j) to holder provided it is not the root and its RQ,has a
single entry.

> when theroot receivesaREQ(K) , it sends the token to the sender §
and redirect holder to the sender.

> when § receives the token, if the top entry in RQ; is not its own
request, it deletes the top entry, sends the token to the top entry site,
and redirect holder to that site. If RQ; is not empty at this point, then
sends a REQ(j) to the new holder.

Chapter 6 Synchronization and
Mutual Exclusion 59

> (B) Enter CR:

> when § has the token and its own request is on the top
of RQ;, then deletes the top entry and entersthe CR.

> (C) Release:

If S finishes CR and itsRQ; is not empty, it deletesthe
top entry, sends the token to the top entry site, and
redirect holder to that site.

» If §'sRQ; isnot empty at this point, it sends a REQ(i)
to holder .

v

Chapter 6 Synchronization and
Mutual Exclusion

60

10

Correctness and Performance

. —

» Deadlock free: the acyclic nature of tree
eliminates the possibility of circular wait anong
requesting sites.

» Starvation free: FIFO nature of request queue.

» Performance:

number of msg's. O(log n)
D T*logn/2

Chapter 6 Synchronization and
Mutual Exclusion 61

Algorithm Response bD #of #of
time rhessages thessages
[(X0)] HL)
Wamport qT+E] J(n-1) (n-1)
icart- 4T +E 1 4(n-1) 4(n-1)
grawaa
rlﬂaekalva 4T +E a7 d(sart(n) +1) H(sart(n) + 1)
puzuki - qT+E l
Hasami
inhal 4T +E 1 /2 1
FRaymond J(logn) +E TYlogn/2 Ipan 4

LL: Light Load, HL: Heavy Load

Chapter 6 Synchronization and
Mutual Exclusion 62

Global State and Distributed Coordinator

> Theglobal state of adistributed system consists
of the local state of each process, together with
the messages that are concurrently in transit.

» The coordinator of adistributed systemisa
process (assigned or elected) which takes specia
responsibility and performs some specia role.

Chapter 6 Synchronization and
Mutual Exclusion 63

Global State

S il W el

a A consistent cut
b) Aninconsistent cut

Chapter 6 Synchronization and
Mutual Exclusion 64

. Global State: Distributed Snapshot(1)

r

Incarming uiigaing
message Frocess Stabe message
L

I -

- [
419 g

= Lozal
Marker [filesystnm

(a}

3 Organization of aprocess and channels for
adistributed snapshot

Chapter 6 Synchronization and
Mutual Exclusion 65

. Global State: Distributed Snapshot(2)

>

» Process Q receivesa marker for the first time and records
itslocal state

9 Qrecordsall incoming message

¢ Qreceives amarker for itsincoming channel and finishes
recording the state of the incoming channel

Chapter 6 Synchronization and
Mutual Exclusion 66

11

Election Algorithms

b I

= Where adistributed algorithm requires a process to act as
coordinator, an election algorithm can beinvoked.

= Thegoal of an election algorithm is to ensure that when an
election starts, it concludes with all processes agreeing on who
the new coordinator isto be.

= Assumptions:

- Each process has a unique number, for example, its network
address.

- Every process knows the process number of every other
process. What is unknown is which ones are currently up
and which ones are currently down.

- The election algorithm attempts to locate the process with
the highest number and designatesit as coordinator.

Chapter 6 Synchronization and
Mutual Exclusion 67

Election: The Bully Algorithm

»

= When aprocess notices that the coordinator is no longer responding to
requests, it initiates an election. A processP holdsan election asfollows:
P sendsan ELECTIONmessage to al processes with higher number;
If no oneresponds, P winsthe election and announcesthat it isthe
new coordinator;
If one of the higher-ups answers, it takes over. P'sjob isdone.
= When aprocess gets an ELECTION message from one of its|ower -
numbered colleagues,
the receiver sends anOK message back to the sender,
it takes over the election, unlessit is already the coordinatar.
= |f aprocessthat was previously down comes back, it holds an election.

Chapter 6 Synchronization and
Mutual Exclusion 68

TheBully Algorithm: An Example
0o e 0

+
(@
Q@ A
> O
@ Chapter 6 Synchronization and C]
Mutual Exclusion 69

Election: A Ring Algorithm
1. The processes are logically organised asaring
2. When a process notices that the coordinator is not functioning, it initiates
election by send an ELECTION message to its successor.
- The ELECTIONmessage containsits number;
If the successor is down, the sender skips over the the successar and
goesto the next member alone the ring until arunning processis
located.
3. When a process receives an ELECTIONmessage, it checksif its own
number isin thelist of processes contained in the message,
If not, it inserts its number into the message and pass the message
alonethering.
- if yes, the highest number in the list is elected as the coordiretor, a

COORDINATORmessageis circul ated, which containswho isthe
coordinator and who are the members of thering.

Chapter 6 Synchronization and
Mutual Exclusion 70

A Ring Algorithm: An Example

EAm
- Elscton mmmage
2l &
Ak Bl
. -
Fiw et CoORdnain <o N
has crashed |7 (-]
b
Ea
=3
Fhy peponse - 'l
[]

Chapter 6 Synchronization and
Mutual Exclusion

71

Performance Analysis

»

= Number of messages:
- Bully agorithm:
(N2=1
- Ring agorithm:
2N, where N is the number of processes.
= Timedelay:
- Bully agorithm:
= If broadcasting messages: 3T.
= |f no broadcasting messages: (N +1)T.
- Ring agorithm:
- (N=DT

Chapter 6 Synchronization and
Mutual Exclusion 72

12

